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MIMN Self-Tuning Control of Chemical Process Operation

L. Hallager, S.B. Jorgensen, and L. Goldschmidt

Dept. of Chemical Engineering, Technical University of Denmark
Building 229, DK-280J Lyngby, Denmark

Abstract

The problem of .selecting a feasible model structure
for a MIMO self-tuning controller (MIMOSC) is ad-
dressed. The dependency of the necessary structure
complexity in relation to the specific process ope-
rating point is investigated. Experimental results
from a fixed-bed dhemical reactor are used to illu-
strate the points.

Keywords. Adaptive control, process dynamics, che-
mical reactor control, process identification, re-
cursive parameter estimation, quadratic optimal
control.

Introduction

Chemical engineering plants contain in general a
number of energy and mass exchange processes com-
bined with chemical reaction processes. In either
type of process at least two streams or components
are brought into close (direct or indirect) contact
whereupon the exchange or reaction occurs. The pro-
cesses are most -often carried out in tubular units
or equipment with many stages, hence the processes
tend to have distributed character. In addition the
processes are bilinear and often nonlinear due to
the thermodynamic or reaction kinetic relation-
ships. In industrial practice slow changes often
occur in internal process characteristics such as
dirt deposition on heat exchange surfaces and cata-
lyst or biological activity changes. The control
problems for chemical processes are mainly to main-
tain product quality within specified limits and if
that fails then to maintain production if at all
possible. In principle these control problems are
multivariable due to th, number of streams or com-
ponents involved. Traditionally, however, they have
often been solved as multi loop problems. This
solution has been satisfactory in the vast majority
of the cases. :However, a number of processes have
remained difficult to control thus requiring a mul-
tivariable design technique. With the increased
tendency towards process intensification many more
control problems may advantageously be solved while
recognizing their multivariable nature.

During the last decade it has been demonstrated
experimentally that many chemical engineering pro-
cesses often can be satisfactorily controlled using
multivariable techniques.

fhe control designs applied generally have
been based upon off line identified linearized
mathematical models. These design methods, how-
ever, have not been applied significantly in pro-
cess control practice; probably due to the effort
required to develop a mathematical model from
basic physics and chemistry using conservation
principles. Furthermore, it is often difficult and
costly to identify such a model, partly because
estimates of some parameters may be difficult to
obtain from experiments, and partly because the
model will often be nonlinear in the parameters.
Finally, the parameters in chemical processes are
usually time varying, for instance due to changes
in internal process characteristics thus necessi-
tating more or less regular updating of para-
meters. Consequently, there are obvious opportuni-
ties for multivariable adaptive control design
methods.

The method presented in this paper is based
upon an indirect or explicit approach where simple
linear relationships are postulated between mea-
surements and control inputs. The relationships
are based upon a priori chemical engineering pro-
cess knowledge concerning bulk flow directions,
energy and mass transfers, and rough estimates of
the time delays involved. By estimating the coef-
ficients of these relationships on line it is pos-
sible for the model to adapt to slow changes ei-
ther in internal process characteristics or in ex-
ternal loads. The appropriate feedback gains are
evaluated based upon the identified model using
some specific control strategy. Relatively few in-
vestigators have investigated algorithms for tun-
ing of controllers in the multivariable case.
Peterka and Astrbm (1973) proposed a multivariable
selft-tuning regulator based on linear quadratic
optimal control of processes with uncertain para-
meters. Borison (1975, 1979) extended the basic
minimum variance self-tuning controller to the
multivariable case. Keviczky and Hetthessy (1977)
used a dead time transformation. Koivo (1980) ex-
tended Clarke and Qawthrop's method to a MIMO
self-tuning controller with an equal number of in-
puts and outputs. Prager and Wellstead (1980) use
a pole placement design procedure. Buchholt and
KUmmunel (1981) investigated a one step control me-
thod on a two stage evaporator. Bayoumi et al.
(1982) presented an algorithm for model order
determination and considered processes where the
time delay is the same for all control signals.
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In chemical engineering processes it is often
advantageous to use more measurements than con-
trols. An important feature of the algorithm devel-
oped herein is that it does not require the number
of measurements to be equal to the number of con-
trols. This requirement is also fulfilled by the
algorithms presented by Grimble and Moir (1983).

In the multivariable case the selection of a
proper model structure is very important in order
to reduce the computer work-load and numerical
problems. The emphasis in this presentation is on
differences in the model structure arising from
different process operating points.

Parameter estimation is performed using a re-
cursive extended least squares method with variable
forgetting factor. Controller gains are calculated
using deterministic optimal control law with inte-
gral effect. The two latter subjects are described
in Hallager and Jorgensen (1983), Hallager (1984),
and Hallager et al. (1984).

Experimental Process

A chemical reactor is used as an example of a typi-
cal chemical engineering process. The pilot plant
reactor considered consists of a tubular fixed bed
of catalyst particles, designed to be essentially
adiabatic and with negligible heat capacity of the
reactor wall. It is described in detail by Hansen
and Jorgensen (1976). In this series of experiments
a stream of hydrogen containing 0.25-0.75 mole %
oxygen is fed to the packed catalyst bed at a tem-
perature of approximately 82°C. The steady state
total flow rate is 2.6 mg/cm2/sec. The adiabatic
temperature rise during water formation is 1690C
per mole % reacted oxygen.

The propagation of inlet temperature disturb-
ances is illustrated in Figs. la and lb. The open
loop temperature responses at selected axial posi-
tions are shown subject to an inlet temperature
pulse disturbance of height 50C and duration 12
min. at low (0.25 mole t) and medium (0.75 mole VS)
inlet oxygen concentration respectively. At the low
oxygen concentration (Fig. la) the process behaves
very much as a delay with dispersion and approxi-
mately unity gain, whereas the gain increases and
significant inverse response occurs when the oxygen
concentration level is raised to 0.75 mole % (Fig.
lb).

Qualitative Dynamical Description

In the gas phase fixed bed catalytic reactor, in-
vestigated here, the heat capacity of the gas is
negligible compared to the heat capacity of the
catalyst pellets, thus the thermal residence time
is several hundred times greater than the gas resi-
dence time. Furthermore, it is known (Hansen, 1973)
that the mass transport processes are sufficiently
fast to make quasi stationary descriptions of the
mass-balances reasonable. Finally, there is almost
thermal equilibrium between the catalyst pellets
and the gas and within the pellets. A reasonable
simplified mathematical model of the reactor there-
fore is a pseudo homogeneous model consisting of
one dynamic nonlinear partial differential equation
for the temperature and one quasi stationary diffe-
rential equation for the oxygen balance. Both in-
cluding dispersive terms.

Figure 1:

Open loop responses of selected axial reactor tem-
peratures and inlet variables subject to an inlet
temperature pulse disturbance of height 5°C and
duration 12 min. at inlet oxygen^ cncentrations of
a: 0.25 and b: 0.75 mole %. The dimensionless axial
measurement positions are indicated with- subscript.

The two important dynamical features of the
reactor system are thus,

a. A fast propagation of corncentra and flow

rate changes. The mass balance is a quasi sta-
tionary functional of the inlet conditions and
the temperature profile.

b. A slow propagation of temperature changes. The
thermal wave passes through the reactor in 11-
30 minutes dependent upon the flow rate.

The qualitative process knowledge discussed a-

bove may be presented in a diagram which will be
useful in selection of model structure and control
strategy. The necessary ingredients are:

i) The sufficient number of conserved quantities:
momentum, mass, and energy necessary to de-
scribe the process state with a for practical
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purposes reasonable accuracy.

ii) The significant capacities.
iii) The quantity transport mechanisms.

iv) The presence of couplings among the quanti-
ties.

For many chemical engineering processes the Pynamic
Quantity Interactions and flows in the process may
be depicted clearly in a Diagram (a DYQUID) as
shown in Figure 2 for the example process. The
energy quantity having a significant capacity is
shown as a box which is rectangular in order to in-
dicate the axial coordinate of the reactor. The to-
tal mass and oxygen quantities are shown as hori-
zontal lines due to their relatively low capaci-
ties.

The purpose of the DYQUID is in this context
to enable a reasonable selection of:

i) Type and position of measurements.

ii) Controlled variables.

iii) The model structure - i.e. how inputs and
disturbances affect the measurements.

For the fixed bed reactor, the DYQUID in
Figure 2 reveals that measurements of internal oxy-
gen concentration and temperature contain informa-
tion concerning all inputs whereas measurement of
total mass flow rate e.g. at the reactor outlet
only provides information about inlet flow rate. In
addition, the DYQUID may be used for selection of
suitable controls. The DYQUID in Figure 2 also re-
veals that the distributed forcing of inlet concen-
tration and flow rate may be utilized to cancel di-
sturbances already present in the process. Such an
effect is not possible with inlet temperature which
is a boundary forcing to a delay.

Model Structure

A qualitative model structure may be obtained from
chemical engineering knowledge of qualitative pro-
cess dynamics. Given the process controls and mea-
surements it is possible to select a reasonably low
number of parameters in the multivariable time
series models described below. When a state of a
quantity with predominantly convective flow is mea-
sured, all inputs which affect the particular quan-
tity are identifiable. Using the DYQUID it is pos-
sible to investigate whether essential process in-
puts are qualitatively identifiable.

It is assumed that the input-output data from
the chemical react-or can be described by a dis-
crete-time multi-variable time-series model:

x*(t) c

A(q )x*(t-l) + B(q )u*(t-d) + C(q )e(t) (1)
where

x*(t) (dim n) is model output, x*(t) = x(t)-x(t-l)
where x(t) is a vector of measurements

u*(t) (dim m) is model input, u*(t) a u(t)-u(t-l)
where u(t) is a vector of inputs

e(t) (dim n) is a zero means, white noise se-
quence

d is the delay from input to output

A(q ), B(q I) and C(q 1) are matrix polynomials of
order-, b and c in the backward shift ope-
tor q i.e.

A(q.) = A0 + A1 q1 + d. + A q

B(q 1 B +)+ b q b

C(q )- I + C q1 + .. + CC q c

The dimensions (n,m,a,b,c) and the delay d are as-
sumed known and the matrices A., i=0, . .., a; B .,
i=O, ..., b; and C., i=l, ..., c are assumed un-
known but constant or slowly varying.

Chemical processes are commonly subject to
drift which by definition is slow. The phenomenon
is reflected in the time series model equation (1)
which has incremental states and controls. In this
latter case the noise is coloured, but the influ-
ence of drift on the estimation is eliminated. In
this case a control algorithm should be applied
which eliminates offset.

The size of the model is defined when the mea-
surements and controls are selected and n,m,a,b,c
and d are fixed. If the model is not further struc-
tured it would be necessary to estimate n(n(a+l+c)
+ m(b+l)+l) parameters. However, using the DYQUID
it is possible to reduce the above number of para-
meters significantly and still model the dominant
thermal dynamics of the reactor and the influence
of the inputs.

The measurements and controls are chosen from
the qualitative process dynamics knowledge in the
DYQUID (Figure 2). Since flow rate and rapid con-
centration measurements are only seldomly available
in practice and the energy balance contains the
significant capacity it is of interest to investi-
gate the use of a number of temperature measure-
ments. Here five equidistant sensors are used.

DYNAMIC QUANTITY INiTERACTION DIARMN: (OYQUID)
F

Upstream
disturbance

*F'C T Tn 2 To 4 T 6 To. a TI. O

Controls Temperature measurements

Figure 2:

Dynamic Quantity Interaction Diagram (DYQUID) for
the fixed bed reactor. The set of temperature mea-
surement positions considered in this paper is in-
dicated by crosses.
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This choice makes it possible to propose a feasible
model structure in addition to providing reasonably
rapid measurement information about upstream dis-
turbances both in upstream temperature which is a
boundary forcing (through the temperature measure-
ment at 0.2) and the distributed forcings as well
as about the control object (Jorgensen et al.
1984). As controls the inlet temperature and most
often one or two of the distributed forcings: inlet
oxygen concentration and total flow rate are used.
The distributed forcings have the advantage of
being able to partially cancel disturbances already
in the system.n

Several model structures have been investigated
earlier, Hallager and Jorgensen (1981) and (1983).
In this work a basic model structure for the above
measurement set is selected. The termal delay time
of the process at the nominal flow rate utilized in
these experiments is 16 min. For the example pro-
cess the number of parameters is reduced using the
DYQUID (Figure 2).:
i) The distributed disturbances (concentration and

flow rate) influence all measurements with a
delay of 1 sampling period (due to the sampling
of the system).

ii) The thermal wave as observed by a number of
temperature measurements is described essen-
tially as a delay from the temperature input to
the first measurement and from one measurement
to the next. This behaviour necessitates a
proper selection of sampling time in relation
to model order.

The resulting model structure is based upon a
sampling interval of 2 min. and three A and B ma-
trices. This sampling interval is approximately 20%
larger than 1/10 of the mean thermal residence time
at the nominal operating point. The structure of A0
and Bo is:

xx 000
A = O X X O oo o 0 x x ol

Lo 0 0 X XJ

and of A. and B. are:
1 1

Ifro
!X

A. = (o
1 1°

LO

0
0
x
0
0

0 0
0 0
0 0
x 0
ox

01
0I

0j

-x X X)
.0 X Xt

B0 = O X XJx x0

and B. = &D O O

_00

i=l,2

where X denotes a parameter to be estimated. In ad-
dition to the delay term from one measurement to
the next (subdiagonal elements), an auto-regressive
term in each measurement is included in A (diago-
nal elements). This expansion is employecg to par-
tially account for dispersion. The first column of
B reflects the influence of inlet temperature and
tRe following columns inlet corncentration and flow
rate respectively, the latter vectors are full ac-
cording to i).

With the specified nominal delay and sampling
interval the delay term from one measurement to the
next is accounted approximately for by the subdia-
gonal elements in A1 The subdiagonal elements in
all three A-matrices are included in order to allow
unknown flow rate variations within approximately
+100% and -33% of the nominal flow rate. The struc-
ture of B and B2 follows from the convective na-
ture of inket temperature disturbances to the first
measurement. If some controls are not applied the
appropriate columns of B. are deleted for the
actual basic model structure.

Results

All parameters were initially set to zero. After
open loop reactor start-up, the identification was
performed in open loop. During identification inde-
pendent Pseudo-Random Binary Sequences were applied
simultaneously to each actual input. When the model
parameters had become nearly constant the PRBS
generation was stopped. Now the loop was closed,
and the controller allowed to bring the process to
the desired steady state.

Finally, a step disturbance was introduced in
the upstream temperature. Figures 3a and 3b show
the closed loop response of selected axial tempera-
tures and inlet conditions (= control signal + up-
stream disturbance), at an inlet oxygen concentra-
tion of 0.25 and 0.75 mole %/ respectively. The ex-
periment of Fig. 3b is somewhat hampered by noise
around 5 min, however, the intentioned disturbance
is dominating. It is also noted that the flow rate
input is not utilized in the model structure used
for Fig. 3b, however, in the low inlet oxygen case
(Fig. 3a) the process is not very sensitive to the
flow rate, hence a comparison seems reasonable.

The qualitative picture of the inlet conditions
is essentially the same for the two cases. After
two samples the disturbance is detected and almost
removed in the pertinent control variable (TT) over
approximately 5 samples. The interesting point is
the utilization of the oxygen input. In both cases
it is lowered when the disturbance is detected. At
the low oxygen operating point (Fig. 3a) this ac-
tion is reasonable as it cuts the maximum tempera-
ture deviation in the late part of the reactor.
However, at medium oxygen (Fig. 3b) this action
aggravates the inverse response. The reason for
this undesirable behaviour is that the model struc-
ture does not include distant, fast effects of the
temperature input. At this operating point the
cross coupling between the thermal balance and the
oxygen (mass) balance (see the DYQUID, Fig. 2) is
sufficiently strong to induce fast effects of the
temperature input. These effects are not accounted
for in the model structure leading to the response
shown.

Consequently, the model needs improvement to be
valid at the medium oxygen concentration level. The
DYQUID suggests faster effects further down the
reactor. This could be included in the structure by
including additional subdiagonals in the As matrix
and additional elements in the first column of B0o
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Fjigure

Closed loop responses of selected axial reactor
temperatures and inlet variables, subject to an up-
stream temperature step disturbance of height 50C,
at inlet oxygen concentrations of a: 0.25 and b:
0.75 mole % respectively.

Conclusion

Selection of a sufficiently flexible model struc-
ture is crucial for the performance of a multivari-
able self-tuning controller, when the controller is
to work under different operating conditions.

It is demonstrated that the use of a simple
graphical description of the dynamical elements of
a chemical process (a DYQUID) may be used for pre-
dicting multivariable model structures. The exam-

ples shown demonstrate that the necessary structure
complexity depends entirely upon the strength of
the quantity interactions.
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