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Abstract: In current scenario, the demand for wireless communication is increasing drastically. A wireless system has 

number of advantages over its wired counterpart including allowing a communication link to be set up quickly without 

the difficulty and expense of installing data transmission lines. The wireless communications industry has experienced 

an explosive growth in the last decade. One of the most promising spectrums an efficient technique is multiple-input-

multiple-output (MIMO) systems that employ multiple transmits and receives antennas. The multiple inputs multiple 
outputs (MIMO) radar system transmits M antennas and receives N antennas. In  this proposed system first step can be 

initially derive the diversity gain for a signal present versus signal absent scalar hypothesis test statistic and for a vector 

signal present versus vector signal absent hypothesis test. The MIMO radar system, used to detect a target composed of 

Q random scatterers with possibly non-Gaussian reflection coefficients in the presence of possibly non-Gaussian 

clutter-plus-noise. Diversity gain for the MIMO radar system is dependent on the cumulative distribution function 

(CDF). In this maximum possible diversity gain can be achieved for non orthogonal waveforms. 
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I. INTRODUCTION 

Multiple-input multiple-output (MIMO) radar is an 

emerging topic that draws upon research in the fields of 

communications and radar. In this system several 

transmitting antennas and one receiving antenna is present 
[4]-[6]. This is also known as transmitting diversity. The 

transmit diversity is far more advantageous in comparison 

to the receive diversity. This is due to the fact that in 

general the number of receivers is greater than the number 

of transmitters. The transmit diversity is a modern 

phenomenon. In this case, the same data is transmitted 

redundantly over two antennas. This method has the 

advantage that the multiple antennas and redundancy 

coding is moved from the mobile user end to the base 

station, where these technologies are simpler and cheaper 

to implement. MIMO radars that employ dispersed 

antennas to transmit various waveforms can obtain a larger 
diversity gain than the conventional phased array radar. 

When the Neyman–Pearson criterion is employed, we fix 

the false alarm probability. The diversity gain is defined as 

the negative of the slope of the miss probability versus 

signal-to-clutter-plus-noise ratio (SCNR) for the high 

SCNR region when a logarithmic scale is employed for 

both axes[5]. Assuming linear  decay  of  the  miss  

probability   for   sufficiently  large SCNR when such 

scales are employed, large diversity gain implies good 

target detection performance for sufficiently high SCNR 

and fixed probability of false alarm. Intuitively, diversity 

gain tells us about the value of the information we get 

from multiple looks (from several antennas, frequencies, 

or retransmissions, etc.). In particular, the calculation of 

diversity gain typically shows that multiple looks tend to 

increase the diversity gain. This seems reasonable for large 

enough SCNR, where each individual look should  help  in  

making a correct decision[2]. Of course, no scalar 

performance measure can completely describe everything 

about performance as we change multiple parameters  

 

(SCNR, probability of false alarm). However, diversity 

gain is very useful for cases with high SCNR. In this 

paper, we consider non-orthogonal waveforms for results. 

At first, we consider a signal-present versus signal-absent 

scalar hypothesis test statistic under the test statistic 

contains only. Next, we formulate a vector hypothesis 

testing problem where we attempt to distinguish between 

clutter-plus-noise only , and a linearly transformed version 

of a possibly non-Gaussian signal vector plus this clutter-

plus-noise. We consider a class of test statistics, including 

the optimum test for Gaussian signal and Gaussian clutter-

plus-noise. For the vector hypothesis testing problem, the 

signal part of the resulting test statistic, formally called u 

is decomposed into L terms. Then, we apply these results 

to study the diversity gain for a MIMO radar system with 

M transmit antennas and N receive antennas which is used 

to detect a target composed of Q scatterers. It is shown 

that the maximum diversity gain can be achieved under 

certain conditions. These results generalize the Gaussian 

clutter-plus-noise and reflection coefficients. 

The rest of the paper is organized as follows. Section II 

derives the concept of Multiple Input Multiple Outputs 

(MIMO) and diversity gain. Section III investigates the 

Neyman-Pearson Detectors method. Numerical results are 

presented in Section IV. Conclusions are drawn in Section 

V. 

II. MULTIPLE INPUT MULTIPLE OUTPUTS (MIMO) 

A channel may be affected by fading and this will impact 

the signal to noise ratio. In turn this will impact the error 

rate, assuming digital data is being transmitted. The 

principle of diversity is to provide the receiver with 

multiple versions of the same signal. If these can be made 

to be affected in different ways by the signal path, the 

probability that they will all be affected at the same time is 

considerably reduced. Accordingly, diversity helps to 
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stabilize a link and improves performance, reducing error 

rate. 

Several different diversity modes are available and provide 

a number of advantages: 

Time diversity:   Using time diversity, a message may be 

transmitted at different times, e.g. using different timeslots 

and channel coding. 

Frequency diversity:   This form of diversity uses different 

frequencies. It may be in the form of using different 

channels, or technologies such as spread spectrum / 

OFDM. 

Space diversity:   Space diversity used in the broadest 

sense of the definition is used as the basis for MIMO. It 

uses antennas located in different positions to take 

advantage of the different radio paths that exist in a typical 

terrestrial environment. 

MIMO is effectively a radio antenna technology as it uses 

multiple antennas at the transmitter and receiver to enable 

a variety of signal paths to carry the data, choosing 

separate paths for each antenna to enable multiple signal 

paths to be used. 

One of the core ideas behind MIMO wireless systems 

space-time signal processing in which time (the natural 

dimension of digital communication data) is 

complemented with the spatial dimension inherent in the 

use of multiple spatially distributed antennas, i.e. the use 

of multiple antennas located at different points. 

Accordingly MIMO wireless systems can be viewed as a 

logical extension to the smart antennas that have been used 

for many years to improve wireless. 

It is found between a transmitter and a receiver, the signal 

can take many paths. Additionally by moving the antennas 

even a small distance the paths used will change. The 

variety of paths available occurs as a result of the number 

of objects that appear to the side or even in the direct path 

between the transmitter and receiver. Previously these 

multiple paths only served to introduce interference. By 

using MIMO, these additional paths can be used to 

advantage. They can be used to provide additional 

robustness to the radio link by improving the signal to 

noise ratio, or by increasing the link data capacity. 
The two main formats for MIMO are given below:  

Spatial diversity:  

Spatial diversity used in this narrower sense often refers to 

transmit and receive diversity. These two methodologies 
are used to provide improvements in the signal to noise 

ratio and they are characterized by improving the 

reliability of the system with respect to the various forms 

of fading. 

Spatial multiplexing:   

This form of MIMO is used to provide additional data 

capacity by utilizing the different paths to carry additional 

traffic, i.e. increasing the data throughput capability. 

As a result of the use multiple antennas, MIMO wireless 

technology is able to considerably increase the capacity of 

a given channel while still obeying Shannon's law. By 

increasing the number of receive and transmit antennas it 

is possible to linearly increase the throughput of the 

channel with every pair of antennas added to the system. 

This makes MIMO wireless technology one of the most 

important wireless techniques to be employed in recent 

years. As spectral bandwidth is becoming an ever more 

valuable commodity for radio communications systems, 

techniques are needed to use the available bandwidth more 

effectively. MIMO wireless technology is one of these 

techniques. 

There are a number of different MIMO configurations or 

formats that can be used. These are termed SISO, SIMO, 

MISO and MIMO. These different MIMO formats offer 

different advantages and disadvantages - these can be 

balanced to provide the optimum solution for any given 

application. 

The different MIMO formats - SISO, SIMO, MISO and 

MIMO require different numbers of antennas as well as 

having different levels of complexity. Also dependent 

upon the format, processing may be needed at one end of 

the link or the other - this can have an impact on any 

decisions made. 

Wireless communication industry has recently turned to a 

strategy called Multiple-Input Multiple-Output (MIMO). 

MIMO is the single most important wireless technology as 

of today. MIMO is a technology evolution where both 

ends of the wireless link are equipped with antenna array 

as shown in fig.1. 

 

Fig. 1. Block diagram of MIMO system 

is designated to the use of multiple antennas in both the 

transmitter and receiver stations. The new MIMO concept 

has been originally proposed to improve the 

communication performance in wireless systems. The 

Multiple Input Multiple Output Systems is as shown in 

Fig.2. 

 
Fig.2. Multiple Input Multiple Output Systems. 

The performance of a communication system can be 

heavily disrupted by the multipath effects and doppler 

spreading effect. Diversity implementations can help to 

counteract this undesired effect in many ways. These ways 

can be either built in transmission or reception, and the 

usage only depends on the increment cost that we can 

assume or the environment conditions. Diversity 
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techniques make port from the random nature of the radio 

channel, by sending the information in deferent channels, 

which means that we have at the output deferent versions 

of the same signal. There are various types of diversity 

like as Space diversity, Frequency diversity, Time 

diversity, Polarization diversity and Receiver diversity. 

 
Fig.3. Block diagram of signal processing in MIMO system. 

1. Hypothesis test: 
Input coming from antenna array is given to the hypothesis 

test. Hypothesis test is done   using Neyman Pearson 

signal detection. First hypothesis test for scalar signal and 

second hypothesis test for vector signal. 

2. Diversity gain for detected signal: 
After detecting the signal then calculate the diversity gain. 

The diversity gain is defined as the negative of the slope of 

the miss probability versus signal-to-clutter-plus-noise 

ratio (SCNR) for the high SCNR region when a 

logarithmic scale is employed for both axes. Diversity gain 

is main advantages of MIMO system. Diversity gain 

improves the performance of communication system. 

3. High diversity gain for non orthogonal signal 
In this main aim of project is to calculate diversity gain for 

non orthogonal signal. After calculating the diversity gain 

of non orthogonal signal, it shows that diversity gain for 

non orthogonal signal is higher than orthogonal signal. 

III. NEYMAN-PEARSON DETECTORS METHOD  

Neyman-Pearson's hypothesis makes sense when there are 

two disjoint alternatives between which we decide, as well 

as the risk of a Type I error. Explanation: Consider a p-

value is the probability of getting a sample statistic (say, a 

sample mean). Neyman & Pearson thought you could use 

the p-value as part of a formalized decision making 
process. At the end of your investigation, you have to 

either reject the null hypothesis, or fail to reject the null 

hypothesis. In addition, the null hypothesis could be either 

true or not true. Thus, there are four theoretical 

possibilities (although in any given situation, there are just 

two): you could make a correct decision (fail to reject a 

true--or reject a false--null hypothesis), or you could make 

a type I or type II error (by rejecting a true null, or failing 

to reject a false null hypothesis, respectively). 

We see that the likelihood ratio statistic was optimal for 

testing between two simple hypotheses. The test simply 

compares the likelihood ratio to a threshold. The ―optimal‖ 

threshold is a function of the prior probabilities and the 

costs assigned to different errors. The choice of costs is 

subjective and depends on the nature of the problem, but 

the prior probabilities must be known. Unfortunately, 

often the prior probabilities are not known precisely, and 

thus the correct setting for the threshold is unclear. 

To deal with this, consider an alternative design 

specification. Let’s design a test that minimizes one type 

of error subject to a constraint on the other type of error. 

This constrained optimization criterion does not require 

knowledge of prior probabilities nor cost assignments. It 

only requires a specification of the maximum allowable 

value for one type of error, which is sometimes even more 

natural than assigning costs to the different errors. A 

classic result due to Neyman and Pearson shows that the 

solution to this type of optimization is again a likelihood 

ratio test. 

Assume that we observe a random variable distributed 

according to one of two distributions. 

                                                        (1) 

In many problems, H0 is consider being a sort of baseline 

or default model and is called the null hypothesis. H1 is a 

different model and is called the alternative hypothesis. If 

a test chooses H1 when in fact the data were generated by 

H0 the error is called a false-positive or false-alarm, since 

we mistakenly accepted the alternative hypothesis. The 

errors of deciding H0 when H1 was the correct model is 

called a false-negative or miss. 

Let T denote a testing procedure based on an observation 

of X, and let RT denote the subset of the range of X where 

the test chooses H1. The probability of a false-positive is 

denoted by 

                                   (2) 

The probability of a false-negative is 1 − P1(RT ), where 

                      (3) 

is the probability of correctly deciding H1, often called the 

probability of detection.Consider likelihood ratio tests of 

the form 

                                                       (4) 

The subset of the range of X where this test decides H1 is 

denoted 

 

     (5) 
and therefore the probability of a false-positive decision is 
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                             (6) 

This probability is a function of the threshold λ the set 

RLR (λ) shrinks/grows as λ increases/decreases. We can 

select λ to achieve a desired probability of error. 

Lemma 1 (Neyman-Pearson) 

Consider the likelihood ratio test 

                            (7) 
With λ > 0 chosen so that P0 (RLR (λ)) = α. There does 

not exist another test T with P0 (RT) ≤ α and P1 (RT) > P1 

(RLR (λ)). That is, the LRT is the most powerful test with 

probability of false-positive less than or equal to α. Proof. 

Let T be any test with P0 (RT) =α and let NP denote the 

LRT with λ chosen so that P0 (RLR (λ)) = α. To simplify 

the notation we will denote use RNP to denote the region 

RLR (λ). For any subset R of the range of X define 

                   (8) 

 This is simply the probability of X ε R under hypothesis 

Hi. Note that 

 (9) 

Where the superscript c indicates the complement of the 

set. By assumption P0 (RNP) = P0 (RT) = α, therefore 

          (10) 

Now, we want to show 

                    (11) 

This holds if 

             (12) 

To see that this is indeed the case, 

      (13) 

The probability of a false-positive is also called the 

probability of false-alarm, which we will denote by PFA 
in the following examples. We will also denote the 

probability of detection (1− probability of a false-negative) 

by PD. The NP test maximizes PD subject to a constraint 

on PFA. 

IV. NUMERICAL RESULTS 

Consider the scenario shown in Fig. 4. The radar system 

has M=2 transmit antennas located at (x1t,y1t) = (2,-2) km 

and (x2t,y2t) = (6,-4) km and N=2 receive antennas 

located at (x1r ,y1r) = (8,2) km and (x2r,y2r) = (4,0) km. 

The waveforms emitted from these two transmitters are 

s1(t) and s2(t) respectively. The Q scatterers constituting 

the target are uniformly distributed over [0.3,1] x 
[9.4,10.5] km2 . Now we present a few numerical 

examples based on the received signal model, where the 

Gaussian optimum detector is employed. 

In each example, the probability of miss versus SCNR 

curve is obtained from 100 000 Monte Carlo simulations 

per SCNR, and the resulting diversity gains are compared 

with those calculated using the corresponding theorem 

from the previous sections. Throughout this section we 

assume each scatterer has a statistically independent 

scattering coefficient. 

 
Fig. 4. System setup. 

Gaussian Reflections and Non-Gaussian Clutter-Plus- 
Noise: The experiments in Fig. 5 are repeated for non-

Gaussian clutter-plus-noise, while the other parameters 

remain the same. Assuming the clutter-plus-noise 

components are statistically independent with log-

normal10 distribution with parameters the miss probability 

versus SCNR curves for the three cases are plotted in Fig. 

3. The solid curve with points marked with diamonds 

shows the case for orthogonal (in the sense of [14]) noise-

free received waveforms at each receiver (due to target 

reflection), and Q=1500 where the diversity gain D=4 read 

from the figure agrees with the d= NM= 4 using Theorem 

The dotted curve with points marked with circles 
represents the case for orthogonal (in the sense of [14]) 

noise-free received waveforms at each receiver (due to 

target reflection), and Q=2 where the diversity gain d=2 

observed is consistent with the computed result d=Q=2 

from Theorem 2. 
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Fig. 5. Probability of miss versus SCNR for three difference cases under 

the condition of Gaussian reflections and Gaussian clutter-plus-noise. 
 

Fig. 6 again validates Theorem 2, and it also shows that 

the diversity gain of the considered test does not change 

even if the actual clutter-plus-noise confronted is non-

Gaussian. As expected, it is seen that the miss probabilities 

shown in Fig. 6 are uniformly larger than the 

corresponding results in Fig. 5, since the test is optimum 

for Gaussian clutter-plus-noise but not for the non-
Gaussian clutter-plus-noise. 

Spatial diversity used in this narrower sense often refers to 

transmit and receive diversity. These two methodologies 

are used to provide improvements in the signal to noise 

ratio and they are characterized by improving the 

reliability of the system with respect to the various forms 

of fading. 
Input coming from antenna array is given to the hypothesis 

test. Hypothesis test is done   using Neyman Pearson 

signal detection. First hypothesis test for scalar signal and 

second hypothesis test for vector signal. The choice of 
costs is subjective and depends on the nature of the 

problem, but the prior probabilities must be known. 

Unfortunately, often the prior probabilities are not known 

precisely, and thus the correct setting for the threshold is 

unclear. 

 
Fig. 6. Probability of miss versus SCNR for three difference cases under 

the condition of Gaussian reflections and log-normal clutter-plus-noise. 

Non-Gaussian Reflections and Non-Gaussian Clutter-

Plus-Noise: Again, the experiments in Fig. 5 are repeated. 

This time, both non-Gaussian reflections and non-

Gaussian clutter-plus-noise are considered. While all the 

other parameters remain the same as those employed in 

Fig. 5, we assume the noise-free received waveforms at 

each receiver (due to target reflection) are orthogonal, the 
clutter-plus-noise components are statistically independent 

and each component follows the log-normal distribution 

with parameters (-0.45,0.67), Change the parameters of the 

Weibull reflection coefficients to (1.04,10) and the result 

is shown by the solid curve with points marked with 

squares in Fig. 7. 

 
Fig. 7. Probability of miss versus SCNR for Weibull, or Rayleigh 

reflection coefficients and log-normal clutter-plus-noise 
 

V. CONCLUSION 

The diversity gains were analyzed for a signal-present 

versus signal-absent scalar hypothesis test statistic, a 

vector signal-present versus signal-absent hypothesis 

testing problem, and for a MIMO radar system. For each 

case, the Neyman-Pearson criterion is considered to obtain 

the optimal test statistic. Suboptimal tests were also 

discussed. We showed that, generally, the diversity gain is 
dependent on the lowest order power in an expansion, 

about zero, of the cdf of the signal part of the resultant test 

statistic, but invariant to the cdf of the clutter-plus-noise 

term in the test statistic under some reasonable conditions 

requiring certain moments of the magnitude of the 

processed clutter-plus-noise be bounded. 

Specifically, for MIMO radar target detection, this paper 

extended the recent work in [1] by incorporating non-

orthogonal waveforms, non-Gaussian reflections, and non-

Gaussian clutter-plus-noise. The Neyman-Pearson 

criterion is considered to obtain the optimal test statistic. 
By implementing diversity gain for MIMO Neyman–

Pearson signal detection. It can be seen that the maximum 

achievable diversity gain remains constant for clutter plus 

noise CDF. 

The target is composed of a sufficient number of 

statistically independent Gaussian scatterers, a Gaussian 

optimum detector is employed, and the antennas are 

properly placed, the maximum diversity gain can be 

achieved. Further proper non orthogonal waveform can 

achieve same diversity gain as orthogonal waveform. 
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