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1. Introduction     

In recent years, it was realized that designing wireless digital communication systems to 
more efficiently exploit the spatial domain of the transmission medium, allows for a 
significant increase of spectral efficiency. These systems, in general case, are known as 
Multiple Input Multiple Output (MIMO) systems and have received considerable attention 
of researchers and commercial companies due to their potential to dramatically increase the 
spectral efficiency and simultaneously sending individual information to the corresponding 
users in wireless systems. 
In MIMO channels, the information theoretical results show that the desired throughput can 

be achieved by using the so called Dirty Paper Coding (DPC) method which employs at the 

transmitter side. However, due to the computational complexity, this method is not 

practically used until yet. Tomlinson Harashima Precoding (THP) is a suboptimal method 

which can achieve the near sum-rate of such channels with much simpler complexity as 

compared to the optimum DPC approach. In spite of THP's good performance, it is very 

sensitive to erroneous Channel State Information (CSI). When the CSI at the transmitter is 

imperfect, the system suffers from performance degradation. 

In current chapter, the design of THP in an imperfect CSI scenario is considered for a 

MIMO-BC (BroadCast) system. At first, the maximum achievable rate of MIMO-THP system 

in an imperfect CSI is computed by means of information theory concepts. Moreover, a 

lower bound for capacity loss and optimum as well as suboptimum solutions for power 

allocation is derived. This bound can be useful in practical system design in an imperfect 

CSI case. 

In order to increase the THP performance in an imperfect CSI, a robust optimization 

technique is developed for THP based on Minimum Mean Square Error (MMSE) criterion. 

This robust optimization has more performance than the conventional optimization method. 

Then, the above optimization is developed for time varying channels and based on this 

knowledge we design a robust precoder for fast time varying channels. The designed 

precoder has good performance over correlated MIMO channels in which, the volume of its 

feed back can be reduced significantly. 

Traditionally, channel estimation and pre-equalization are optimized separately and 

independently. In this chapter, a new robust solution is derived for MIMO THP system, 

which optimizes jointly the channel estimation and THP filters. The proposed method   

provides significant improvement with respect to conventional optimization with less 

increase in complexity.  
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Notation: Random variables, vectors, and matrices are denoted by lower, lower bold, and 

upper bold italic letters, respectively. The operators E(.), diag(.), ⊥  , PDF, and CDF stand for 
expectation, diagonal elements of a vector, statistically independent, Probability Density 
Function, and Cumulative Distribution Function, respectively. 

2. MIMO-BC-THP systems 

2.1 Type of MIMO channels 

There are three types system can be modeled as MIMO channel [1]: 
a. point-to-point MIMO channel 
This type of MIMO system is a multiple antenna scenario, where both transmitter (TX) and 

receiver (RX) use several antennas with seperate modulation and demodulation for each 

antenna. We refer this type of channel as MIMO channel (Central transmitter and receiver).  

b. multipoint-to-point MIMO Channel 
The uplink direction of any multiuser mobile communication system is an example of a 
MIMO system of this type. The joint receiver at the base station has to recover the individual 
users’ signals. We will refer to this type of channel as the MIMO multiple access channel 
(Decentralized transmitters and central receiver).  
c. point-to-multipoint MIMO Channel 
The downlink direction of mobile multiuser communication systems is an example of what 
we call a MIMO broadcast channel (Central transmitter and decentralized receivers).  

2.2 Precoding strategy 

The main difficulty for transmission over MIMO channels is the separation or equalization 
of the parallel data streams, i.e., the recovery of the components of the transmitted vector 
x which interfere at the receiver side. The most obvious strategy for separating the data 

streams is linear equalization at the receiver side.  
It is well-known that linear equalization suffers from noise enhancement and hence has poor 
power efficiency [2]. This disadvantage can be overcome by spatial decision-feedback 
equalization (DFE). Unfortunately, in DFE error propagation may occur. Moreover, since 
immediate decisions are required, the application of channel coding requires some clever 
interleaving which in turn introduces significant delay [2]. 
The above methods require CS) only at the receiver side. If CSI is (partly) also available at 
the transmitter, the users can be separated by means of precoding. Precoding, in general 
case, stands for all methods applied at the transmitter that facilitate detection at the receiver. 
If a linear transmitter preprocessing strategy is used, we prefer to denote it as 
preequalization or linear precoder. In other case we refer it as non-linear precoder. 
In MIMO channels a version of DFE by name, matrix DFE is used where is a non-linear 
spatial equalization strategy at the receiver side. The feedback part of the DFE can be 
transferred to the transmitter, leading to a scheme known as THP. It is well known that 
neglecting a very small increase in average transmit power, the performance of DFE and 
THP is the same, but since THP is a transmitter technique, error propagation at the receiver 
is avoided [3]. Moreover, channel coding schemes can be applied in the same way as for the 
ideal additive white Gaussian noise (AWGN) or flat fading channel. 
The analogies between temporal equalization methods (in Single Input Single Output (SISO) 
channels) and their direct counterparts as spatial equalization methods (in MIMO channels) 
are depicted in Table I [2]. 
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ISI channel )(zH  

(temporal Equalization) 

MIMO channel H  
(spatial Equalization) 

at Rx Linear equalization via  )(/1 zH  Linear equalization via  1−
tH  

at Tx 
Linear pre-equalization via  

)(/1 zH  

Linear pre-equalization via  
1−

rH  

 
 
 

linear 
at Tx / Rx OFDM/DMT, vector precoding SVD 

at Rx DFE Matrix DFE  
Non-linear at Tx / Rx THP MIMO-THP 

Table 1. Corresponding Equalization Strategies for ISI Channels and MIMO Channels. 

2.3 The Principle of THP 

The information theory idea behind the THP is based on Costa’s “writing on dirty paper 
result” for interference channels [4], which can be informally summarized as follows: 
"When transmitting over a channel, any interference which is known apriori to the transmitter does 
not affect the channel capacity. That is, by appropriate coding, transmission at a rate equal to the 
capacity of the channel without this interference is possible." 

If we extend the Costa precoding concepts for multiple antenna with Co-Antenna 
Interference (CAI) then THP structure can be obtained [1, 3]. Consider these subchannels in 
some arbitrary order. In this case, the encoding for the first subchannel has to be performed 
accepting full interference from the remaining channels, since at this point the interference is 
unknown. For the second subchannel, however, if the transmitter is able to calculate the 
interference from the first subchannel, “Costa precoding” of the data is possible such that 
the interference from the first subchannel is taken into account. Generally, in the kth 
subchannel considered, Costa precoding is possible such that interference from subchannels 
1 to k-1 is ineffective.  
We can apply this result to the MIMO channel [5]: If the precoding operation contains a 
Costa precoder, no interference can be observed from lower number subchannels into 
higher number subchannels.  
Note that it is possible to transform H into a lower triangular matrix with an orthonormal 
operation [6]. In this way interference from lower-index subchannels into higher-index 
subchannels is completely eliminated, and together with Costa precoding adjusted to this 
modified transmission matrix, effectively only a diagonal matrix remains for the 
transmission. It turns out that a simple scheme for Costa precoding works analog to the 
feedbackpart of DFE, now moved to the transmitter side and with the nonlinear decision 
device replaced by a modulo-operation. This is also known as THP [7, 8], and the link 
between THP and Costa precoding was first explored in [9]. 

2.4 MIMO-THP system model 

The base station with 
T

n  transmit antenna and 
R

n  user (in which
RT

nn ≤ ) with single 
antenna can be considered as MIMO broadcast system. A block diagram of this MIMO 
system together with THP is illustrated in Fig. 1 and is briefly explained here.  

The 
T

n  dimensional input symbol vector a  passes through feedback filter B , which is 

added to the intended transmit vector to pre-eliminate the interference from previous users.  
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Fig. 1. THP model in a MIMO system 

Then the resultant signal is fed to modulo-operator, which serve to limit the transmit power. 

The output signal of modulo-operator is then passed through a feed forward filter to further 

remove the interference from future users [10]. Finally, the precoded signal is launched in to 

the MIMO channel. As all interferences are taken care of at the transmitter side, the receivers 

at the mobile user side are left with some simple operations including power scaling 

(diagonal elements of matrix G ), reverse modulo-operation, and single user detection.   
According to Fig. 1, the base band received signal can be modeled as: 

 nxHr += ~    (1) 

where 1nT~ ×∈Cx , 1nR×∈Cr , Tn
CH

×∈ Rn  and 1nR×∈Cn  are transmitted, received, channel and 

noise matrices, respectively ( C  denotes complex domain). The elements of the noise vector 

are assumed as independent complex Gaussian random variables with zero mean and 

variance  2σ , i.e., ),0(~ 2

RnCΝ Iσn .  The elements of matrix H  are considered as complex 

Gaussian random variables (i.e. flat fading case). In other words, the channel tap gain from 

transmit antenna i  to receive antenna j  is denoted by 
ji

h  which is assumed to be 

independent zero mean complex Gaussian random variables of equal variance, that is 

1]|[| 2 =jihE .  

The operation of THP is related to the employed signal constellation A . Assume that in each 

of the parallel data streams an M -ary square constellation ( M  is a squared number) is 

employed where the coordinates of the signal points are odd integers, i.e., 

)}}1(31{{ −±±±∈+= M,...,,a,a|jaa QIQIA . Then the constellation is bound by the square 

region of side length Mt 2=  which is needed for modular operation [3]. 

Note: In the rest of the chapter, for means of simplicity, the number of transmit and receive 

antennas are assumed to be the same (i.e., Knn RT == ). Also, we consider the flat fading 

case. Whenever these assumptions are not acceptable we clarify them. 

The lower triangular feedback matrix B , unitary feed forward matrix F and diagonal 

scaling matrix G can be found by ZF or MMSE criteria as [11]. The received signal before 

modulo reduction can be given as: 

 nvGHFBGry
~1 +== −    (2) 

where Gnn =~ ,and dav +=  is effective input data, and d  is the precoding vector used to 

constrain the value of x~ [13]. If ZF criterion is used, it requires IGHFB =−1 . Thus, the 

(.)
t
Γ

I-B 

H (.)
t
Γx

n

z  
y

G a  
r

F 

x
~

I-B 

xv

d 

a  

Linear Model 

www.intechopen.com



MIMO-THP System with Imperfect CSI   

 

209 

processing matrices G , B , and F can be found by performing Cholesky factorization of 

HHH as [13]: 

 

RHF

GRB

diagG

RRHH
HH

1

)(

−

−−

=
=
=

=
1

KK

1

11 r,...,r
   (3) 

 

where ][
ij

r=R  is a lower triangular matrix. The error covariance matrix can be shown as: 

 ]/,...,/[diag]))([(E 222

11

2
~~ KKnn

H

nn
GnGn rσrσ==Φ  (4) 

i.e, the noise is white. 
If MMSE criterion is used the matrix R can be found through Cholesky factorization of [5]: 

 RRIHH
HH =+ )( ζ  (5) 

where 22 / an σσ=ζ . The matrices G , B  and F can be found as: 

 
HH

KK

HRF

GRB

G

−

−−

=
=
= ],...,[diag 11

11
rr

  (6) 

The error covariance can be shown as: 

 ]/,...,/[][E 222

11

222

KKnnn

H

ee diagGee rσrσσ ===Φ   (7) 

 

i.e. error can be considered as white. 

In outdated CSI case, the system model, which is considered in Fig. 1, operates in a feedback 

channel where the CSI is measured in downlink and fed to the transmitter in uplink 

channel. Time variations of channel lead to a significant outdated (partial) CSI at the 

transmitter. In fact there will always be a delay between the moment a channel realization is 

observed and the moment it is actually used by the transmitter. The effect of time variations 

(or delay) can be considered as: HHH Δ+= ˆ , where HH ˆ, and HΔ  are true, estimated and 

channel error due to time variations [13]. We assume that the channel error has Gaussian 

probability density function with moments 0][ =ΔHE and H

H
CHHE Δ=ΔΔ ].[ . 

According to Fig. 1, the received signal can be considered as: 

 nvFBHHGGry
~)ˆ( 1 +Δ+== −    (8) 

 

where Gnn =~ and v  is effective data vector [12]. If ZF criterion is used, it requires:  

 IFBHG =−1ˆ   (9) 

The processing matrices BGR ,,  and F  can be found by doing Cholesky factorization of 
H

HH ˆˆ  as [11]: 
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RHF

GRB

G

RRHH

KK

HH

1

11

11

ˆ

),...,(

ˆˆ

−

−−

=
=
=

=
rrdiag

  (10) 

where GnHFxGnwe +Δ=+= ~  is considered as an error vector and the term w  stands for 

channel imperfection effect due to outdated CSI. The error covariance matrix can be 

obtained as: 

 H

Hx

H

ee GICGeeE )(][ 2 ζσ +==Φ Δ   (11) 

Note that, with a small channel error assumption (i.e. 0→ΔHC ), the error covariance matrix 

in an imperfect case tends to the error covariance matrix in a perfect case, i.e.  

 )/1,...,/1,/1(2 2

KK

2

22

2

11 rrrDiagxee σ=Φ   (12) 

3. MIMO-THP capacity 

The first attempt to calculation of achievable rates of THP is done by Wesel and Cioffi in 

[15]. The authors considered THP for discrete-time SISO consists of Inter-Symbol 

Interference (ISI) and AWGN. They derived an exact expression for maximum achievable 

information rate for ZF case and provided information bound for MMSE case. In this 

section, we develop the achievable rates analysis provided in [15] for MIMO-THP in flat 

fading channel. We obtain the maximum achievable rate and some upper and lower bounds 

of it for ZF and MMSE cases with perfect and imperfect CSI. 

3.1 Achievable rates of point-to-point MIMO-THP 

Consider a point-to-point MIMO system with THP as Fig. 2. 
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t
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H (.)
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r

 
 

Fig. 2. THP model in a point-to-point MIMO system 

The received signal vector can be expressed as: 

 [ ]Γ Γ1[ ]− ′= + = + +t t az GFHB v GFn w n   (13) 

where w is residual spatial interference after MMSE criterion on THP filters (in the ZF case 

0=w ) and (.)tΓ  is modulo t  operator so eliminate its output on interval 

)2/,2/[)2/,2/[ kkkk jtjtttT −×−= . As GFnn =′  is white Gaussian noise and with the 
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assumption that 
jiji

waww ⊥⊥ & for ji ≠∀  (so that symbol ⊥  stand for statistical 

independence) the received vector r can be decoupled in K parallel streams as1 [17]: 

 [ ] Kknwaz kkktk ~1; =′++Γ=   (14) 

Because of the decoupling of the received information symbols in (14) and assuming 

independence between elements in a  the mutual information between the transmitted 

symbols and the received signal vector can be expressed as the sum of the mutual 

information between elements of each vector: 

 ( ) ( )∑== K

k
kk

zaII
1

;za;  (15) 

where (.)I  denote mutual information. Each term in the sum is independently can be 

considered as: 

 
( ) ( ) ( ) ( ) ( )

( )[ ] ( )[ ]
kkktkkkt

kkkktkkktkkkkk

anwhnwah

anwahnwahazhzhzaI

|)(

]|)([][|;

′+Γ−′++Γ=
′++Γ−′++Γ=−=

 (16) 

where (.)h  denotes differential entropy. Calculation of the above mutual information seems 

to be difficult and we try to find an upper and lower bound of (16) by some approximations. 
Remark 1: An upper bound on the achievable rate of the channel produced by MMSE-THP of 
(16) can be found as [17]: 

 ( ) ( )[ ]( )∑= ′Γ−= K

k
ktUpper nhtI

1
2 )(log2za;   (17) 

Also, the upper bound can be obtained essentially by neglecting the spatial interference 
term kw  in (16) [17]. The lower bound depends largely on the variance of kw  [15]. A lower 
bound on achievable rate can be found as [17]: 

 ( ) ))2/(2(log2log)2(log)(log2 2
1

22

2

2

22 σσ
γπσ terfetI

K

k
Lower −−−= ∑=za;  (18) 

Thus, a truncated Gaussian [17] with variance of ( ))(var2

ktk
nw ′Γ+=γ  produces a slightly 

tighter bound but requires the computation of ( ))(var
kt

n′Γ .  
Remark 2: The upper bound attained in (17) can be simplified if some approximations are 
allowed so that a quasi-optimal (or sub-optimal) closed form solution can be found. This 
approximations can be done based on the value of σ/t (See [17]). 

3.2 General THP in point-to-point MIMO with perfect CSI 

Whenever CSI is available at the transmitter in a communication system, since the 
transmitter has knowledge of the way the transmitted symbols are attenuated and 
distributed by the channel, it may adjust transmit rate and/or power in an optimized way.  

                                                 
1 For MMSE case the above assumption for high value of SNR is acceptable and the above results can be 
true in asymptotic case, so MMSE performance for high SNR values converge to ZF [2]. 
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For instance, in the multi-antenna scenario some of the equivalent parallel channels might 
have very bad transmission properties or might not be present at all. In this situation, the 
transmitter might want to adjust to that by either dropping some of the lower diversity 
order sub channels or by redistributing the data and the available transmission power to 
improve the average error rate. This can be done by generalization of THP concepts as 
GTHP by enabling different power transmission for each antenna. GTHP can be done in two 
main scenarios [17]: 
First: If the loading is made according to capacity of system; this structure enables different 
transmission rate per antenna.  
Second: If it is needed to ensure reliable transmission rate for each antenna, the loading 
should be made according to minimize error rate of system.  

Here we consider two different optimization scenarios for loading strategies of THP and 
extend it's concept in structure that t is not constant, so the modulo interval is different for 
each sub channel ( kt ) [17]. 

3.2.1 Capacity criterion 

In this section, the power adaptation strategy of the second type of GTHP concept is 

employed. The optimal power allocation is calculated in MIMO-GTHP systems, while 

regarding the modulation schemes is given. If the loading is made according to capacity of 

system, this structure enables different transmission rate per antenna. One of the good 

features of this scenario is that it is scalable architecture, because it allows adding or 

removing transmitters without losing the precoding structure as explained in [16].  

If a  assumed  as an i.i.d. uniform distribution on T, for such a case, x   is also i.i.d. uniform 

on T (regardless of the choice of matrix B ). Thus the transmitted power from kth antenna 

will be 6/}|{| 22

kkk txEp == (for real case 12/2

kk tp = ). Its corresponding rate will equal the 

maximum achievable mutual information in (17): 

 ( ) )]([)(log2,;)( 2 ktkkkkk nhttzaItI
k

′Γ−==  (19) 

Then the maximum achievable rate for a system with THP will be the maximum of the sum 

of the rates of each stream subject to a maximum total transmitted power constraint, i.e. 

 
{ } { }

⎪⎪⎩
⎪⎪⎨
⎧

==
′Γ−==

∑∑
∑∑

==

==

T

K

k
k

K

k
k

K

k
ktk

t

K

k
k

t
General

Ptpts

nhttIC
k

kk

1

2

1

1
2

1

6

1
..

)])([)(log2(max)(max

  (20) 

In order to maximize (20) we assume that all the available streams are classified into two 

groups2 ( g -Gaussian and u –uniform) based on σ/t  values [16]. As shown in [17], the 

achievable rate of streams belonging to u  tends to zero; no power is assigned to these 

streams, i.e. ukt
k

∈∀= 0 . Thus the solution of the maximization problem in (20) can be 

found as assigning the same power to the entire stream in g (and no power to those in u ).  
The optimal solution can be shown to be [17]: 

                                                 
2 Based on the value of σ/t for each stream 
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 gk
g

p
IC

gk
n

T

k

Adaptive

General

k

∈⎟⎟⎠
⎞

⎜⎜⎝
⎛= ∑∈ ,

6
2

'σ  (21) 

where g  denotes the number of active antennas and 2

'knσ  is variance of kn' . Then some kind 

of adaptive rate algorithm is necessary to achieve the maximum capacity of the GTHP.  

3.2.2 Minimum SER criterion 

In some application it is needed to ensure reliable transmission rate for each antenna 

(especially in MIMO broadcast channels). In this section we try to find the optimal sub 

channel power allocation in MIMO GTHP systems, while regarding the modulation 

schemes is given. As mentioned, for each sub channel we have: 

 K1,2,...,kn'az kkk =+=  (22) 

where we assumed that kw  tend to zero. For simplicity assume MQAM transmission in all 
sub channels is used. In this case the approximate average SER for a fixed channel H  
simply given as [17]: 

 ∑= −−≈ K

1k
k2

n'

2

kk

kk

E
σ
r

M
Q

M
SER )

1

3
()

1
(1  (23) 

where 
k

2

kk

k

k

M

r

M
B

1

3

−=  and we assumed modulation order (i.e. kM ) can be varied for each 

sub-channel, so that variable bit allocation is possible (that we didn't consider here). In this 
case we have [17]: 

 )( Λ
A

B
W

B

1
E

k

k

k

k =   (24) 

where 
22

( 1)

( 1)

−= −
k k

k

k kk

M M
A

M r
 and )(xW  is the real valued Lambert’s W -function defined as 

the inverse of the function 0;.)( ≥= xexxf x , i.e., xa.eaxW a =⇔=)( . 

Since the )(xW  function is real and monotonically increasing for real ex /1−> , the value of 

λ  such that 0KE
K

1k
k =−∑= )(λ  holds which can be found by using some classical methods as 

denoted in [17]. On the other hand, )(xW  is a concave and unbounded function with 

0W(0) =  and xxW ≤)(  , the unique solution for T

KEE ],...,[ 1=E  can be found by the 

following simple iterative procedure[14]: 

i. Chose a small positive Λ  which satisfy 

 T

K

1k
k

E
A

Λ ≤∑=   (25) 

ii. Calculate 

www.intechopen.com



 MIMO Systems, Theory and Applications 

 

214 

 ∑== K

1k
k

k

k

T Λ)
A

B
W(

B

1
Ê   (26) 

iii. If 
T

Ê is not yet sufficiently close to 
T

E , multiply Λby 
TT

E/E ˆ and go back to step (ii). 

iv. Compute T

KEE ],...,[ 1=E  according to (24). 

Note that since )(xW  for ex /1−>  is monotonic function, then according to relation (24) the 

highest power )(max kE  assign to the weakest signal so that the SNR  value almost stay 

constant for all sub channels. 

3.3 Achievable rate in imperfect CSI 

In [17] the scheme proposed in [18] for MIMO THP system was modified by allowing 

variations of the transmitted power in each antenna. The authors stated the problem of 

finding the maximum achievable rate for this modified spatial THP scheme and found that 

Uniform Power Allocation (UPA) with antenna selection is a quasi-optimal transmission 

scheme with a perfect CSI.  

In this sub-section, based on previous researches about SISO and point-to-point MIMO 

channels, an analytical approach to attain the maximum achievable rate bound in an 

imperfect CSI case is developed for broadcast channel. It will be shown that this bound 

depends on the variance of the residual Co-Antenna Interference (CAI) term. Moreover, it 

will be shown that the power allocation obtained by the UPA in [17] is sub-optimal in an 

imperfect CSI, too. 

3.3.1 Maximum achievable rates 

The received signal after modulo operation can be considered as ]~[ nHFxGaz
kt

+ΔΓ+= . Since 

x  has i.i.d. distribution, HFxGW Δ=  can be considered as an unknown interference with an 

i.i.d. distribution. Also, for such an  a , z  is i.i.d. uniform on T . In this case, the received 

information can be decoupled in K  independent parallel data steams and the mutual 

information between thk  element of data vector, ka , and the corresponding element of the 

received signal, kz , is [13]: 

 ( ) ( ) ( ) ( ) ( ) ⎥⎥⎦
⎤

⎢⎢⎣
⎡

⎟⎟⎠
⎞⎜⎜⎝

⎛ +′Γ−≤+Γ−=−= ∑= kj

K

j
kk

kj

tkkkktkkkkkk nx
r

hpanwhzhazhzhzaI
kk

~)6(log]|)~([|;
1

2

δ
 (27) 

where 
kjkj

][ HFΔ=′δ and (.)h  denotes differential entropy. Let us define the random variable 

ke  as kj

K

j
kk

kj

k nx
r

e ~

1

+′=∑=
δ

 where its power is  ∑=+= K

j
kj

kk

j

kk

n

ek
r

p

r 1

2

22

2

2 δσσ  and
kjkj

H ][Δ=δ . With the 

assumption of small error, ke  can be approximately modeled as a complex Gaussian 

random variable. In the case where, the above assumption is true, the mutual information 

expression (27) can be very well approximated as [13]: 

 ( ) [ ]+≈
kkk

zaI χ
2

log;   (28) 

where 
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 ⎪⎩
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⎧
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]0),max[log(]log[

)(/6
1

2
22

xx

pepr
K

j
jkjnkkkk

δσπχ
 (29) 

The achievable rates for THP in an imperfect CSI case will then be the sum of the mutual 

information of all K  parallel steams as [13]: 

 

[ ]2
{ } { }1 1

1

max ( ; ) max log

. .

+
= =

=

⎧ = ≈⎪⎪⎨⎪ =⎪⎩

∑ ∑
∑
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K K

k k k
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K
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k

C I a z χ

s t p P

 (30) 

Observed that C  (or kχ ) depends on three components: 2
2

,
kkkj

rδ and kp . In order to 

maximize kχ , some kind of spatial ordering is necessary in order to maximize it. For this 

purpose, it is required to decompose H (in Cholesky factorization) so that the elements of 
2

kkr  to be maximized (finding the ordering matrix similar to [11]). 
On the other hand, it was assumed that by making small error assumption, ke  can be 

approximately modeled as a complex Gaussian random variable. This is equivalent to 

assuming jp njkj
j

∀≤ ;||max 22 σδ . Now, we assume that the entries of error matrix are 

bounded as jkkjkj
jk

,;||max 2

,
∀≤αδ  [13]. In addition, for the sake of simplicity and without 

loss of generality, we assume that kj
jk
αα

,
max= . Then, the power distribution that will 

maximize the achievable rates will be the solution of the following maximin problem: 
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 (31) 

In order to solve the above maximin problem the worst-case is assumed, i.e. 

jiij
ji

,;||max 2

,
∀= δα . With this assumption, the minimum mutual information will be 

attained for each term in the summation. Then, the resulting maximization problem leads to 
[13]: 

 

⎪⎪⎩
⎪⎪⎨
⎧

=
⎥⎦
⎤⎢⎣

⎡
+=

∑
∑

=

=

+

T

K

k
k

K

k
Tn

kkk

p

ppts

pe

rp
C

i

1

1
2

2

2

..

)(

6
logmax ασπ  (32) 

The resulting maximization problem is a standard constrained optimization problem, and 
can be solved with the use of the Lagrange method in which the solution result is .constpk =  
It means that the kp  is independent of k , i.e the distribution of the power, in worst-case, is 
UPA. 
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Note that, if we consider different noises with different powers for each user, the 
distribution of power may not be the UPA. 

3.3.2 Capacity loss 

In the previous section, it is shown that the capacity of MIMO-THP can be obtained by the 
UPA. More over, it can be observed from (32) that this capacity, in worst case, depends on 
the channel error value (i.e. α ). We define the capacity loss as difference between the 

capacity of MIMO-BC-THP in a perfect CSI and in an imperfect CSI, i.e. relation (32), as [19]: 
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The above bound for capacity loss only is valid for values of α  so that the approximation of 

jp njkj
j

∀≤ ;|| 22
max σδ  is valid [19]. It means that this bound depends on SNR value and is 

acceptable for high SNR value, i.e., this capacity loss bound is asymptotic bound for worst-
case in which bounds the capacity loss of MIMO-THP . It is desired to bounding the capacity 

loss of optimal solution of (29). Assume 2C  is the capacity of optimal solution that can be 

obtained by exactly analysis or by numerical simulation. In this case we can bound 

21 CCC −=Δ  as [19]: 

 [ ] εασ +⎥⎥⎦
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where ε  is a positive value. The lower bound can be obtained by choosing 2−= Kε  [19]: 
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222 K
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KKKC

n

T ασ  (35) 

where ]0,max[][ xx =+ . In simulation we refer (35) as theoretic loss. 

3.4 Spatial ordering 

The VBLAST-Like ordering can be used in order to improve the power loading performance of 

MIMO-GTHP system in Fig. 1 [1]. To do this, since the loading is based on the SNR values of 

the equivalent parallel sub-channels, which in turn are proportional to
2

kk
r , the distribution of 

these diagonal entries is an essential parameter in power loading performance. It turns out that 

by introducing a permutation matrix in the decomposition of H, i.e, allowing different 

ordering of the sub channels, the distribution of the 
2

kk
r  values can be modified as [1]: 

)(minarg)||/1,...,||/1,||/1(minarg
222

22

2

11
GP

PP

==
KKopt

rrr  

It means that in the cholesky factorization of (4), the decomposition should be made so that 
the square value of diagonal elements of matrix R minimized. It means that the matrix P is 
selected so that the column of H corresponding to minimum square value of diagonal 
elements of G is permuted to the left. Deleting this column from the matrix H, and forming 
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the cholesky factorization of this modified matrix, we can obtain second column of matrix P. 
Continuing this way, constantly updating P, the decomposition of H is constructed. The 
pseudo-code for the algorithm is given in Fig. (3).  
 

end
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1=P            

)(g minarg= l            

))^2diag(inv(=            

MMSEfor;)chol(=             

ZFfor;)qr(] [

:doKto1=i for

0][p= 

:tionInitializa

ii

i

l:,l:,

i,l

ji,
j

i

H

i.j

HH

RG

IHHR

HRQ

P

ζ+
=
=

 

Fig. 3. The pseudo code for ordering 

Note that for ZF or MMSE-THP, the system performance will be dominated by the signal 
component with the largest noise variance, and we can find the ordering algorithm in the 
minimax noise variance sense as [1]. 

3.5 Simulation and results 
3.5.1 Perfect CSI 

The mutual information for real kx  with i.i.d uniform distribution on the module interval [-

t/2, t/2) is plotted in fig. 4, where the average transmitter energy is 12/2t . This figure also 

shows the mutual information curves for the upper (17) and lower (18) bounds for each sub 

channel. For comparison we also plotted the well-known AWGN channel capacity (with no 

ISI). Observe that the upper bound lies above the AWGN capacity and lower bound lies 

below this capacity (especially for high SNR values). 
Figs. 5 and 6 give the performance comparison of the MMSE-GTHP with/without power 

loading (relation (24)) when 4QAM and 16QAM modulations are used, respectively. From 

these figures, it is clearly seen that the MMSE-GTHP with ordering can achieve better 

performance than the MMSE-GTHP with or without power allocation (4QAM or 16QAM,). 

When 4QAM modulation is used, at BER=2×10-4 we can observe that the MMSE-GTHP with 

power allocation achieves about 7dB gain, while this structure with power loading and 

ordering gives about 11.5dB gain. When 16QAM is used, at BER=5×10-4 the MMSE-GTHP 

with power allocation gives approximately 6.5dB gain, while this structure with power 

loading and ordering gives about 10dB gain. As can be seen from these figures, the 

performance of power loading is noticeable, especially when it combined with sub-channel 

ordering.  

3.5.2 Imperfect CSI 

For simulation purposes we have considered K=4 users. The entries of Ĥ and HΔ  have 

been assumed to be zero mean i.i.d. complex Gaussian random variables, i.e., )1,0(~ˆ CNH   
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Fig. 4. Upper and lower bound of mutual  information            

 

Fig. 5. Performance comparison of MMSE-GTHPwith power loading and ordering for 
4QAM. 

 

Fig. 6. Performance comparison of MMSE-GTHP.  with power loading and ordering for 
16QAM 
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Fig. 7. Validation of approximation of α  

 

Fig. 8. Capacity with K=4 user and different value of α                

 
Fig. 9. Capacity loss for K=4 user 
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Fig. 10. Capacity loss for different user and  05.0=ρ  

and ),0(~ 2ρCNHΔ . The validity of the approximations of ( jp nj ∀≤ ;2σα ) for 

dBP nT 16/ 2 =σ  is shown in Fig. 7 by plotting the fraction of channel realizations in which the 

approximations are valid for different values ofα . The simulation is done for more than 104 

channel realization and the validity is calculated as the number of iteration where the 
inequality is valid. It can be seen that, for the particular values of the simulation parameters 
taken in this section, the capacity analysis is valid for values of α  up to −10 dB. In Fig. 8, we 

have plotted the mean of the maximum achievable rates for the UPA scheme for different 

values ofα . It can be seen that for values of 01.0≤α  the capacity loss due to the presence of 

channel errors are negligible and by increasing the SNR value, the capacity increases up to a 
constant value. It means that by increasing the SNR value the capacity remains almost 
constant. Figs. 9 and 10 depict asymptotic capacity loss in a time varying channel for 
different values of ρ  and different users, respectively. It can be seen that the attained 

aproximated bound is valid for variety of rang of the channel errors and number of users, 
especially for high SNR value (asymptotic case). 

4. Robust MIMO-THP  

4.1 Design criterion 

The error, that is needed to be considered for the system illustrated in Fig. 1, should be the 
difference between the effective data vector v  and the data vector entering the decision 
module y , i.e.: 

 nxBFHHGvye
~])ˆ([ +−Δ+=−=   (36) 

The MMSE solution should minimize the error signal as:  

 ⎪⎩
⎪⎨
⎧

≤
+−Δ+
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x

nxBFHHG

PEs.t.

E

2

2

,,
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Instead of solving (37), it is easier to use the orthogonallity principle [1]. In this case, the 
MMSE solution should satisfy: 

 0][E =H
er  (38) 

Thus, according to (36) we have: 

 xrrr
BG Φ=Φ   (39) 

The matrices rrΦ  and xrΦ  can be computed by using (36) as [13]: 

 )ˆˆ(][E 2
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H
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H

rr
CIHHrr Δ++==Φ ζσ  (40.a) 
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x

H

xr
HFxr ˆ][E 2σ==Φ  (40.b) 

where 22 /
xn

σσζ =  . Substituting relation (40) for (39) and some manipulation, yielding [13]: 

 H

H

HH
HCIHHGBF

−Δ− ++= ˆ)ˆˆ(1 ζ  (41) 

Since F is a unitary matrix [1]: 

 )ˆˆ(ˆˆ)ˆˆ( 1

H
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H
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CIHHHHCIHHRR Δ−−Δ ++++= ζζ  (42) 

where BGR
1−=  is assumed. The matrix R can be found through Cholesky factorization of 

(42) and the matrices G, B, and F can be obtained as [13]: 
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ζ
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 (43) 

Using the  B, F and G obtained in (43), the error covariance matrix can be computed as [13]: 

 H

H

H

x

H

ee
GCIHHGeeE )ˆˆ(][ 122 Δ−− ++==Φ ζζσ  (44) 

It means that the error covariance matrix in imperfect CSI is the sum of covariance matrix in 
perfect CSI plus the term H

Hx GGCΔ2σ . This term tends to zero with low channel error 
assumption (perfect CSI), i.e.:  

 HH

n

H

ee
GIHHGeeE )ˆˆ(][ 12 +==Φ −−ζσ  (45) 

In this case, R can be found through: 

 )ˆˆ(ˆˆ)ˆˆ( 1
IHHHHIHHRR

HHHH ζζ ++= −−  (46) 

and the matrices G, B and F can be computed as: 
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The above results (45-47) are the same as [12], where it is assumed that the perfect CSI is 
available. In this section, relations 45 to 47 are referred to as conventional optimization and 
relations (42-44) are referred to as robust optimization. 

4.2 Robust optimization with channel estimation consideration 
4.2.1 Channel estimation 

The received signal at the base station during training period (uplink) , at time stand i, can 
be modeled as [13]: 

 )()()( iii naHy
T +=  (48) 

During the training period of N symbols in uplink transmission, the received signal can be 
constructed as [13]: 

 nshy ss +=  (49) 

where T

s Nyyy )]1(,...),0([ −= , T
Nnnn )]1(,...),0([ −=  , ][vec T

s Hh = , T
NAAs )]1(,...),0([ −= , 

and A(i) can be constructed as block diagonal matrix with elements of a(i)T. Based on the 
received signal in (49), the Best Linear Unbiased Estimator (BLUE) channel estimation can 
be performed as [20]: 

 
ss

HH

sn

H

n

H

s
WyysssyCssCsh === −−−− 1111 )()(ˆ  (50) 

with the covariance matrix of: 

 1211

ˆ )()( −−− == sssCsC
H

nn

H

hs

σ   (51) 

4.2.2 Improved robust optimization 

In the robust optimization, only THP filters were optimized according to the MMSE 
criterion and the channel estimator was optimized separately from THP.  Here, the above 
solution is extended to optimize THP filters together with the channel estimator conditioned 
on observed data. In this case, cost function should be optimized with respect to THP filters 
and the observed data. Thus, the goal is to optimize the precoder directly based on the 
available observation ys. 
Based on the linear model of (49), the conditional PDF )|(

| ssyh
yhp

ss
 is a complex Gaussian 

process with moments ]|[E
| ssyh

yh
s
=μ  and ]|))([( ||| s

H

yhsyhsyh yhhEC
sss

μμ −−= [18].  

According to the Bayesian Gauss-Markov theorem, the Bayesian estimator can be written as 
[20]: 

 
sssn

H

h

H

hyh yWyIssCsC
sss

=+= −12

| )( σμ   (52) 

and the covariance matrix of channel estimator is: 

 
sss hshyh

sCWCC −=
|

 (53) 

where ][ H

ssh hhEC
s
= . In order to optimize the THP filters, the cost function in the previous 

section should be modified conditional to the observed data, i.e.:  
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 ]|[E
H s

H

ee
yee=Φ   (54) 

By using the orthogonallity principle, the MMSE solution should be equivalent to: 

 0]|[EH =s

H yer  (55) 

As relation (39) it is possible to write [13], 

 
ss yxryrr

BG
||

Φ=Φ  (56) 

Like the sub-section 4.1, the matrix R can be found through Cholesky factorization of [13]: 
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and matrices G, B and F can be found as: 
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In this case, the error covariance matrix has the form [13]: 

 H
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H

xee
GCIHHG

s
)ˆˆ( |

122 ++=Φ −− ζζσ  (59) 

 

It means that the improved robust optimization can be done by replacing HCΔ  in the robust 

optimization with its equvalent, i.e. 
syh

C
|

. 

4.3 Power loading in imperfect CSI 

In sub-section 3.4, we discussed about power loading of point-to-point MIMO-THP in 

perfect CSI. Now we develop this power loading in MIMO-BC-THP for imperfect case. 

4.3.1 Optimal solution 

It is easy to approximate the SER of each sub-streams for imperfect CSI as [13]: 
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so 
k

p  is the power of transmitted symbols of kth user and from (59) we have, 
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where 
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][ HΔ=δ , ∑== K
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2
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HH ]ˆˆ[
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h . Assuming small error in (61), i.e. 

jp nj ∀≤ ;2σα , 2

eσ  can be approximated as [13]: 
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Where, similar to previous section, the worst-case is assumed, i.e., ji
ij

ji
,;||max 2

,
∀= δα . Thus 

power distribution that will minimize the average SER, when imperfect CSI is presented, 
can be found with the use of the Lagrange method as [13]: 

 )()()( ∑∑ ==
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where 
kTn
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k
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r

1M

3
B βασ ++−=

2
. Unfortunately, we did not find any explicit solution to 

solve (63). Therefore, some numerical or suboptimal solutions are necessary to solve it. 

4.3.2 Suboptimal solution 

In (63) since 
k

β  is a function of 
k

p  it is difficult to find explicit solution. One simple method 

to overcome this problem is that the initial power can be approximated as KPp
Tj

/≈ , so 

that in this case  kβ  is not a function of kp  and, 
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j
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hKp
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2
4 ~

)/(σββ  (64) 

It means that the initial power distribution is assumed to be uniform, where the power 

distribution can be attained according to power allocation policies, i.e., relation (63). The 

simpler solution can be attained by distributing the power according to noise and channel 

error values, but without the interference term, i.e. neglecting the interference term and 

assuming 0=β . (These assumptions are only valid for the case of small error, i.e., 

Tn pασβ +≤ 2 .) In this case, the initial power is assigned as a uniform distribution with zero 

value. Solving 0/ =∂∂ kpL  for pk, yielding [13]: 
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2
, cteΛ = , and )(xW  is the real valued 

Lambert W -function. The unique solution for ],...,[ K1 pp=P  can be found by the simple 

iterative procedure same as sub-section 3.2.2 [13]: 
It should be noted that, the above power loading can be combined with conventional (equal 
to before section), robust, or improved robust optimization strategies.  In the former cases, 
the power loadings are similar to conventional power loading in imperfect CSI but THP 
filters should be calculated according to robust/ improved robust optimization. 

4.4 Simulation and results 

For simulation purposes, K=4 user with 4-QAM signaling are assumed. The entries of 

Ĥ and HΔ  have been assumed to be zero mean i.i.d. complex Gaussian random variables, 
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i.e., CN(0,1)~Ĥ  and )ρCN(0, 2~HΔ , respectively. In simulations, in order to compare our 

results more simply with other contributions, the BER is ploted instead of the SER. 
Fig. 11 plots the mean BER versus Eb/No for Robust optimization together with 

conventional optimization for 4QAM modulation. It is observed that the robust 

optimization has better performance for all channel imperfection values, especially for high 

SNR. Fig. 12 compares the performance of the proposed improved robust optimization with 

conventional optimization. As can be realized, the proposed improved robust optimization 

algorithm substantially outperforms the conventional optimization, over the whole 

observation data lengths. In fact, the performance is noticeable for smaller Ns, where the 

channel estimator estimates the channel erroneously, especially for high SNR values. 

In order to demonstrate the performance of power loading, for simplicity, the suboptimal 

solution is considered. The validity of the approximation of Tn pασβ +≤ 2  is shown in Fig. 

13 by plotting the fraction of channel realizations in which the approximations are valid for 

different values of ρ . It can be seen that for the values of SNR>20dB the approximation is 

 

 

Fig. 11. Robust THP optimization performance      

 
Fig. 12. Improved robust optimization performance with different   N value   

Imp. Robust Opt. 

Imp. Robust Opt. 

Imp. Robust Opt. 
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Fig. 13. Validation of approximating Tn pασβ +≤ 2        

 

Fig. 14. Suboptimal power loading in conventional optimization 

 

Fig. 15. Suboptimal power loading in robust  optimization                
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Fig. 16. Suboptimal power loading in improved robust optimization            

valid. In figures 14-16 we can observe the performance of power loading for conventional, 
robust and improved robust optimizations, respectively, with the assumption that 0=β . As 
can be seen from these figures, the performance of power loading is noticeable, especially 
for low errors and high SNR values. 

5. Joint channel estimation and spatial pre-equalization 

Traditionally, channel estimation and pre-equalization are optimized separately and 
independently in which results to performance degradation. This loss may be causing some 
poor performance, especially, in erroneous conditions, as can be seen from previous section. 
In [21] Dietrich et. al proposed a new method for joint pilot symbol assisted channel 
estimation and equalization and applied it to the design of the space-time decision feedback 
equalizer. Their research was developed in [13] for MIMO-BC-THP system with the 
assumption of the BLUE, as discussed in sub-section 4.2.2. The authors in [13] extracted the 
explicit solution for THP optimization with a good performance against to separate design 
of THP and channel estimator. 
In this section, their work is extended as joint optimization in which the THP filters are 
optimized together with the channel estimation conditioned on observation data (with, 
approximately, the same order of complexity as a separate design). In the other words, in 
joint optimization, in contrast to separate optimization, the average cost function should be 
optimized with respect to THP filters and channel estimation, i.e. the expectation is taken 
with respect to the unknown channel parameters conditioned on the available observation 
data. It means that in contrast to improved robust optimization in which different channel 
estimation methods have to be investigated for a given optimized THP to find out the best 
combination, the best channel estimation can be chosen directly by minimizing the MMSE 
criterion. As a result, it will be shown that the joint optimization lead to a Linear MMSE 
(LMMSE) channel estimator and a new structure for THP filters based on the error 
covariance matrix of the channel estimator. 

5.1 Channel estimation 
By using the Bayesian Gauss-Markov theorem, the Bayesian LMMSE estimator can be 
obtained for linear model of (49) [20]: 
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where ĥ  indicate the estimation of h  and: 
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5.2 Joint optimization 
In conventional THP optimization the error, by using the orthogonality principle of (38), the 
THP can be optimized in perfect CSI as [11] or in imperfect CSI as [13] in which a specific 
channel estimator (i.e., BLUE) is assumed and THP is optimized according to this estimator 
structure (i.e. improved robust optimization). In general aspect, this is not a desired method 
because it is necessary to select different channel estimators and optimize the THP filters to 
find the best combination where it is cumbersome work. Nevertheless, in the joint 
optimization the best channel estimator is determined in which the THP filters and channel 
estimation can be optimized jointly without any trial method. In this case, since the training 
sequence and y s are given, the channel can be modelled as a random variable from point of 
view of the receiver. Thus, the cost function in (38) is a random variable and should be 
considered as (55), i.e.: 

 0]|[ =
s

H
yerE  (69) 

where the expectation is taken with respect to the unknown channel parameters. The above 
equation can be written simpler as: 

 
ss yxryrr
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where the matrices 
syrr |

Φ  and 
syxr|

Φ  can be computed by using (1) as [22]: 
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where 22 / xn σσζ =  and ]|[E s

H
yHHV = . In order to find a closed form solution for THP filters, 

it is needed to calculate the conditional mean estimate of H
HHT =  over observed data, i.e., 

sy . The matrix T  is well known as Gramian matrix where its probability distribution is a 

Wishart distribution [1]. In order to calculate V , consider the cost function as: 

 
2

ˆ
F

TTJ −=   (72) 

where the lower index stands for Frobenius norm and T̂  is a nonlinear function of sy  
where should be determined. The minimization of (72) lead to a non-linear conditional 
mean estimator as [22]: 
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 ∑==== K

k
s

H

kks

H

s
yhhyHHyTT

1

]|E[]|[E]|[Eˆ   (73) 

where ],...,[ 1 K
hhH = . It is possible to consider each expression in the summation of (73) as 

[24]: 

 
sksk yh

H

kkyh

H

sksks

H

kk
ChhCyhyhyhh ||

ˆˆ]|E[]|E[]|E[ +=+=  (74) 

where  

 ]|)ˆ()ˆE[(| s

H

kkkkyh
yhhhhC

sk
−−=  (75) 

Since the error kk hh ˆ− is statically independent from the observation data, we have: 

 ])ˆ()ˆE[(|

H

kkkkyh
hhhhC

sk
−−=    (76) 

By substituting the relations (74) and (76) in (73) and rearrange the resultant sub-matrices in 
its original matrix form, we have [22], 

 
syH

H CHHT |
ˆˆˆ +=  (77) 

where,  

 
sss hshyH

SCWCC -| =  (78) 

 

The matrices sW  and 
sh

C  are the same as (68) where is used in Bayesian LMMSE channel 

estimator. On the other hand, it is possible to show that sss yWyhh == ]|[Eˆ  [20], i.e., this 

joint optimization lead to a Bayesian LMMSE channel estimator (in the joint optimization, 

the explicit channel estimation is not needed). In this case, the matrices 
syrr |Φ in (71.a) can be 

obtained as [22]: 

 ICHH
ss yH

H

yrr
ζ++=Φ ||

ˆˆ    (79) 

Substitution relations (71.b) and (79) in (70) and by some manipulating, the matrix R  can be 

found through the Cholesky factorization of [22]: 

 )ˆˆ(ˆˆ)ˆˆ( |

1

| ss yH

HH

yH

HH CIHHHHCIHHRR ++++= −− ζζ  (80) 

and matrices G , B  and F  can be found as: 

 

H

yH

HH

KK

RCIHHHF

GRB

G

s

−−

−−

++=
=
=

)ˆˆ(ˆ

],...,[diag

|

1

11

11

ζ
rr

  (81) 

In this case, the error covariance matrix can be computed as [22]: 

 H

yH

H

xee
GCIHHG

s
)ˆˆ( |

122 ++=Φ −− ζζσ   (82) 
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Note that if the perfect CSI is assumed, i.e. 0| =
syH

C , the relations (80-82) are the same as 

conventional THP optimization where denoted in [12] and here it is referred to as 

conventional optimization. 

5.3 Simulation and results 

For simulation purposes, K=4 user with 4-QAM signalling is assumed. The entries of H is 

assumed to be zero mean i.i.d. complex Gaussian random variables, i.e., CN(0,1)~H . Fig. 

16 compares the performance of the proposed joint optimization with conventional 

optimization. As can be realized, the proposed joint optimization algorithm substantially 

outperforms the conventional optimization, over the whole observation data lengths. In fact, 

the performance is noticeable for smaller Ns, where the channel estimator estimates the 

channel erroneously, especially for high SNR values. In order to observe the detailed results 

more precisely, some of the main part of Fig. 17 is reproduced again in Fig. 18. 
 

 

Fig. 17. Joint optimization performance with different observation data length                    

 

Fig. 18. A detailed reproduction of Fig. 17               
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6. THP optimization in correlated channel 

Mobile channels suffer from multi path fading phenomenon so that it is necessary to adapt 

the transmitter resources (such as power and rate) with channel characteristics in order to 

achieve channel capacity. The capacity achieving transmitter adaptation strategy depends 

on how much CSI is available at the transmitter and the receiver. The use of channel 

feedback from receiver to transmitter is a standard method in precoding systems, as 

discussed in previous sections. While knowledge of the channel at the transmitter tends to 

good performance in precoding systems over slowly time-varying channels, the generation 

of reliable channel feedback is complicated in fast time-varying channels. This fast time 

variations impose a significant challenge for precoding design.  

In order to increase the THP performance in fast time-varying channels, the THP should be 

optimized in each (or approximately some) symbol time. On the other hand, the generation 

of reliable channel feedback in each symbol time is complicated in fast time-varying channel 

and can be led to high bandwidth overhead. From practical implementation point of view, 

most of the THPs have been designed assuming that the wireless channel can be regarded as 

constant over a block of data. In mobile applications where the channel is time-varying, the 

assumption that the channel is constant over some periods only holds approximately and 

will affects the THP performance that are designed based on this assumption. Hence, a 

judicious and innovative THP system design that takes the time-varying nature of the 

channel into account is the key to solve the above problems.  

Based on previous section on precoding and also works denoted in [25], this section extend 

and unify the THP concepts to time-varying MIMO channels, which will allow us to 

improve mobile systems performance, as well as to provide guidelines for future precoder 

designs employing low feedback overhead. A first-order Auto-Regressive (AR) model is 

used to characterize the channel coefficients that vary from symbol to symbol. Although, 

traditional THP with a perfect channel estimation in each symbol time has an advantage 

over MIMO channels, new THP design provides a significant advantage over correlated 

MIMO channels where the volume of feedback dominate to 1/N ( N is data block length).  

6.1 Correlated channel model   

In time-varying channel, it is assumed that the perfect CSI in known at the beginning of each 

data block, but not during the block. It is desired to optimize THP at time t with the 

assumption that the outdated CSI, τ−tH , is available. τ−tH  corresponds to the channel state 

τ  seconds earlier (i.e. the beginning of block) where slT=τ ; Nl ≤ . l and sT  denote as 

number of symbol and symbol time, respectively. Under the assumption of rich  scattering, 

the MIMO channel matrix tH  can be modeled as a complex matrix whose entries are i.i.d. 

zero-mean complex Gaussian random variables with common variance 2

hσ , i.e. ( )IH 2,0~ ht CN σ  [25]. tH  and τ−tH  are correlated realizations of the latter channel 

distribution. Thus, given the outdated CSI, Ht-τ, we can characterize the unknown current 

CSI, tH , using the conditional CSI model introduced in [25], as follows: 

 ( )( )IHH
22 1,~

thttt
CN ρσρ τ −−   (83) 

where tρ  is the common time-correlation of the i.i.d. time-varying MIMO channel 

coefficients, defined as: 
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 [ ] [ ]{ } )(/ 2

,, τσρ τ RE h

H

jitjitt == −HH  (84) 

where )(τR  depending on the channel time-variation model. 

6.2 THP optimization    

The error that is needed to be considered for the system illustrated in Fig. 1, should be the 

difference between the effective data vector,
t

v , and the data vector entering the decision 

module, ty , i.e.: 

 ttttttttt nxBFHGvye
~][ +−=−=   (85) 

where 
ttt

nGn =~ . The MMSE solution should minimize the error signal as:  

 
{ }

⎪⎩
⎪⎨
⎧

≤
+−−

Tt

ttttttH
GFB

x

nxBFHG
t

PEs.t.

EE
xa,Ht

2

2

|
,,

~

~][minarg τ
 (86) 

where, TP  is total available power at transmitter. Similar to previous section, instead of 
solving (86), it is easier to use the orthogonallity principle [13]. In this case, the MMSE 
solution should satisfy [25]: 

 { } 0][| =−
H

ttH
re

t xa,H
EE

t τ  (87) 

Thus: 

 
txrttrrt

BG ,, Φ=Φ  (88) 

The matrix 
trr ,Φ  can be computed by using (1) as: 

 { } ][][ 22

||, IHHrr
n

H

ttxH

H

ttHtrr tt
σσττ +==Φ −− tt Hxa,H EEE   (89) 

The matrix 
H

tt
HH  is well known as Gramian matrix where its probability distribution is a 

Wishart distribution. Calculation of the conditional expectation, as required in (89), seems to 

be difficult. We consider an approximate solution to solve it. To do this, by using the 

channel distribution of (83), we first instantiate the true channel tH  as
ttt

HH Δ+= , where 

τρ −=
ttt

HH  and tΔ is the ))1(,0(
22 I

th
CN ρσ − -distributed uncertainty on the true channel 

given the outdated CSI [25]. Under the assumption of isotropic scattering and moving 

terminal, this model describes the time-correlation function as )2()( 0 τπτ DfJR = , where 0J  is 

the zero-th order Bessel function of the first kind and Df  is maximum Doppler frequency 

[26]. Then, we use the following expression as statistical model for the time variations of the 

channel [25]: 

 
tthttt

EHH
2

1 ρσρ τ −+= −   (90) 

where tρ  denotes the correlation coefficient between the time instants τ−t  and t , and tE  

is a circularly symmetric complex Gaussian matrix with i.i.d. entries, i.e. ),0(~ IE CNt . In 

this case [25], 
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 ICHHIHHE nt

H

ttxn

H

ttttxHtrr t

2

,

222

|, ]))(([ σσσστ ++=+Δ+Δ+=Φ Δ−tH  (91) 

where IC )1(
22

, tht
ρσ −=Δ . The matrix 

txr ,
Φ  in (88) can be computed as [25]: 

 
{ } { }

H

t

H

tx

H

tt

H

txH

H

t

H

t

H

ttH

H

ttH

H

tttxr

HFHF

HFxxrxrx

t

tt

22

|

||,

])([

][][][E

σστ

ττ
=Δ+=

===Φ
−

−−

t

tt

H

xa,Hxa,H

E

EEEE
  (92) 

Substituting relations (89) and (92) in (88) and after some manipulations lead to [25]: 

 
H

tt

H

tttt

H

t
HCIHHGBF

−
Δ

− ++= )(
,

1 ζ  (93) 

where 22 / xn σσζ = . Since tF  is unitary matrix, we have: 

 )()( ,

1

, t

H

ttt

H

tt

H

tt

H

tt
CIHHHHCIHHRR Δ

−−
Δ ++++= ζζ  (94) 

where ttt
BGR

1−=  is assumed. The matrix tR  can be found through Cholesky factorization 

of (94) and the matrices tG , tB , and tF  can be found as: 

 
H

tth

H

tttttt

ttt

KKt

RIIHHHF

RGB

G

−
−−

−
−

−−

+−+=
=
=

))1(()(

],...,[diag

2221

11

11

ζρσρρ τττ

rr

 (95) 

with tB , tF  and tG  that found in (95), the error covariance matrix can be computed as [25]: 

 H

ttht

H

tttx

H

tttee
GIIHHGeeE ))1((][

221222

, ρσζρζσ ττ −++==Φ −−−−   (96) 

In situation where the channel is assumed to be quasi-static (i.e. 1→
t

ρ ), the relations (94-

96) tends to what is considered as conventional THP in relations (45-47) and also in previous 
section. 

6.3 Simulation and results     

In this section, we illustrate the improvement, in term of average BER, that our proposed 
MMSE-THP design offers over conventional THP designs that assumes the channel is 
constant over N symbol time. In order to do that, we use the well-known Jakes model [27] to 
instantiate a realistic outdated CSI model based on (83). In our simulations, we use the 

normalized Doppler frequency 001.0=TfD , 005.0=TfD , and 01.0=TfD  according to slow, 

medium, and fast fading, respectively [28]. We further consider the case of a (4, 4) MIMO 
set-up with 4QAM-modulated data streams.  
Figures (19a) to (19c) plot the average BER performances for N=5, 10, 20, respectively. 
Clearly, our robust MMSE-THP design exhibits a lower average BER performance when 
compared to the conventional design. More specifically, from the figures, it can be observed 
that the proposed method have more advantage in fast fading over the state-of-the-art 
design for shorter N where the channel correlation is noticeable. 
Figures (20a) to (20c) plot the average BER performances for slow, medium, and fast fading, 
respectively. Observe that for slow fading case, our proposed method has good performance 
over all values of N while in the fast fading case; the performance is noticeable for shorter Ns. 
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(a)  N=5                                                                   (a)  001.0=TfD  

 

(b) N=10                                                           (b) 005.0=TfD  

 

(c) N=20                                                                      (c)  01.0=TfD  

 

Fig. 19. BER performance for different N values    Fig. 20. BER performance for different 
                                                                                        Doppler values 
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