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MIMO Zero-Forcing Performance Evaluation

Using the Holonomic Gradient Method
Constantin Siriteanu, Akimichi Takemura, Satoshi Kuriki, Hyundong Shin, Christoph Koutschan

Abstract—For multiple-input multiple-output (MIMO) spatial-
multiplexing transmission, zero-forcing detection (ZF) is ap-
pealing because of its low complexity. Our recent MIMO ZF
performance analysis for Rician–Rayleigh fading, which is rele-
vant in heterogeneous networks, has yielded for the ZF outage
probability and ergodic capacity infinite-series expressions. Be-
cause they arose from expanding the confluent hypergeometric
function 1F1(·, ·, σ) around 0, they do not converge numerically
at realistically-high Rician K-factor values. Therefore, herein,
we seek to take advantage of the fact that 1F1(·, ·, σ) satisfies a
differential equation, i.e., it is a holonomic function. Holonomic
functions can be computed by the holonomic gradient method
(HGM), i.e., by numerically solving the satisfied differential
equation. Thus, we first reveal that the moment generating
function (m.g.f.) and probability density function (p.d.f.) of the
ZF signal-to-noise ratio (SNR) are holonomic. Then, from the
differential equation for 1F1(·, ·, σ), we deduce those satisfied by
the SNR m.g.f. and p.d.f., and demonstrate that the HGM helps
compute the p.d.f. accurately at practically-relevant values of K.
Finally, numerical integration of the SNR p.d.f. output by the
HGM yields accurate ZF outage probability and ergodic capacity
results.

Index Terms—Holonomic gradient method, hypergeometric
function, MIMO, Rayleigh–Rician fading, zero-forcing.

I. INTRODUCTION

A. Background

The performance of multiple-input multiple-output (MIMO)

wireless communications systems has been attracting substan-

tial interest [1] [2] [3] [4] [5]. Typically, its evaluation proceeds

from expressions of performance measures — e.g., outage

probability, ergodic capacity — derived based on statistical

assumptions about the channel-fading matrix [1] [2] [4] [6]

[7] [8].

For tractability, MIMO analyses have often assumed zero-

mean channel matrix, i.e., Rayleigh fading [2]. However, state-

of-the-art channel measurements and models, e.g., WINNER II

[9], have revealed nonzero-mean channel, i.e., Rician fading

[2]. MIMO performance analysis for Rician fading is much

more complicated than for Rayleigh fading. Then, even for

linear interference-mitigation approaches such as zero-forcing
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detection (ZF) and minimum mean-square error detection

(MMSE) [10], the performance analysis of MIMO spatial-

multiplexing transmission has been found tractable only for

Rician–Rayleigh mixtures [4] [7].

ZF has been considered for WiMAX and LTE [11] and

has recently been studied as relevant for distributed and

large MIMO systems [5] [12] [13] [14] [15], mainly due

to its low complexity. Nevertheless, although simple, for

well-conditioned MIMO channel matrix, ZF approaches the

performance of maximum-likelihood and minimum-error-rate

(i.e., optimal) detection [16] [17] [18] [19]. Thus, the analysis

of ZF performance for Rician fading has remained of interest

— see [6] [7] and references therein.

B. Previous ZF Analyses

For perfectly-known uncorrelated Rayleigh fading channel,

MIMO ZF performance was first characterized exactly in [20],

by viewing ZF as the no-noise limit of optimum combining,

i.e., MMSE [21, Remark 1]. Recently, though, it has been

shown that performance measures for MMSE do not neces-

sarily converge to those of ZF [22] [23] [24].

The results of [20] were extended to transmit-correlated

fading in [25] [26] based on the fact that, given the channel

matrix H, the signal-to-noise ratio (SNR) for ZF is determined

by matrix HHH, which is central-Wishart-distributed when H

has zero mean and receive-correlation.

ZF has been studied for Rician fading, i.e., nonzero-mean

H, much less than for Rayleigh fading. This is because the

analysis is complicated by the noncentral-Wishart distribution

of HHH. Some approximation-based results for full-Rician

fading have appeared for ZF in [6] and relevant references

therein. (For MMSE, approximate and exact analyses under

Rician–Rayleigh fading mixtures appeared in [21] and [4],

respectively.)

Note that, although such fading mixtures have mainly been

considered because they promote analysis tractability, they are

nevertheless relevant in macrocells, microcells, and heteroge-

neous networks — see [4] [7] and references therein.

Thus, we have also analyzed ZF for such fading mixtures

in [7] [8]. For the case when the intended stream under-

goes Rician fading whereas the interfering streams undergo

Rayleigh fading, [7] derived exact infinite-series expressions

for ZF performance measures, and [8] proved their theoretical

convergence.
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C. Previous Approach and its Limitations. Motivation of New

Approach.

The exact ZF analysis procedure we employed in [7] is

as follows. First, we expressed, in [7, Eq. (31)], the moment

generating function (m.g.f.) of the SNR for Rician-fading

Stream 1 in terms of the confluent hypergeometric function

1F1(·, ·, σ) [27, Ch. 13]. Then, the well-known expansion of

1F1(·, ·, σ) around 0 from [27, Eq. (13.2.2), p. 322] yielded

the infinite series for the SNR m.g.f. from [7, Eq. (37)]. Upon

inverse-Laplace transformation, the latter yielded the infinite-

series expression for the SNR probability density function

(p.d.f.) from [7, Eq. (39)]. Finally, integration of this p.d.f. ex-

pression yielded the infinite-series expressions for ZF outage

probability and ergodic capacity from [7, Eqs. (69), (71)].

However, as revealed in [7] [8], the computation of infinite

series [7, Eqs. (39), (69), (71)] breaks down at much smaller

Rician K-factor values than those considered realistic (e.g.,

averages of lognormal distributions proposed by WINNER

II for K in [9]). This is the consequence of the employed

expansion of 1F1(·, ·, σ), whose own computation away from

σ = 0 is nontrivial: with increasing σ, numerical convergence

is increasingly difficult (i.e., slow, resource-intensive) and

eventually fails [28] [29] [30] [31]. Note that hypergeometric

functions1 and infinite-series expressions have been found to

characterize the performance for many other MIMO tech-

niques under many fading types [2] [4] [30] [31] [32]. Limita-

tions in computing these infinite-series for MIMO evaluation

motivates our search herein for an alternative approach.

D. New Approach and Contribution

A seldom-considered approach for computing 1F1(·, ·, σ)
follows from the fact that it satisfies, with respect to (w.r.t.)

σ, a linear differential equation with polynomial coefficients

[27, Eq. (13.2.1), p. 322], i.e., this function is holonomic [33,

p. 334] [34, p. 7] [35, p. 140] [36, Section 6.4]. Any holonomic

function can be computed at some σ by numerically solving its

differential equation starting from some σ0 where the function

is either known analytically or can be approximated accurately.

The computation of a holonomic function by numerically

solving satisfied differential equations is known as the holo-

nomic gradient method (HGM) [37] [38]. It has recently

been applied in statistics to evaluating the normalizing con-

stant of the Bingham distribution [37] and the cumulative

distribution function (c.d.f.) of the dominant eigenvalue of

a real-valued Wishart-distributed matrix [38], upon deriving

relevant differential equations. To the best of our knowledge,

the HGM has not yet been applied for MIMO performance

evaluation, although MIMO performance measures have often

been expressed in terms of holonomic special functions and

ensuing infinite series [2] [31] [32] [28] [7] — see also [30]

and references therein.

The current paper proposes the HGM-based evaluation

of the exact MIMO ZF performance under Rician–Rayleigh

fading. Starting from the ZF SNR m.g.f. expression derived

in terms of 1F1(·, ·, σ) in [7, Eq. (31)] and the differential

1Of both scalar and matrix arguments.

equation satisfied by 1F1(·, ·, σ) [27, Eq. (13.2.1), p. 322],

we first deduce for the SNR m.g.f. the satisfied differential

equations. Their inverse-Laplace transformation yields for the

SNR p.d.f. the satisfied differential equations.

These are shown to enable the accurate HGM-based com-

putation of the SNR p.d.f. at practical K values, starting from

an initial value computed by truncating the available infinite-

series p.d.f. expression from [7, Eq. (39)]. Furthermore, nu-

merical integration of the HGM output (i.e., the SNR p.d.f.)

yields accurately, for the first time, the outage probability

and ergodic capacity for MIMO ZF at K values relevant to

WINNER II.

The HGM-based approach is envisioned to lead to a new

framework for the analysis and evaluation of MIMO under

general fading. As the complexity of MIMO analyses seeking

explicit performance measure expressions has been increasing,

an ability to derive (perhaps automatically) differential equa-

tions for MIMO performance measures and to compute them

by the HGM may be a more general, more straightforward,

and more effective alternative.

E. Notation

The notation defined below follows closely that from [7].

Thus, scalars, vectors, and matrices are represented with

lowercase italics, lowercase boldface, and uppercase bold-

face, respectively, e.g., a, h, and H; superscripts ·T and ·H
stand for transpose and Hermitian (i.e., complex-conjugate)

transpose; [·]i,j indicates the i, jth element of a matrix;

‖H‖2 =
∑NR

i

∑NT

j |[H]i,j |2 is the squared Frobenius norm of

NR ×NT matrix H; ∝ stands for ‘proportional to’; subscripts

·d and ·r identify, respectively, the deterministic and random

components; subscript ·n indicates a normalized variable; E{·}
denotes statistical average; (N)n is the Pochhammer symbol,

i.e., (N)0 = 1 and (N)n = N(N+1) . . . (N+n−1), ∀n > 1
[27, p. xiv], and 1F1(·; ·; ·) is the confluent hypergeometric

function [27, Eq. (13.2.2), p. 322].

F. Paper Organization

Section II describes the MIMO signal, noise, and chan-

nel models. Section III introduces the ZF SNR m.g.f. and

p.d.f. infinite-series expressions derived in [7], and discusses

difficulties encountered in the computation of the infinite-

series expression for the SNR-p.d.f. and ensuing performance

measures. Section IV defines holonomic functions and deduces

from their properties that the SNR m.g.f. and p.d.f. are

holonomic. This justifies our search in Section V for the

differential equations they satisfy. These differential equations

are then exploited using the HGM to generate the numerical

results shown and discussed in Section VI. Finally, Section VII

discusses other possible HGM applications in MIMO evalua-

tion.

II. SIGNAL, NOISE, AND FADING MODELS

Herein, the signal, noise, and channel models and assump-

tions follow closely the ones from [7]. Thus, we consider

uncoded MIMO spatial-multiplexing over a frequency-flat
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fading channel and assume that there are NT and NR antenna

elements at the transmitter(s) and receiver, respectively, with

NT ≤ NR. Let us denote the number of degrees of freedom

as

N = NR −NT + 1. (1)

Letting x = [x1 x2 · · · xNT
]T denote the NT × 1 zero-mean

transmit-symbol vector with E{xxH} = INT
, the NR×1 vector

with the received signals can be represented as [1, Eq. (8)] [7,

Eq. (1)]:

r =

√
Es

NT

Hx+ v =

√
Es

NT

h1x1 +

√
Es

NT

NT∑

k=2

hkxk + v. (2)

Above, Es/NT represents the energy transmitted per sym-

bol (i.e., per antenna), so that Es is the energy transmitted

per channel use. The additive noise vector v is zero-mean,

uncorrelated, circularly-symmetric complex-valued Gaussian

[1] with variance N0 per dimension. We will also employ its

normalized version vn = v/
√
N0. We shall employ the per-

symbol input SNR, defined as

Γs =
Es

N0

1

NT

, (3)

as well as the per-bit input SNR, which, for a modulation

constellation with M symbols (e.g., MPSK), is defined as

Γb =
Γs

log2 M
. (4)

Then, H = (h1 h2 . . . hNT
) is the NR × NT complex-

Gaussian channel matrix. Vector hk comprises the channel

factors between transmit-antenna k and all receive-antennas.

The deterministic (i.e., mean) and random components of H

are denoted as Hd = (hd,1 hd,2 . . . hd,NT
) and Hr =

(hr,1 hr,2 . . . hr,NT
), respectively, so that H = Hd + Hr.

If [Hd]i,j = 0 then | [H]i,j | has a Rayleigh distribution;

otherwise, | [H]i,j | has a Rician distribution [2]. Typically,

the channel matrix for Rician fading is written as [1]

H = Hd +Hr =

√
K

K + 1
Hd,n +

√
1

K + 1
Hr,n, (5)

where, for normalization purposes [39], it is assumed that

‖Hd,n‖2 = E{‖ [Hr,n] ‖2} = NTNR, (6)

so that E{‖H‖2} = NTNR. Power ratio

K =
‖Hd‖2

E{‖Hr‖2}
=

K
K+1‖Hd,n‖2
1

K+1E{‖Hr,n‖2}
(7)

is the Rician K-factor: K = 0 yields Rayleigh fading for all

elements of H; K 6= 0 yields Rician fading if Hd,n 6= 0.

In [7], we partitioned into the column with the fading

gains that affect the intended stream, i.e., Stream 1, and the

matrix columns with the fading gains that affect the interfering

streams, i.e.,

H = (h1 H2) = (hd,1 Hd,2) + (hr,1 Hr,2), (8)

and assumed, for analysis tractability, that hd,1 6= 0 and

Hd,2 = 0, i.e., Rician–Rayleigh fading. Then, we can write

‖hd,1‖2 = ‖(hd,1 0NR×(NT−1))‖2 = ‖Hd‖2

=
K

K + 1
NRNT. (9)

As in [25] [26], for tractability, we assume zero receive-

correlation and we allow for nonzero transmit-correlation

whereby all conjugate-transposed rows of Hr,n have distribu-

tion CN (0,RT). Consequently, all conjugate-transposed rows

of Hr have distribution CN (0,RT,K = 1
K+1RT).

It can be shown that normalization E{‖ [Hr,n] ‖2} = NTNR

is equivalent with

NT∑

i=1

[RT]i,i = NT. (10)

Because the diagonal elements of RT need not be equal, our

analysis applies also for distributed transmitters. Nevertheless,

for simplicity, numerical results are shown herein only for the

case [RT]i,i = 1, ∀i, i.e., for collocated transmitters.

The elements of RT can be computed from the azimuth

spread (AS) as shown in [6, Section VI.A] for WINNER II,

i.e., Laplacian, power azimuth spectrum. Note that WINNER

II has modeled both K (in dB) and AS (in degrees) as random

variables with scenario-dependent lognormal distributions [9].

Herein, we show results for K and AS set to their averages

for WINNER II indoor scenario A1.

III. INFINITE-SERIES EXPRESSIONS FOR MIMO ZF SNR

M.G.F. AND P.D.F.

A. MIMO ZF and Its SNR M.G.F. for Rician–Rayleigh Fading

For the received-signal vector from (2), ZF means mapping

the elements of the following vector into the closest modula-

tion constellation symbols [1, Eq. (22)]:
√

NT

Es

[
HHH

]−1
HH r = x+

1√
Γs

[
HHH

]−1
HHvn. (11)

Then, the ZF SNR for Stream 1 is given by

γ1 =
Γs

[(HHH)−1]1,1
. (12)

Its m.g.f. is defined as [2, Eq. (1.2)]

Mγ1
(s) = E{esγ1} =

∫ ∞

0

estpγ1
(t)dt, (13)

where E{·} stands for mean, and pγ1
(t, a) is the p.d.f. of

γ1. Thus, the m.g.f. is related to the Laplace transform [27,

Eq. (1.14.17)] Lγ1
(s, a) of the p.d.f. simply by a sign change,

i.e.,

Mγ1
(−s) = Lγ1

(s) =

∫ ∞

0

e−stpγ1
(t)dt. (14)

If we define as in [7, Eqs. (18), (23)], respectively,

Γ1 =
Γs[

R−1
T,K

]

1,1

∝ Γs

K + 1
, (15)

a =
[
R−1

T,K

]

1,1
‖hd,1‖2 ∝ KNRNT, (16)
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then, for MIMO ZF under Rician–Rayleigh fading, we can

write the following exact expression for the m.g.f. of the SNR

of the Rician-fading Stream 1 [7, Eq. (31)]:

Mγ1
(s, a) =

1

(1− Γ1s)
N 1F1

(
N ;NR; a

Γ1s

1− Γ1s

)
, (17)

where 1F1(N ;NR;σ) is the confluent hypergeometric function

of scalar argument σ [27, Ch. 13].

Remark 1: We have added a as variable for the SNR

m.g.f. in (17) because, for Rayleigh-only fading, a = 0
(because K = 0), whereas, for Rician fading, a 6= 0 and

increases with K. Thus, variable a is required later for

HGM-based computation of the SNR p.d.f., using differential

equations deduced from (17).

B. Infinite Series for SNR M.G.F. and P.D.F. for Rician–

Rayleigh Fading

The confluent hypergeometric function is well-known to

satisfy the infinite-series expression [27, Eq. (13.2.2), p. 322]

1F1(N ;NR;σ) =

∞∑

n=0

(N)n
(NR)n

σn

n!
=

∞∑

n=0

An(σ). (18)

One can readily show that the infinite-series expression (18)

is the expansion around σ = 0 of 1F1(N ;NR;σ), by using an

integral expression for 1F1(N ;NR;σ), as in [27, Eq. (13.4.1),

p. 326] [27, Eq. (13.6.1), p. 327].

Using (18), we rewrote (17) in [7, Eq. (37)] as the infinite

series

Mγ1
(s, a) =

∞∑

n=0

An(a)

n∑

m=0

(
n

m

)
(−1)m

(1− sΓ1)N+n−m
. (19)

Its inverse-Laplace transformation has yielded for the SNR

p.d.f. the infinite series2 [7, Eq. (39)]

pγ1
(t, a) =

∞∑

n=0

An(a)

n∑

m=0

(
n

m

)

× (−1)mtN+n−m−1e−t/Γ1

[(N + n−m)− 1]! ΓN+n−m
1

. (20)

For the outage probability and ergodic capacity (in bits per

channel use — bpcu), which are defined as3

Po(γ1,th, a) = Probability(γ1 ≤ γ1,th) =

∫ γ1,th

0

pγ1
(t, a)dt, (21)

C(a) = Eγ1
{C(γ1, a)} =

∫ ∞

0

log2(1 + t)pγ1
(t, a)dt. (22)

analytical integration of the infinite-series p.d.f. expres-

sion (20) has yielded the infinite-series expressions in [7,

Eqs. (69), (71)], respectively.

2Note that, for K 6= 0, i.e., for Rician–Rayleigh fading, (19) and (20)
reveal that the distribution of the ZF SNR is an infinite linear combination of
Gamma distributions.

3In (21), γ1,th is the threshold SNR.

C. Expressions for Rayleigh-Only Fading

For the special case of Rayleigh-only fading, because a = 0,

only the term for n = m = 0 remains in (19) and (20), i.e.,

Mγ1
(s, 0) =

1

(1− sΓ1)N
, (23)

pγ1
(t, 0) =

tN−1e−t/Γ1

(N − 1)! ΓN
1

, t ≥ 0, (24)

so that the ZF SNR is Gamma-distributed [25] [26]. Then, (21)

and (22) yield4

Po(γ1,th, 0) =
1

(N − 1)!ΓN
1

∫ γ1,th

0

tN−1e−t/Γ1dt, (25)

C(0) =
1

ln 2

1

(N − 1)!

1

ΓN
1

∫ ∞

0

ln(1 + t)tN−1e−t/Γ1dt. (26)

D. Difficulties Computing the Derived Infinite Series

As mentioned in the Introduction, we proved analytically

in [8] that the infinite series (20), along with the ensuing

infinite series for the outage probability and ergodic capacity,

converge everywhere. However, they cannot be computed (by

truncation) accurately, or even at all, with increasing K — see

[7, Sections V.F, VI.C] [8] for discussion and results.

This limitation is also illustrated herein for the SNR

p.d.f. infinite series in (20) in Fig. 1, for NR = 6, NT = 2.

We have set K = 7 dB and AS = 51◦, i.e., the average K
and AS for WINNER II scenario A1 (indoor office/residential)

[6, Table I] [9]. On one hand, results for Rayleigh-only

fading (identified in legend with Ray–Ray) reveal agreement

between expression (24) and Monte Carlo simulation. On the

other hand, for Rician–Rayleigh fading (identified in legend

with Rice–Ray), the results from series (20) cannot even be

plotted. In fact, for NR = 6 and NT = 2, we have been able

to accurately compute pγ1
(t), and, thus, the outage probability

and ergodic capacity, only up to K ≈ 1.5 dB, as depicted in

[8, Fig. 2]. This is because, by increasing K, i.e., a, we move

σ further from the origin of expansion (18). We have also

found that increasing NT to 6 decreases the value of K that

still yields accurate results to −3 dB [8, Figs. 1, 2], which is

also explained by (16).

Since series truncation cannot help compute ZF perfor-

mance measures for relevant SNR and parameter values, we

pursue next an HGM-based approach.

IV. HOLONOMIC FUNCTIONS AND THE HOLONOMIC

GRADIENT METHOD (HGM)

A. Differential Equation for 1F1(N ;NR;σ)

It is known that 1F1(N ;NR;σ) satisfies the second-order

ordinary differential equation with polynomial coefficients [27,

Eq. (13.2.1), p. 322]

σ · 1F (2)
1 (N ;NR;σ) + (NR − σ) · 1F (1)

1 (N ;NR;σ)

−N · 1F1(N ;NR;σ) = 0, (27)

4The finite- and infinite-limit integrals involved in these expressions can be
computed accurately numerically.
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Fig. 1. P.d.f. of the SNR (in linear units) for Stream 1, for NR = 6, NT = 2,
K = 7 dB, AS = 51◦, Γs = 5 dB. For Rayleigh fading: from Monte
Carlo simulation and expression (24). For Rician fading: from simulation and
attempt to employ series (20); the latter produced the vertical black lines
(which connect the points of extreme positive and negative values resulting
from series truncation).

where 1F
(k)
1 (N ;NR;σ) stands for the kth derivative w.r.t. the

sole variable σ.

In general, a function is called holonomic if it satisfies,

w.r.t. each variable, an ordinary differential equation with

polynomial coefficients [37, Section 2]. Thus, the confluent

hypergeometric function 1F1(N ;NR;σ) is holonomic because

it satisfies (27). Simpler examples of holonomic functions

are the polynomial and exponential-polynomial functions [33,

Section 2.5].

Let us now introduce the HGM-based computation of

a holonomic function on the example of 1F1(N ;NR;σ).
First, (27) can be recast as the system of differential equations

∂σ

(
1F1(N ;NR;σ)

1F
(1)
1 (N ;NR;σ)

)
=

(
0 1
N
σ 1− NR

σ

)(
1F1(N ;NR;σ)

1F
(1)
1 (N ;NR;σ)

)
.

If we denote as f(σ) the vector made of functions

1F1(N ;NR;σ) and 1F
(1)
1 (N ;NR;σ), and as F(σ) the 2 × 2

matrix on the right-hand side above, which is also known as

the companion matrix, then, we have, more compactly,

∂σf(σ) = F(σ)f(σ), (28)

whose left-hand side is the gradient of f(σ) w.r.t. σ.

B. HGM-Based Computation of Holonomic Function, e.g.,

1F1(·; ·;σ)
Let us assume that initial conditions 1F1(N ;NR;σ0)

and 1F
(1)
1 (N ;NR;σ0) are known for some σ0. Then,

1F1(N ;NR;σ) can be computed for any σ by numerically

solving5 (28) between σ0 and σ. Because σ appears in F(σ)
denominators, one cannot use σ0 = 0, for which it is

5E.g., with the ode function, in MATLAB.

known analytically, from (18) and [27, Eq. (13.3.15), p. 325],

that 1F1(N ;NR; 0) = 1 and 1F
(1)
1 (N ;NR; 0) = N

NR
. Thus,

initial conditions 1F1(N ;NR;σ0) and 1F
(1)
1 (N ;NR;σ0) =

N
NR

1F1(N +1;NR +1;σ0) [27, Eq. (13.3.15), p. 325] have to

be obtained numerically by truncation of series (18) for some

σ0 > 0. Nevertheless, since σ0 can be selected arbitrarily

small, highly-accurate computation of the initial condition

f(σ0) is possible based on the infinite-series expression of

1F1(N ;NR;σ).
The entire procedure is summarized below [37, Section 2.1]:

• First, compute accurate initial conditions, i.e.,

1F1(N ;NR;σ0) and 1F
(1)
1 (N ;NR;σ0), for some

sufficiently-small σ0 > 0, by infinite-series truncation.

• Then, solve numerically the system of differential equa-

tions (28) between σ0 and σ.

Such computation procedure (applicable to any holonomic

function) is referred to as the holonomic gradient method [37]

[38] (HGM) because, after starting from an initial condition,

the holonomic function is computed by updating its gradient.

C. ZF SNR M.G.F. and P.D.F. Are Holonomic Functions

Holonomic functions satisfy the following properties:

• If f(x) is a polynomial then 1/f(x) is holonomic [33,

Prop. 2.1].

• If f(x) is holonomic and h(x) is rational then f(h(x))
is holonomic [34, Th. 1.4.2, p. 16].

• If f(x) and g(x) are holonomic then f(x) g(x) is holo-

nomic [33, Prop. 3.2].

• If f(x) is holonomic then its Fourier transform is holo-

nomic [33, p. 337].

Based on these properties, in the SNR m.g.f. expression

from (17), the term 1/(1− Γ1s)
N

is holonomic w.r.t. s, and

the term 1F1

(
N ;NR; a

Γ1s
1−Γ1s

)
is holonomic w.r.t. s and a,

yielding the following property.

Lemma 1: The SNR m.g.f. Mγ1
(s, a) is holonomic

w.r.t. both s and a, i.e., it must satisfy ordinary differential

equations with polynomial coefficients w.r.t. both s and a.

Also, the SNR p.d.f. pγ1
(t, a) is holonomic w.r.t. both t

and a, i.e., it must satisfy ordinary differential equations with

polynomial coefficients w.r.t. both t and a.

D. Proposed HGM-based ZF Performance Evaluation

The remainder of this work is devoted to applying HGM

for ZF performance evaluation, as follows:

• Deduce the differential equations (known to exist) sat-

isfied by Mγ1
(s, a), w.r.t. both s and a, as well as by

pγ1
(t, a), w.r.t. both t and a. This is necessary because,

as we shall see, the partial derivatives are intertwined

within differential equations w.r.t. s and a for Mγ1
(s, a),

i.e., w.r.t. t and a for pγ1
(t, a).

• Exploit the differential equations for the p.d.f. pγ1
(t, a) to

accurately compute it by the HGM at practically-relevant

values of K.

• Integrate numerically as in (21), (22) to compute the

outage probability and ergodic capacity.
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V. DIFFERENTIAL EQUATIONS FOR ZF SNR M.G.F. AND

P.D.F.

A. M.G.F. and P.D.F. Variable Scaling

In order to simplify notation and derivations hereafter, let us

denote the m.g.f. Mγ1
(s, a) and the p.d.f. pγ1

(t, a) for Γ1 = 1
as M(s, a) and p(t, a), respectively. Now, by definition, we

have

M(s, a) =

∫ ∞

0

estp(t, a)dt. (29)

Then, because

Mγ1
(s, a) = M(sΓ1, a) =

∫ ∞

0

esΓ1tp(t, a)dt

=

∫ ∞

0

esy
1

Γ1
p

(
y

Γ1
, a

)
dy,

the p.d.f. pγ1
(t, a) of γ1 for any Γ1 can be obtained from

p(t, a) as follows:

pγ1
(t, a) =

1

Γ1
p

(
t

Γ1
, a

)
. (30)

Below, we first derive differential equations for M(s, a)
w.r.t. both s and a. From them we then deduce differential

equations for p(t, a) w.r.t. both t and a. They will help

compute, by HGM, the function p(t, a) at desired values of

t and a (i.e., K). Finally, the transformation from (30) will

return the value of the SNR p.d.f. pγ1
(t, a), for any Γ1.

B. Differential Equation w.r.t. s for M(s, a)

Based on (17) and (30) we can write

M(s, a) =
1

(1− s)
N 1F1

(
N ;NR;

as

1− s

)
. (31)

In Appendix A, manipulation and differentiation w.r.t. s of (31)

followed by substitution into the differential equation for

1F1 (N ;NR;σ) from (27) have yielded the following differ-

ential equation w.r.t. s for M(s, a), in (67):
(
s(1− s)2∂2

s − [2(N + 1)s(1− s)−(1− s)NR + as]∂s

+N [(N + 1)s−NR − a]
)
M(s, a) = 0. (32)

Because sl appears in front of ∂k
s in (32), the corresponding

differential equation for p(t, a) cannot be obtained by inverse-

Laplace transform. Therefore, we shall first employ the follow-

ing order-changing rule, which can readily be deduced from

[36, Th. 6.1.2 (Leibniz Formula), p. 282] [40, Th. 1.1.1, p. 3].

Proposition 1:

sl∂k
s =

min(l,k)∑

m=0

(−1)m(l −m+ 1)m(k −m+ 1)m
m!

∂k−m
s sl−m.

From the above general rule we obtain the following par-

ticular rules

s∂s = ∂ss− 1, (33)

s∂2
s = ∂2

ss− 2∂s, (34)

s2∂s = ∂ss
2 − 2s, (35)

s2∂2
s = ∂2

ss
2 − 4∂ss+ 2, (36)

s3∂2
s = ∂2

ss
3 − 6∂ss

2 + 6s, (37)

which, when applied in (32), yield for M(s, a) the following

differential equation w.r.t. s:

[∂2
ss

3 − 2∂2
ss

2 + ∂2
ss+ (2N − 4)∂ss

2

+(6− 2N −NR − a) ∂ss+ (NR − 2)∂s

+(N − 1)(N − 2)s

+(N − 1)(2−NR − a)]M(s, a) = 0. (38)

Unlike Eq. (32), Eq. (38) can be employed based on the

Laplace transform to deduce the differential equation w.r.t. t
for p(t, a), as shown next.

C. Differential Equation w.r.t. t for p(t, a)

The following proposition helps transform an expression

whereby the operator ∂k
s is applied to the product slM(s, a)

into a differential equation for p(t, a) w.r.t. t. Hereafter,

p(l)(t, a) stands for the lth derivative w.r.t. t of p(t, a).

Proposition 2: The integral
∫∞

0
est

[
tkp(l)(t, a)

]
dt, which

represents the Laplace transform of tkp(l)(t, a) for argument

−s, is given by:





(−1)l∂k
s [s

lM(s, a)]

+
∑l

m=k+1(−1)m p(l−m)(0+, a)

× (m−1)!
(m−k−1)!s

m−k−1, l ≥ 1,

∂k
sM(s, a), l = 0.

(39)

Proof: Follows from the well-known Laplace-transform

property for higher-order derivatives from [27, Eq. (1.14.29),

p. 28] and the sign change from (14).

Applying (39) for the terms in (38) yields the following

Laplace-transform pairs:

∂2
ss

3M(s, a) + 2! p(0+, a) ↔
−t2p(3)(t, a)

−2∂2
ss

2M(s, a) ↔
−2t2p(2)(t, a)

∂2
ssM(s, a) ↔

−t2p(1)(t, a)

(2N − 4)∂ss
2M(s, a) + (2N − 4) p(0+, a) ↔

(2N − 4) t p(2)(t, a)

(6− 2N −NR − a) ∂ssM(s, a) ↔
− (6− 2N −NR − a) t p(1)(t, a)

(NR − 2)∂sM(s, a) ↔
(NR − 2) t p(t, a)

(N − 1)(N − 2)sM(s, a) + (N − 1)(N − 2)p(0+, a) ↔
− (N − 1) (N − 2) p(1)(t, a)

(N − 1)(2−NR − a)M(s, a) ↔
(N − 1)(2−NR − a) p(t, a).

Summing the left-hand-side terms (i.e., the s-domain terms)

of the above transform pairs and accounting for (38) yields

the constant N(N − 1)p(0+, a).
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Appendix B derives pγ1
(0+, a) in (69), which, along

with (30), yields

p(0+, a) =

{
1F1(N ;NR;−a), N = 1,

0, N > 1,
(40)

so that

N(N − 1)p(0+, a) = 0, ∀N ≥ 1, (41)

i.e., the left-hand-side terms (i.e., the t-domain terms) above

sum to 0.

Then, by the uniqueness of the Laplace transform, the

right-hand-side terms (i.e., the t-domain terms) of the above

transform pairs also sum to 0, i.e.,

−t2p(3)(t, a)− 2t2p(2)(t, a)− t2p(1)(t, a)

+(2N − 4)tp(2)(t, a)− (6− 2N −NR − a)t p(1)(t, a)

+(NR − 2)t p(t, a)− (N − 1)(N − 2)p(1)(t, a)

+(N − 1)(2−NR − a) p(t, a) = 0, (42)

which can be rewritten as follows:

p(3)(t, a) =
(NR − 2)t+ (N − 1)(2−NR − a)

t2
p(t, a)

− t2 +(6−2N −NR −a)t+(N − 1)(N − 2)

t2
p(1)(t, a)

−2t2 − (2N − 4)t

t2
p(2)(t, a). (43)

Finally, by defining the function vector

p(t, a) =
(
p(t, a) p(1)(t, a) p(2)(t, a)

)T
, (44)

we can recast (43) as the system of differential equations

w.r.t. t

∂tp(t, a) = P(t, a)p(t, a), (45)

where the elements of the 3×3 companion matrix P(t, a) are:

[P(t, a)]1,1 = [P(t, a)]1,3 = 0,

[P(t, a)]2,1 = [P(t, a)]2,2 = 0,

[P(t, a)]1,2 = [P(t, a)]2,3 = 1,

[P(t, a)]3,1 =
(NR − 2)t+(N − 1)(2−NR −a)

t2
,

[P(t, a)]3,2 = − t2 + (6− 2N −NR − a)t

t2
,

− (N − 1)(N − 2)

t2
,

[P(t, a)]3,3 = −2t2 − (2N − 4)t

t2
.

Note that we did not derive the above differential equations

w.r.t. t in order to solve the original problem, i.e., to compute

the SNR p.d.f., given K, i.e., a, over a relevant range of t,
as in Fig. 1, by applying the HGM w.r.t. t based on (45).

This approach would require p(t0, a) as well as its first two

derivatives w.r.t. t, i.e., p(1)(t0, a), and p(2)(t0, a) at the given

a. Appendix C derives infinite series for them. However, their

computation is reliable only for a sufficiently small (i.e.,

practically-irrelevant K value), for the same reasons as those

already discussed in Section III-D for pγ1
(t, a).

Instead, we derived the above differential equations w.r.t. t
for p(t, a) because its derivatives w.r.t. t from (45) shall be

found to enter the differential equation for p(t, a) w.r.t. a,

which may be used for HGM-based computation of p(t, a) at

relevant values of a. Therefore, next, we deduce the differential

equation w.r.t. a for p(t, a), which was shown to exist in

Lemma 1.

D. Differential Equation w.r.t. a for p(t, a)

In Appendix D, Eq. (80), we have deduced the relationship

a∂aM(s, a) =
(
s∂s − s2∂s −Ns

)
M(s, a), (46)

which, by using the order-changing rules (33) and (35),

becomes

a∂aM(s, a) =
(
∂ss− 1− ∂ss

2 + 2s−Ns
)
M(s, a)

=
[
−1 + (−Ns+ ∂ss+ 2s)− ∂ss

2
]
M(s, a).

Transformation of the above to the t-domain based on (39)

and further manipulation yield

a∂ap(t, a) =

=0,∀N︷ ︸︸ ︷
(N − 1) p(0+, a)

−p(t, a) + (N − t− 2) p(1)(t, a)− t p(2)(t, a)

= −p(t, a) + (N − t− 2) p(1)(t, a)

−t p(2)(t, a), (47)

which entwines the derivatives of p(t, a) w.r.t. a and w.r.t. t;
recall that the derivatives of p(t, a) w.r.t. t satisfy (43).

Now, twice differentiating (47) w.r.t. t and substituting

p(3)(t, a) from (43) yields:

a∂ap
(1)(t, a)

= −t p(3)(t, a) + (N − t− 3) p(2)(t, a)− 2p(1)(t, a)

=

(
2−NR +

2− 2N −NR − a+NNR +Na

t

)
p(t, a)

+

(
4− 2N −NR − a+ t+

2 +N2 − 3N

t

)
p(1)(t, a)

+ (1−N + t) p(2)(t, a), (48)

a∂ap
(2)(t, a)

=

(
− 2 +NR +

−4 + 4N + 2NR + a− 2NNR −Na

t

+
−4 + 6N + 2NR + 2a− 3NNR − 3Na

t2

+
N2NR +N2a− 2N2

t2

)
p(t, a)

+

(
3N − 4 + a− t+

−6− 3N2 + 9N

t

+
−4 + 8N − 5N2 +N3

t2

)
p(1)(t, a)

+

(
− 1 + 2N −NR − a− t

+
−2−N2 + 3N

t

)
p(2)(t, a). (49)
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Finally, collecting (47)–(49) yields for the function vector

p(t, a) defined in (44) the system of differential equations

w.r.t. a

∂ap(t, a) =
1

a
Q(t, a)p(t, a), (50)

where the elements of 3× 3 matrix Q(t, a) are as follows:

[Q(t, a)]1,1 = −1,

[Q(t, a)]1,2 = N − t− 2,

[Q(t, a)]1,3 = −t,

[Q(t, a)]2,1 = 2−NR +
2− 2N −NR − a+NNR +Na

t
,

[Q(t, a)]2,2 = 4− 2N −NR − a+ t+
2 +N2 − 3N

t
,

[Q(t, a)]2,3 = 1−N + t,

[Q(t, a)]3,1 = −2 +NR +
−4 + 4N + 2NR

t

+
a− 2NNR −Na

t

+
−4 + 6N + 2NR + 2a− 3NNR − 3Na

t2

+
N2NR +N2a− 2N2

t2
,

[Q(t, a)]3,2 = 3N − 4 + a− t+
−6− 3N2 + 9N

t

+
−4 + 8N − 5N2 +N3

t2
,

[Q(t, a)]3,3 = −1 + 2N −NR − a− t+
−2−N2 + 3N

t
.

E. Computation of p(t, a) vs. a by HGM w.r.t. a, Given t

One may now attempt to apply HGM to solve numerically

the system of differential equations (50), between some small6

a0 6= 0 and the desired a, given t and initial condition

vector p(t, a0) =
(
p(t, a0) p

(1)(t, a0) p
(2)(t, a0)

)T
. The latter

may be computed by truncating the infinite-series expressions

derived in Appendix C.

However, we have found that, for small a0 and large t,
such computation of p(t, a0) suffers from error caused by

numerical representation accuracy limitations: because p(t, a0)
is then extremely small, it cannot be represented accurately;

this initial-condition inaccuracy prevents HGM w.r.t. a from

accurately computing p(t, a) between a0 and a.

We can avoid the numerical issues caused by computing the

infinite series at large values of either a or t, by applying the

HGM simultaneously w.r.t. a and t, as shown next.

F. Computation of p(t, a) by HGM w.r.t. t, for a = c t

In the systems of differential equations obtained in (45)

and (50), i.e., in

∂tp(t, a) = P(t, a)p(t, a), (51)

∂ap(t, a) =
1

a
Q(t, a)p(t, a), (52)

6HGM requires a0 6= 0 because a divides matrix Q in (50).

we now make the following changes of variables

t = c1u, (53)

a = c2u. (54)

Then, the bivariate function vector from (44) becomes the

univariate function vector

p(c1u, c2u) =




p(c1u, c2u)
p(1)(c1u, c2u)
p(2)(c1u, c2u)


 = p̃(u). (55)

Based on the chain rule [27, Eq. (1.5.7), p. 7] as well as on (51)

and (52), we can write:

d

du
p̃(u) =

d

du
p( c1u︸︷︷︸

t

, c2u︸︷︷︸
a

)

=

[
∂tp(t, a)

dt

du
+ ∂ap(t, a)

da

du

] ∣∣∣∣
t=c1u

a=c2u

= c1 P(c1u, c2u) p̃(u) + c2
1

c2u
Q(c1u, c2u) p̃(u)

= c1 P(c1u, c2u) p̃(u) +
1

u
Q(c1u, c2u) p̃(u).(56)

Then, for example, c1 = 1 and c2 = c, i.e., a = c t, yields the

system of differential equations

d

du
p̃(u)=

[
P(u, c u)+

1

u
Q(u, c u)

]
p̃(u), (57)

which helps apply HGM for a = c t, i.e., simultaneously

w.r.t. a and t.
Finally, note that from p(t, a) computed with the HGM as

above we can recover the SNR p.d.f. pγ1
(t, a) with (30). Then,

numerical integration of pγ1
(t, a) yields the outage probability

and ergodic capacity based on (21) and (22), respectively.

Relevant results are shown next.

VI. NUMERICAL RESULTS

A. Settings and Approach

The numerical results presented below have been obtained

for a MIMO system with NR = 6 and NT = 2 under Rician–

Rayleigh fading with K = 7 dB and AS = 51◦, i.e., the

means of their WINNER II lognormal distributions for the

indoor scenario A1 [9], as follows:

• Monte-Carlo simulation: random samples of the channel

matrix H have been generated based on the model (5);

the ZF SNR for Stream 1 has been computed for each

sample by using (12); a histogram of the samples has

yielded the p.d.f. and c.d.f..

• Analysis: from expressions (24), (25) and (26) and from

HGM for differential equation (57). When necessary, we

have integrated numerically using the rectangle method.

We now outline our HGM-based procedure based on (57)

for the computation of the ZF SNR p.d.f. and ensuing per-

formance measures. Given Γs defined in (3) and the Rician

K-factor, we have computed Γ1 and a with (15) and (16),

respectively. Then, we have computed the Stream-1 ZF SNR

p.d.f. over the SNR range with the following steps:
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Fig. 2. Stream-1 SNR p.d.f. computed by the HGM, based on (57), and by
Monte-Carlo simulation, for NR = 6, NT = 2, and Rician–Rayleigh fading
with K = 7 dB, AS = 51◦.

1) Compute accurately the initial condition7 p̃(u0) =(
p(u0, u0) p

(1)(u0, u0) p
(2)(u0, u0)

)T
for a sufficiently-

small u0, using the infinite series for p(q)(t, a) derived

in Appendix C.

2) Sample the SNR range of interest [u1, uM ] as

u1, u2, · · · , uM .

3) For each sample u = um, m = 1, 2, · · · ,M , set c =
a/u, use HGM to solve (57) from u0 to u, and save the

final value p(u, cu), which represents p(t, a) on the line

a = c t.
4) Recover the ZF SNR p.d.f. based on (30), i.e., with

pγ1
(t, a) = p(t/Γ1, a)/Γ1.

This approach avoids using the infinite series for p(t, a),
p(1)(t, a), and p(2)(t, a) for either large a or large t, and, thus,

avoids the ensuing numerical issues described in Sections III-D

and V-E.

Finally, we have integrated numerically the p.d.f. output by

the HGM, according to (21) and (22), to compute the outage

probability and ergodic capacity, respectively.

B. Description of Results

Figs. 2 and 3 depict, respectively, the SNR p.d.f. and

c.d.f. computed with the HGM as above, and by simulation.

The HGM is successful, i.e., the resulting p.d.f. and c.d.f. agree

with the simulation, and the c.d.f. shown in Fig 3 (from

numerically integrating the p.d.f. output by the HGM) goes

to 1 for increasing t. Recall that in [7] [8] we had been able

to accurately compute pγ1
(t) based on its infinite series (20)

only up to the unrealistically-small K value of 1.5 dB. This

has also been illustrated herein in Fig. 1, where the series-

based computation breaks down for K = 7 dB. Consequently,

Figs. 2 and 3 do not attempt to plot series results.

7Note that both t and a are substituted with u0 in this step.
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Fig. 3. Stream-1 SNR c.d.f. computed by numerical integration of the
p.d.f. output by the HGM, based on (57), and by Monte-Carlo simulation, for
NR = 6, NT = 2, and Rician–Rayleigh fading with K = 7 dB, AS = 51◦.

Finally, Figs. 4 and 5 depict, respectively, the outage prob-

ability and ergodic capacity (in bpcu) with respect to Γb

defined in (4). For Rayleigh-only fading we have used the

integral expressions (25) and (26), respectively. For Rician–

Rayleigh fading we have integrated numerically according

to (21) and (22), respectively, the SNR p.d.f. computed with

the HGM as shown above. The HGM and simulation results

agree closely8. On the other hand, results from Po and C
infinite series [7, Eqs. (69), (71)] could not be shown because

their computation breaks down.

C. HGM Complexity

Our HGM-based computation solves (57) with the iterative

Runge–Kutta method [27, Section 3.7] [37], for tolerance level

ǫ = 10−15 (i.e., 15 digits of accuracy), with the MATLAB

ode function. Implementations of the Runge-Kutta method

are available in most numerical tools, and their complexity is

known to be polynomial in the number of digits of accuracy

[41, p. 33] [42] [43]. In our numerical experiments we have

found that the duration of the HGM-based computation is

reasonable9. Finally, HGM-based computation duration and

success are robust to the value of K, unlike infinite-series-

based computation [7] [8] [29].

8Unshown results have revealed that HGM yields accurate results even for
K as high as 15 dB, and also for other combinations of NT and NR, without
a noticeable increase in computation time.

9Computation of the p.d.f. at 30 samples of t, as shown in Fig. 2 requires
about 60 seconds. Then, outage probability computation for one Γb value
takes about 70 s. Finally, ergodic capacity computation for one Γb value
takes about 140 s.
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Fig. 4. Stream-1 outage probability for NR = 6, NT = 2, and fading param-
eters K = 7 dB, AS = 51◦. For Rayleigh-only fading: from expression (25)
and from simulation. For Rician–Rayleigh fading: from numerical integration
according to (21) of the SNR p.d.f. computed with the HGM, based on (57),
and from simulation.
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Fig. 5. Stream-1 ergodic capacity for NR = 6, NT = 2, and fading param-
eters K = 7 dB, AS = 51◦. For Rayleigh-only fading: from expression (26)
and from simulation. For Rician–Rayleigh fading: from numerical integration
according to (22) of the SNR p.d.f. computed with the HGM, based on (57),
and from simulation.

VII. FUTURE WORK: AN HGM-BASED FRAMEWORK FOR

MIMO EVALUATION

A. HGM-Based Performance Evaluation of MIMO under Gen-

eral Fading

For many fading types (e.g., Rayleigh, Rician, Nakagami,

lognormal) and for many multiantenna transmission tech-

niques, previous work, e.g. [2], showed expressions for the

SNR m.g.f. that involve special (e.g., hypergeometric, Bessel)

functions of scalar argument, which have typically been writ-

ten as infinite-series, but are also holonomic. Furthermore, [32]

proposed generalizing MIMO analysis by purposely writing

as infinite series (ensuing from expansions around 0) the SNR

m.g.f. for several widely-used fading types. We have applied

a similar approach in [44] for NR × 2 MIMO ZF under full-

Rician fading. However, the deduced SNR p.d.f. expression is

a mixture of finite and infinite series whose computation by

truncation has been found accurate only for unrealistically-

small K values. Then, one may attempt to apply instead

the HGM-based approach: deduce and solve the relevant

differential equations.

Further, hypergeometric functions also of matrix argument

have often occurred in MIMO analyses due to statistical

assumptions about the channel matrix [30] [31]. For exam-

ple, the c.d.f. and m.g.f. of the dominant eigenvalue of a

complex-valued central-Wishart-distributed matrix have been

expressed in terms of 1F1(a; c;R) and 2F1(a; c;R) in [31,

Eqs. (34), (42)], respectively. Thus, for MIMO beamforming

under Rayleigh-fading channel, the average error probabil-

ity and outage probability have been expressed in terms

of 1F1(a; c;R) and 2F1(a; c;R) in [31, Eqs. (30), (22)],

respectively. Unfortunately, the well-known infinite series for

these functions (and the zonal polynomials involved) [45,

Eq. (1.1)] [30, Eq. (1.1)] [31, Eq. (61)] are difficult to compute

[30] [31]. Nevertheless, such functions also satisfy differential

equations [45] [46]. Those for 1F1(a; c;R) from [45, Eq. (5.1)]

have recently been exploited for the accurate HGM-based

computation of the c.d.f. of the dominant eigenvalue of a

real-valued central-Wishart-distributed matrix in [38]. We shall

extend this approach to complex-valued matrices, in order to

evaluate MIMO beamforming performance.

B. Automated Deduction of Differential Equations

In the current paper, HGM has been applied for solving

differential equations for the ZF SNR m.g.f. and p.d.f. that

we deduced manually. Software tools that can help automate

the deduction of differential equations for holonomic functions

have recently become available [35, p. 171] [36, Ch. 7]

[47] [48]. Thus, in other current work [49], we investigate

employing and enhancing such tools to automatically derive

differential equations not only for the SNR m.g.f. and p.d.f.,

but also for the outage probability and ergodic capacity.

Finally, we shall investigate whether such automated tools

can help make HGM applicable to MIMO performance eval-

uation under a wide range of fading types, by deducing

differential equations — instead of infinite series, as in [2]

[44] [32]. The outcome of this future work is envisioned to

be a framework for the automated analysis and HGM-based

evaluation of MIMO transceiver performance under general

fading.

VIII. SUMMARY AND CONCLUSIONS

For MIMO ZF under Rician–Rayleigh fading, this paper has

demonstrated that performance-measure expressions can be

evaluated accurately, by using the HGM, at (realistic) Rician

K-factor values that render unusable the conventional method

of truncating infinite series. For the SNR m.g.f., which has
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been known in terms of the confluent hypergeometric function,

which is a holonomic function, we have deduced the satisfied

differential equations. They have yielded the differential equa-

tions satisfied by the SNR p.d.f., which, in turn, have helped

compute the p.d.f. accurately using the HGM at values of K
relevant according to WINNER II (e.g., K = 7 dB). Finally,

numerical integration of the SNR p.d.f. obtained by the HGM

has yielded for the MIMO ZF outage probability and ergodic

capacity close agreement with simulations.

Future work shall attempt to extend the results of this

paper into an automated HGM-based analysis and evaluation

framework that promises to accurately characterize MIMO

performance for realistic fading-parameter values.

APPENDIX A

DIFFERENTIAL EQUATION W.R.T. s FOR M(s, a)

First, substituting σ with as
1−s in the differential equation

for 1F1(N ;NR;σ) from (27) yields

as

1− s
1F

(2)
1

(
N ;NR;

as

1− s

)

+

(
NR − as

1− s

)
1F

(1)
1

(
N ;NR;

as

1− s

)

−N1F1

(
N ;NR;

as

1− s

)
= 0. (58)

Then, from (31), we have

M(s, a) =
1

(1− s)
N 1F1

(
N ;NR;

as

1− s

)
, (59)

which yields

1F1

(
N ;NR;

as

1− s

)
= (1− s)

N
M(s, a). (60)

Differentiating (59) w.r.t. s yields:

∂sM(s, a) =
N

(1− s)
N+1 1F1

(
N ;NR;

as

1− s

)

+
a

(1− s)
N+2 1F

(1)
1

(
N ;NR;

as

1− s

)
(61)

By first substituting (60) into (61) and then by differentiating

the result w.r.t. s we obtain

∂sM(s, a) =
N

(1− s)
M(s, a)

+
a

(1− s)
N+2 1F

(1)
1

(
N ;NR;

as

1− s

)
(62)

∂2
sM(s, a) =

N

(1− s)
2M(s, a) +

N

(1− s)
∂sM(s, a)

+
a(N + 2)

(1− s)
N+3 1F

(1)
1

(
N ;NR;

as

1− s

)

+
a2

(1− s)
N+4 1F

(2)
1

(
N ;NR;

as

1− s

)
(63)

which yield, respectively:

1F
(1)
1

(
N ;NR;

as

1− s

)

=
(1− s)

N+2

a

[
∂s −

N

(1− s)

]
M(s, a), (64)

1F
(2)
1

(
N ;NR;

as

1− s

)

=
(1− s)

N+4

a2

[
∂2
sM(s, a)− N

(1− s)
2M(s, a)

− N

(1− s)
∂sM(s, a)

− a(N + 2)

(1− s)
N+3 1F

(1)
1

(
N ;NR;

as

1− s

)]
. (65)

Substituting (64) into (65) yields:

1F
(2)
1

(
N ;NR;

as

1− s

)
=

(1− s)
N+4

a2

[
∂2
s − 2(N + 1)

(1− s)
∂s

+
N(N + 1)

(1− s)
2

]
M(s, a). (66)

Finally, substituting (60), (64), and (66) into the differential

equation (58), and further manipulation, yield the following

differential equation w.r.t. s for M(s, a)

(
s(1− s)2∂2

s −
[
2(N + 1)s(1− s)− (1− s)NR + as

]
∂s

+N
[
(N + 1)s−NR − a

])
M(s, a) = 0, (67)

which appears in the main text in (32).

APPENDIX B

INITIAL CONDITION pγ1
(0+, a)

For the special case with N = 1, i.e., for NR = NT, (20)

becomes

pγ1
(t, a) =

e−t/Γ1

Γ1

∞∑

n=0

An(a)

n∑

m=0

(
n

m

)
(−1)mtn−m

(n−m)! Γn−m
1

,

which yields

lim
t→0,t>0

pγ1
(t, a) = pγ1

(0+, a) =
1

Γ1

∞∑

n=0

An(a)(−1)n

=
1

Γ1

∞∑

n=0

(N)n
(NR)n

(−a)n

n!
. (68)

Thus, (68), (18), and (20) yield

pγ1
(0+, a) =

{
1
Γ1

1F1(N ;NR;−a), N = 1

0, N > 1,
(69)

which is used in the main text to deduce (40), on page 7.
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APPENDIX C

INFINITE-SERIES EXPRESSIONS OF DERIVATIVES OF

p(t, a) W.R.T. t

Based on (20) and (30), let us define the function

f(t, a) = p(t, a)et =

∞∑

n=0

An(a)

n∑

m=0

(
n

m

)

× (−1)mtN+n−m−1

(N + n−m− 1)!
, (70)

whose first two derivatives are given by

f (1)(t, a) = p(1)(t, a)et + p(t, a)et,

f (2)(t, a) = p(2)(t, a)et + 2p(1)(t, a)et + p(t, a)et.

The above yield

p(t, a) = f(t, a)e−t, (71)

as well as

p(1)(t, a) =
[
f (1)(t, a)− f(t, a)

]
e−t, (72)

p(2)(t, a) =
[
f (2)(t, a)− 2f (1)(t, a)+f(t, a)

]
e−t (73)

which are the only derivatives of p(t, a) required for (44).

Now, if we rewrite f(t, a) from (70) further as

f(t, a) = tN−1
∞∑

n=0

An(a)

n∑

m=0

(
n

m

)
(−1)mtn−m

(N − 1 + n−m)!
︸ ︷︷ ︸

g(t,a)

= tN−1g(t, a), (74)

then its qth partial derivative w.r.t. t is10, based on Leibniz’s

formula [27, Eq. (1.4.12), p. 5]:

f (q)(t, a) = ∂q
t

[
tN−1g(t, a)

]

=

q∑

k=0

(
q

k

)[
tN−1

](k)
g(q−k)(t, a) (75)

=

q∑

k=0

(
q

k

)
(N − 1)!tN−1−kg(q−k)(t, a)

(N − 1− k)!
.(76)

If we rewrite g(t, a) from (74) as

g(t, a) =

∞∑

n=0

An(a)

n∑

r=0

(
n

n− r

)
(−1)n−rtr

(N − 1 + r)!
,

then its partial derivative of order q ≥ 1 w.r.t. t is given by

g(q)(t, a) =

∞∑

n=q

An(a)

n∑

r=q

(
n

n− r

)

× (−1)n−r

(N − 1 + r)!

r!

(r − q)!
tr−q, (77)

which, along with (76), yields f (q)(t, a). Finally, substitut-

ing into (72) and (73) yields expressions for p(1)(t, a) and

p(2)(t, a), respectively.

However, because (76) follows from (75) only for k ≤ N−
1, and because k goes from 0 to q, it is required that N −1 ≥

10Note that (76) follows from (75) only for k ≤ N − 1.

TABLE I
DERIVATIVES OF f(t, a) FOR N = 1, 2

N = 1 N = 2

f(t, a) g(t, a) tg(t, a)

f (1)(t, a) g(1)(t, a) g(t, a) + tg(1)(t, a)

f (2)(t, a) g(2)(t, a) 2g(1)(t, a) + tg(2)(t, a)

q. Then, because (44) requires f (q)(t, a) for q as high as 2,

f (q)(t, a) can be written as in (76) only if N ≥ 3. Table I

characterizes the remaining cases.

APPENDIX D

RELATIONSHIP BETWEEN DERIVATIVES OF M(s, a)
W.R.T. s AND a

Differentiating (59) w.r.t. a yields

∂aM(s, a) =
s

(1− s)
N+1 1F

(1)
1

(
N ;NR;

as

1− s

)
, (78)

so that

1F
(1)
1

(
N ;NR;

as

1− s

)
=

(1− s)
N+1

s
∂aM(s, a). (79)

Now, by substituting (60) and (79) into (61), and by further

manipulation, we obtain

a∂aM(s, a) = s (1− s)∂sM(s, a)−NsM(s, a), (80)

which appears in the main text in (46).
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[43] S. Ilie, G. Söderlind, and R. M. Corless, “Adaptivity and computational
complexity in the numerical solution of odes,” Journal of Complexity,
vol. 24, no. 3, pp. 341–361, 2008.

[44] C. Siriteanu, A. Takemura, S. Kuriki, D. Richards, T. Onoye, and
H. Shin, “Performance analysis of NR × 2 MIMO zero-forcing for full-
Rician fading,” IEEE Transactions on Wireless Communications, to be

submitted, October 2014.
[45] R. J. Muirhead, “Systems of partial differential equations for hyper-

geometric functions of matrix argument,” The Annals of Mathematical

Statistics, vol. 41, no. 3, pp. 991–1001, 1970.
[46] Y. Chikuse, “Partial differential equations for hypergeometric functions

of complex argument matrices and their applications,” Annals of the

Institute of Statistical Mathematics, vol. 28, no. 1, pp. 187–199, 1976.
[47] C. Koutschan, “Advanced applications of the holonomic systems

approach,” Ph.D. dissertation, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria,
2009. [Online]. Available: http://www.risc.jku.at/research/combinat/
software/HolonomicFunctions/

[48] ——, “HolonomicFunctions (user’s guide),” RISC Report Series,
Johannes Kepler University, Linz, Austria, Tech. Rep. 10-01, 2010.
[Online]. Available: http://www.risc.jku.at/research/combinat/software/
HolonomicFunctions/

[49] C. Siriteanu, C. Koutschan, T. Onoye, and A. Takemura, “Automated
mimo performance analysis and evaluation using the holonomic gra-
dient method,” IEEE Transactions on Wireless Communications, to be

submitted, November 2014.

http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/


IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, SUBMITTED APRIL 2014, REVISED SEPTEMBER 2014, FINALIZED DECEMBER 2014 14

Constantin (Costi) Siriteanu was born in Sibiu,
Romania. He received the Bachelor and Master
degrees in Control Systems from “Gheorghe Asachi”
Technical University, Iasi, Romania, in 1995 and
1996, respectively, and the Ph.D. degree in Electrical
and Computer Engineering from Queen’s Univer-
sity, Canada, in 2006. His Ph.D. thesis was on
the performance–complexity tradeoff for smart an-
tennas. Between September 2006 and March 2014
he worked as Researcher and Assistant Professor
in Korea (Seoul National University, Kyung Hee

Univesity, Hanyang University), Canada (Queen’s University), and Japan
(Hokkaido University, University of Tokyo). Since April 2014, he is a
CAREN Specially-Appointed Assistant Professor with the Graduate School of
Information Science and Technology, Osaka University. His research interests
have been in developing multivariate statistics concepts that help analyze and
evaluate the performance of multiple-input/multiple-output (MIMO) wireless
communications systems under realistic statistical assumptions about channel
fading. Recently, Constantin has been working on applications of computer
algebra to the deduction of implicit representations of MIMO performance
measures (i.e., as solutions of differential equations).

Akimichi Takemura received the Bachelor of Arts
degree in Economics in 1976 and the Master of
Arts degree in Statistics in 1978 from University of
Tokyo, and the Ph.D. degree in Statistics in 1982
from Stanford University. He was an acting Assistant
Professor at the Department of Statistics, Stanford
University from September 1992 to June 1983, and
a visiting Assistant Professor at the Department of
Statistics, Purdue University from September 1983
to May 1984. In June 1984 he has joined University
of Tokyo, where he has been a Professor of Statistics

with the Department of Mathematical Informatics since April 2001. He has
served as President of Japan Statistical Society from January 2011 to June
2013. He has been working on multivariate distribution theory in statistics.
Currently his main area of research is algebraic statistics. He also works on
game-theoretic probability, which is a new approach to probability theory.

Satoshi Kuriki received the Bachelor and Ph.D.
degrees from University of Tokyo, Japan, in 1982
and 1993, respectively. He is a Professor with the
Institute of Statistical Mathematics (ISM), Tokyo,
Japan, where he is also serving as Director of the
Department of Mathematical Analysis and Statistical
Inference. His current major research interests in-
clude geometry of random fields, multivariate analy-
sis, multiple comparisons, graphical models, optimal
designs, and genetic statistics.

Hyungdong Shin (S’01-M’04-SM’11) received the
B.S. degree in electronics engineering from Kyung
Hee University, Korea, in 1999, and the M.S. and
Ph.D. degrees in electrical engineering from Seoul
National University, Korea, in 2001 and 2004, re-
spectively. During his postdoctoral research at the
Massachusetts Institute of Technology (MIT) from
2004 to 2006, he was with the Wireless Commu-
nication and Network Sciences Laboratory within
the Laboratory for Information Decision Systems
(LIDS). In 2006, Dr. Shin joined Kyung Hee Uni-

versity, Korea, where he is now an Associate Professor at the Department of
Electronics and Radio Engineering. His research interests include wireless
communications and information theory with current emphasis on MIMO
systems, cooperative and cognitive communications, network interference,
vehicular communication networks, location-aware radios and networks,
physical-layer security, molecular communications. Dr. Shin was honored with
the Knowledge Creation Award in the field of Computer Science from Korean
Ministry of Education, Science and Technology (2010). He received the IEEE
Communications Society Guglielmo Marconi Prize Paper Award (2008) and
William R. Bennett Prize Paper Award (2012). He served as a Technical
Program Co-chair for the IEEE WCNC (2009 PHY Track) and the IEEE
Globecom (Communication Theory Symposium, 2012). He was an Editor for
IEEE Transactions on Wireless Communications (2007-2012). He is currently
an Editor for IEEE Communications Letters.

Christoph Koutschan received the Master degree
in Computer Science from Friedrich-Alexander Uni-
versity in Erlangen, Germany, and the Ph.D. degree
in Symbolic Computation from the Johannes Kepler
University in Linz, Austria. He worked as a re-
searcher at the Research Institute for Symbolic Com-
putation (RISC, Linz, Austria), at Tulane University
(New Orleans, USA), and at INRIA (Institut national
de recherche en informatique et en automatique,
France). Currently he is with the Johann Radon In-
stitute for Computational and Applied Mathematics

(RICAM) of the Austrian Academy of Sciences. His research interests are on
methods related to the holonomic systems approach, particularly symbolic
summation and integration algorithms, and their application to problems
from combinatorics, knot theory, special functions, numerical analysis, and
statistical physics.


	Introduction
	Background
	Previous ZF Analyses
	Previous Approach and its Limitations. Motivation of New Approach.
	New Approach and Contribution
	Notation
	Paper Organization

	Signal, Noise, and Fading Models
	Infinite-Series Expressions for MIMO ZF SNR M.G.F. and P.D.F.
	MIMO ZF and Its SNR M.G.F. for Rician–Rayleigh Fading
	Infinite Series for SNR M.G.F. and P.D.F. for Rician–Rayleigh Fading
	Expressions for Rayleigh-Only Fading
	Difficulties Computing the Derived Infinite Series

	Holonomic Functions and the Holonomic Gradient Method (HGM)
	Differential Equation for  1 F1(N; NR; ) 
	HGM-Based Computation of Holonomic Function, e.g.,  1 F1 (; ; ) 
	ZF SNR M.G.F. and P.D.F. Are Holonomic Functions
	Proposed HGM-based ZF Performance Evaluation

	Differential Equations for ZF SNR M.G.F. and P.D.F.
	M.G.F. and P.D.F. Variable Scaling
	Differential Equation w.r.t.  s  for  M(s, a) 
	Differential Equation w.r.t.  t  for  p(t, a) 
	Differential Equation w.r.t.  a  for  p (t, a) 
	Computation of  p(t, a)  vs.  a  by HGM w.r.t.  a , Given  t 
	Computation of  p(t, a)  by HGM w.r.t.  t , for  a = c  t 

	Numerical Results
	Settings and Approach
	Description of Results
	HGM Complexity

	Future Work: an HGM-Based Framework for MIMO Evaluation
	HGM-Based Performance Evaluation of MIMO under General Fading
	Automated Deduction of Differential Equations

	Summary and Conclusions
	Appendix A: Differential Equation w.r.t.  s  for  M(s, a) 
	Appendix B: Initial Condition  p1(0+, a) 
	Appendix C: Infinite-Series Expressions of Derivatives of  p(t, a)  w.r.t.  t 
	Appendix D: Relationship Between Derivatives of  M(s, a)  w.r.t. s and a
	Acknowledgment
	References
	Biographies
	Constantin (Costi) Siriteanu
	Akimichi Takemura
	Satoshi Kuriki
	Hyungdong Shin
	Christoph Koutschan


