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Min Flow Rate Maximization for Software
Defined Radio Access Networks

Wei-Cheng Liao, Mingyi Hong, Hamid Farmanbar, Xu Li, Zhi-Quan Luo, and
Hang Zhang

Abstract

We consider a heterogeneous network (HetNet) of base stations (BSs) connected via a backhaul
network of routers and wired/wireless links with limited capacity. The optimal provision of such net-
works requires proper resource allocation across the radio access links in conjunction with appropriate
traffic engineering within the backhaul network. In this paper we propose an efficient algorithm for
joint resource allocation across the wireless links and the flow control within the backhaul network. The
proposed algorithm, which maximizes the minimum rate among all the users and/or flows, is based on a
decomposition approach that leverages both the Alternating Direction Method of Multipliers (ADMM)
and the weighted-MMSE (WMMSE) algorithm. We show that this algorithm is easily parallelizable and
converges globally to a stationary solution of the joint optimization problem. The proposed algorithm
can also be extended to deal with per-flow quality of service constraint, or to networks with multi-
antenna nodes.

Index Terms

Heterogeneous Networks, ADMM Algorithm, Software Defined Networking, Cross-layer Opti-
mization, Small Cell, Limited Backhaul

1. INTRODUCTION

With the advent of cloud computing technologies and the mass deployment of low power
base stations (BSs), the cellular radio access networks (RAN) has undergone a major structural
change. The traditional high powered single-hop access mode between a serving BS and its
users is being replaced by a mesh network consisting of a large number of wireless access
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points connected by either wireline or wireless backhaul links as well as network rduters [2].
New concepts such as heterogeneous network (HetNet) or software defined air interface that
capture these changes have been proposed and studied recentlyl (see [3], [4] and references
therein). Such cloud-based, software defined RAN (SD-RAN) architecture has been envisioned
as a future 5G standard, and is expected to achieve 1000x performance improvement over the
current 4G technology within the next ten yedrs [4].

The success of the software defined radio access networks will depend critically on our
ability to jointly provision the backhaul traffic and mitigate interference in the air interface. In
recent years, interference management has been a major focus of the wireless communication
research[[5],[[6]. For instance, various downlink interference management techniques have been
developed under the assumption that the wireless user data can be routed to the transmitting
BSs without any cost to the backhaul network. Unfortunately, such idealized assumption is only
reasonable for traditional networks with a small number of networked BSs for which traffic
engineering is straightforward. In the next generation RAN, there will be a large humber of
BSs, many of which may be connected to the core network without carrier-grade backhaul, e.g.,
WIFI access points with digital subscriber line (DSL) connections. The increased heterogeneity,
network size and backhaul constraints make interference management for future cloud based
RANSs a challenging task.

As a multi-commodity flow problem, backhaul traffic engineering involves multi-hop routing
from the source nodes (e.qg., the cloud centers with backhaul connection) to the destination nodes
(e.g., the users requesting content). The resulting optimal solution must guarantee the requested
quality of service (QoS) for each end-to-end flow (or commaodities in the terminology of traffic
engineering) while satisfying the capacity constraints for all the wireless and/or wired links used
by the flows. Compared to the traditional multi-commodity routing in wireline netwarks [7],

[8], traffic engineering in the wireless setting is much more challenging due to several reasons.
First, the link capacity between two nearby nodes is a nonconvex function of the transmit power
budget, channel strength, as well as the underlying physical layer coding/decoding techniques
used. Second, the amount of traffic that can be carried on neighboring links is interdependent
due to the multiuser interference caused by nearby nodes. Third, multiple parallel channels
between two nodes may be available for transmission. To respond to these new challenges,
novel RAN management methods must be developed for joint wireless resource allocation in
the air interface and traffic engineering within the multi-hop backhaul network. These methods
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together will be a central component of the newly proposed software defined networking (SDN)
conceptl[4], [9], which advocates centralized network provisioning for cloud based radio access
networks.

The impact of the finite bandwidth of backhaul networks on wireless resource allocation has
been studied recently in the context of joint processing between BSs/ elg.[ [10]-[13]. However,
these works do not consider multi-hop routing between the source and the destination nodes.
The joint optimization of the backhaul flow routing and the power allocation for wireless
network has also been considered in the framework of cross-layer network utility maximization
(NUM) problem, see e.g! [14]-[17] and some tutorial papérs [18]-[20]. However, since the
capacity of wireless links is nonconvex in the presence of multiuser interference, the authors
of [14], [19] considered only the orthogonal wireless links which effectively reduced the
problem to convex one. In_[15] [16][_[18],_[20], the interference was considered in a fast
fading environment but the proposed algorithms required solving difficult subproblems. In
[17], the network was approximated by a deterministic channel madel [21] through which
an approximate optimal solution was derived. A similar joint optimization problem was also
investigated in[[22] for a wireless sensor network whereby a distributed algorithm capable of
converging to the stationary solution is proposed. However, this approach is valid only for the
setting with single antenna nodes, and requires the utility function to be strongly convex.

In this paper, we propose an efficient algorithm for joint backhaul traffic engineering and
physical layer interference management for a large-scale SD-RAN. In particular, we leverage the
Alternating Direction Method of Multipliers (ADMM)[[23],.[24] and the WMMSE interference
management algorithni_[25] to tackle the joint resource allocation and traffic engineering
problem. The resulting algorithm is significantly more efficient than the subgradient-based
methods|[[14],[[19]. The proposed algorithm has simple closed-form updates in each step and
is well suited for distributed and parallel implementation. Moreover, the proposed algorithm
can be extended to deal with per-flow quality of service constraint, or to networks with multi-
antenna nodes. Since not all the QoS requirements can be met simultaneously, techniques from
sparse optimization [26]] [27] are used to dynamically select the subset of users being served.
The efficacy and the efficiency of the proposed algorithms are demonstrated via extensive
simulations.

Notations: We usel to denote the identity matrix, an@ to denote a zero vector or matrix.

The superscriptsl™, * H' and ‘«’, respectively, stand for the transpose, the conjugate transpose
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TABLE |
A LIST OF NOTATIONS

1% The set of nodes in the network N The set of routers

B The set of BSs u The set of mobile users

L The set of links M Number of total commodities in the system

LY The set of wired links L0 The set of wireless links

C The capacity for a wired link € £% K Number of tones on each wireless link
Tm (1) Transmit rate for commodityn on link [ Tm Data rate for commodityn
D(m) The destination node for commodity S(m) The source node for commodity

pk. | The precoder from BS to userd on tonek | I(l) The set of interferer to wireless link

and the complex conjugate. The indicator function for a.4eits denoted byl 4(x), that is,
la(z) = 1if z € A, and14(x) = 0 otherwise. The projection function to the nonegative
orthant is denoted byz)*, i.e., (v)* £ max{0,x}. Also, the notatiord) < alb > 0 means
thata,b > 0 andab = 0. Some other notations are summarized in Table .

2. SYSTEM MODEL AND PROBLEM FORMULATION

Let V denote the set of nodes in a HetNet, comprised of a set of network routeasset
of BSs 3, and a set of mobile usetg. Let £ denote the set of directed links that connect
the nodes of). In addition, we assume that there dve source-destination pairs, denoted by
{(S(m), D(m))}M_,. For eachm = 1, ..., M, a data flow of rate:(m) > 0 is to be sent from
the source nodé(m) to the destination nod®(m) over the network.

The set of directed linkg& consists of both wired and wireless links. The wired links connect
routers inN\ and BSs inB, and is denoted ag® = {(s,d) | (s,d) € £, V s,d € N U B}.
Here (s, d) denotes the directed link from nodeto noded. Assume each wired linke £v

has a fixed capacity,;. Then the total flow rate on linkis constrained by
M
> n(m) <Gy, VieL”, (1)

m=1
wherer;(m) > 0 denotes the nonnegative flow rate on lihfor commoditym.
The wireless links provide single-hop connections between the BSs to the mobile users. We
assume that each BS divides the spectrum iitorthogonal frequency subchannels, and refer
to these subchannels asreless links. Thus, the set of wireless links can be represented as

L2 {(s,d k)| (s.d k) €L, VseB VdeU, k=1~ K}

with (s, d, k) being the wireless link from nodeto noded on subchannet. For subchannet,
BS s € B applies a linear scalar precogér € C to the transmitted complex unit-norm symbol
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of mobile userd € U, so each mobile user can be served by multiple BSs. Assuming that each
mobile user treats the interference from other BSs as noise, the total flow rate constraint on
the wireless linkl = (s,d, k) € L is expressed as

M
||| s |

> | Plpigl® + of
(s',d' k)eI()\{1}

r(m) < 7(p) =log | 1+ . Vie v 2)

wherep = {pk. | V (s,d, k) € L}, bk, € C is the channel tap for the wireless link
l = (s,d, k); o2 is the variance of AWGN noise at mobile usgr/(l) C £*! is the set of links

interfering with link [:
() & {(s',d k) € L | i, #0,(s,d, k) =1} 3)

Note that in this definition, link itself is included ini(l), i.e., we have € I(l). Each BS
s € B has a total power budget > 0, satisfying

Z S WP <, VseB (4)

k=1 d:(s,d,k)eLw!

Each node in the network should follow the flow conservation constraint, i.e., the total incoming
flow of nodev € V equals the total outgoing flow of that node,

Z ri(m) + Lgsmyy (v)rm = Z ri(m) + Lipam)y(V)rm, m=1~M, YveV (5)

leIn(v) leOut(v)

where In(v) and Out(v) denote the set of links going into and coming out of a nede
respectively.

In this paper, we are interested in maximizing the minimum flow rate of all commodities,
while jointly performing the following taskd4): route A/ commodities from nodes(m) to
node D(m), m =1 ~ M; and2) design the linear precoder at each BS. This problem can be
formulated as

max Tr (6)
p.r

st. r>0,r,>r, rn(m) >0, m=1~M VIieLl

@, @, @), and [3)

wherer £ {r, r/(m), v, | V1 € L, m =1~ M}. Adopting the min-rate utility results in a
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fair rate allocation, and such utility has been adopted by many recent works in both the SDN

and wireless communities; see [25], [28] and the references therein. At this point, it is important

to note that by solving problerfil(6), we automatically select a subset of BBgarserve each

user. That is, for a given commodity for userd, it is possible that there exist; 4 )(m) > 0

andr,q;(m) > 0 with s # ¢, and(s,d, k), (¢,d,l) € £*". Allowing cooperation among the

BSs is in agreement with the envisioned next generation cellular netwarks [4], which will rely

heavily on various BS cooperation schemes such as joint processing to improve the transmission

rate. Here, for simplicity, we don’t take joint processing between BSs into consideration.
Problem [(6) is difficult to solve because of the following reasons:
i) Itis a nonconvex problem where the nonconvexity comes from the rate constraints on the
wireless links

i) The conventional approaches such as the bisection procedure for solving the max-min rate
power allocation (beamformer) design [29] cannot be applied here, due to the existence
of the conservation constraints and the presence of multiple frequency tones.

iii) The size of the problem can be huge, as a result even if we consider the simplest scenario
in which there are no mobile users (or equivalently the nonconvex wireless rate constraints
are not present), the resulting problem may still be difficult to solve in real time.

In the following, we propose an efficient distributed algorithm to compute a stationary solution

of the problem[(B).

3. JOINT TRAFFIC ENGINEERING AND INTERFERENCEMANAGEMENT

In this section, we propose a distributed algorithm that solves prolilem (6) to a stationary
solution. We emphasize that this problem is nonconvex due to the flow rate constraints on
wireless links, i.e.,[(2).

A. Algorithm Outline

A special case of the considered problem model is knowt gzair interference channel with
the following settings i) the number of BSs is the same as that of the userg3j.e.|U/| = M,;
ii) there are only wireless links for each wireless transmitter and user paji\ile= 0; iii) each
wireless transmitter and user pair serve, respectively, as the source and the destination node
of a commodity. For this special case, it has been shown that the minimum rate maximization
problem is NP-hard when both transmitter and user are equipped with no les3 énéennas
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[25]. However, when the wireless transmitters are equipped with multiple antennas (resp. single
antenna) while mobile users are equipped with only one antenna (resp. multiple antennas), the
nonconvex minimum rate maximization problem has been shown to be polynomial time solvable
for the single tone case df = 1 [29]-[31]. However, this is no longer true if there is more
than one frequency tone.

In the following, we will propose an efficient algorithm that can solve problem (6) to a
stationary solution. The proposed algorithm is a combination of two algorithms: 1) the max-min
WMMSE algorithm developed i [25] for minimum rate maximizationfif-pair interference
channel; 2) the ADMM algorithm that is used to distributively solve the multi-commodity
routing problem. Central to the proposed approach is the utilization of a rate-MSE relationship,
stated below[[25].

Lemma 1: For a givenl = (s,d, k) € £*!, #;(p) can be equivalently expressed as

71(p) = max Ej(u;, w;, p) = maxcyy + coyph, — Z C3.n| Pl |2 (7)
ot ot n=(s",d' ,k)eI(l)

where (c1, ¢y, c3.,) are given byc,; = 1+ log(w;) — wi(1 + o2|w|?), coy = 2wRe{u;hk 1,
and cs;,, = wylw|?|hE, .

Note that Lemmall reformulates(p) by introducing two extra sets of variables= {u; |
le LY} andw 2 {w, | | € £}, with one pair of variablegu;, w;} for each wireless linK.
The term inside the maximization operator is the MSE for estimating the message transmitted
on link /. Given Lemmall, we reformulate problem (6) by replacif(g) in (€) with its MSE.
We call such new constraintrate-MSE constraint. Then, we consider the following problem
with two extra optimization variable sets and w instead:

max 7 (8)
st.r>0, rp>r, m(im) >0, m=1~M, VIeL,

@D, @, and [3)
M
ri(m) < ey + cauphy — Z CanlPlyy|? V1€ LY 9)
m=1 n=(s’,d',k)el(l)

Why do we include these extra optimization variableandw? First we observe that for any
given {r, p}, the optimalu (resp.w) for (7)) can be obtained whiles (resp.u) is held fixed.
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Network Max-Min WMMSE (N-MaxMin) Algorithm:

1 Initialization Generate a feasible set of variablgsp}, and lett = 1.

2: Repeat

3. u® is updated by[{10)

4. w® is updated by[{11)

5. {r® p®} is updated by solving the problern (8) via Algorithm 1 in Tablé Il
6 t=1+1

7: Until Desired stopping criteria is met

TABLE I
NETWORK MAX-MIN WMMSE (N-MAXMIN) ALGORITHM

Moreover, these optimal solutions can be expressed in closed form far

-1
“l:< > \h53f|2|p’§/sf|2+a§) hlgPlis; (10)
(s'\d' \k)EI(s,d,k)
-1
w = (1= 0ahw) an

These expressions suggest that the set of variabbesdw can be updated independently and
locally at each mobile user if the interference plus noise and local channel state information
are locally known to the users. Moreover, wherandw are fixed, the problem for updating
{r,p} is convex (note thaf{7) is a convex quadratic problem on the prec@jeand can be
solved in polynomial time. Hence, we propose to apply the alternating optimization technique
to solve problem[(8); see the N-MaxMin Algorithm in Talplé Il for a detailed description.

The following result states that the iteratés®, p} generated by the above algorithm
converge to a stationary solution of the original probleém (6). The proof of this result is relegated
to Appendix(A.

Theorem 1: The sequencér®, p(} generated by the N-MaxMin Algorithm converges to
a stationary solution of problerb](6). Moreover, every global optimal solution of prollem (6)
corresponds to a global optimal solution of the reformulated prollém (8), and they achieve the

same objective value.
Remark 1: The N-MaxMin Algorithm (Tablel) and its convergence analysis (Thedrém 1)

extend easily to the multi-antenna case. The key is to use the matrix version of ldmma 1 in

[25].
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B. A Brief Review of ADMM Algorithm

The second ingredient for the proposed approach is to use the ADMM algorithm to update
{r, p} in the N-MaxMin Algorithm. Unlike the computation af andw, the updates fofr, p}
do not have closed forms. We can use off-the-shelve toolboxes, but this is not very efficient.
In the sequel, we first use variable splitting to decompose the problem and then solve it using
ADMM. The resulting algorithm has closed form updates in each step and is well suited for
parallel and distributed implementation.

We now briefly review the ADMM algorithm. Consider the following structured convex

problem [24],
e, T Fg2)

st. Ax+Bz=c (12)

XECl, ZECQ

whereA € C**", B € CF*™, ¢ € CF; f andg are convex functions, andC, are non-empty
convex sets. The partial augmented Lagrangian function for prolilem (12) can be expressed as

Ly(x,2,y) = f(x) + g(z) + Re (y"(Ax + Bz — ¢)) + (p/2)|[Ax + Bz —c[;  (13)

wherey ¢ C* is the Lagrangian dual variable associated with the linear equality constraint, and
p > 0 is some constant. The ADMM algorithm solves probléml (12) by iteratively performing
three steps in each iteratian

x® = arg min L, (x, (=Y y=1)  (primal update for the first block variable) (14a)
xXE

z® = arg min L,(x" 2z, y"D)  (primal update for the second block variable) (14b)
A4S

y® =y 4 p(Ax® + Bz® —¢)  (dual variable update) (14c)

The practical efficiency of ADMM can be attributed to the fact that in many applications, the
subproblems[(14a) anfd _(14b) are solvable in closed-form. The convergence and the optimality
of the algorithm is summarized in the following lemma][23].

Lemma 2: Assume that the optimal solution set of probldml (12) is non-empty, Ahd
and B”B are invertible. Then the sequence {of®, z® y®} generated by (I#a)_(Ikb), and
(I43) is bounded and every limit point ¢k® z®} is an optimal solution of probleni (1L2).
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C. An ADMM Approach for Updating {r,p}

In the following, we will first reformulate the subproblem fdr,p} into the form of
@2), so that the ADMM can be applied. Then we will show that each step of the resulting
algorithm is easily computable and amenable for distributed implementation. To this end, we
will appropriately split the variables in the coupling constraints (5) and (9).

We first observe that each flow ratgm) on link I = (s,d) € £* (or [ = (s,d, k) € L*) for
commoditym is shared amontwo flow conservation constraints, one for nodand the other
for noded. To induce separable subproblems and enable distributed computation, we introduce
two local auxiliary copies of;(m), namely#:(m) and#!(m), and store one at nodeand the
other at nodel. Similarly, we introduce two local auxiliary copies for each commodity rate,
denoted as5 ™, 75 m =1 ~ M, and store them at the source and the destination node of
each commodity, respectively. That is, we have introduced the following auxiliary variables:

Afz(m) = Tm, fg(m) =Tm, m=1~ M; (158.)
i (m) = r(m), #(m) = r(m), V1= (s,d) € LY, (15b)
ri(m) = ri(m), ffi(m) =r(m), VI=(s,d k)€ £t (15¢)

The flow rate conservation constraints on nede V can then be rewritten as

D m) 4 Lsey(0)Fn, = Y (M) + Lpey (v)is, m=1~M.  (16)
leln(v) leOut(v)
In addition, for the rate-MSE constraint, we introduce several copies of the transmit precoder

on a given wireless link = (s, d, k) € LY, i.e.
p’j,s,,ds =pk Ve l(s, d k) c L a7)

Intuitively, by doing such variable splitting, each varia;a[}es,dS will only appear ina single
rate-MSE constraint. For a given lirk= (s, d, k) € £, its rate-MSE constraint only depends

on the set of precoder’, ;.. | V (s',d', k) € I(I)}, as can be seen below

M
Tl(m) < €11+ CQ,lpSS,ds - Z 037ln|p§s,d’s"27 Vie ‘CU)l‘ (18)
m=1 n=(s',d' ,k)eI(l)

Moreover, for the analysis of the convergence result, another auxiliary variablmtroduced
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such thatr = .
Using these new variables, the updating step{liomp} is equivalently expressed as

max (r+7)/2

st.r=r,r>0, rp,>r, m(m) >0, m=1~M, €L
@, @, @9) [@6), (17) and[(IB) (19)

It is important to note that the constraints of problém (19) (except the linear equality constraints
r = 7, (I8) and [(1l)) are now separable between two optimization variabld)stts tuple
{r.p} wherep = {ph, ., | V1= (s,d k), I'=(s,d k) e L [|el(l')}, andii) the tuple
{£,p} where £ {7 75 pE0 fs(m) #d(m) [ m =1~ M, V1= (s,d) or (s,d, k) € c}.
Additionally, the objective function is linear and separable avandr. Therefore the ADMM
algorithm can be used to solve problem](19). The resulting algorithm, described in[Table llI,
is referred to as Algorithm 1. Note that the partial augmented Lagrange function for problem

(@9) is given by

Ly (5.5,8,756,6) = (r +7)/2+ (7 — ) = LL(7 = 1)?
T ]Zw: [5s<m>(fs<m> ) 4 SDE (FD) ey PLESm) vz PLGDm) )2} i ]Zw:
m=1 " " " " " " 2 " " 2 " " m=1
enforcing linear constraint$ (1ba)
S> [ m) = rlm)) + 6 m) i m) = mm)) = 2L ) = ri(m)? = 2 (m) = ro(m))?]
= dmeey enforcing linear constraint$ (Ibb) and (15c)

k k P2 k k
+ > {9171(17(1/5/ ~Pds.avs) ~ 5 (Pars —pds,dfs/)z}a

I=(s,d,k)eLwl
n=(s’,d’ ,k)eI(s,d,k)

enforcing linear constraint$ (17)

where we have usef] {5 ™}, {00}, {65 (m)}, {0%(m)} and{6,,} to denote the Lagrangian
multipliers for various equality constraints, and have collected these multipliers to the vectors
é and@; p; > 0 andp, > 0 are some constant coefficients for, respectively, the linear equality
constraints[(15) and_(17). For notational simplicity, let us stack all the elementsuod r to

the following vectors

Pstack é [T’, {Tm}mzlwl\/lu {Tl<m)}m:1~M,l€£]T
Tstack £ [7:7 {T’i(m)}mzmvn {TyDn(m)}m:1~M, {Tls(m>}m:1~]\/f,l:(s,d)6£7 {Tfi(m)}m:1~M,z:(s,d)ec]T
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12
Similarly, stack all the elements qf andp by

Pstack é {pssu v (87 d? k) S ‘CU)l}
f)stack é {{pldf’s’7dsav (Sv da k) € ](Slv dlv ]{f,)},v (57 d7 k) € ‘sz} :

Then the equality relationships_(15d)—(115c) and (17) can be compactly expressed as

Crstack = Fstack; DPstack = Pstack; (20)
where
T
10 0 00
C=]0TI1T1TO00O0 ; D:blkdg[{lss}(s,d,kz)eﬁw’] (21)
00 0TITII

whereblkdg{-} is the block diagonalization operatdr’, is an all one column vector of size
equal to the total number of links with which= (s, d, k) interferes, given by

[T = [{(s', d' k) | (d.s. k) € I(s',d' k)}].
Using the notation in((20), we can simplify the above expression to

A o~ “ L1~
Lpl,Pz (I‘, P, T, D; 57 0) =r—+ |:5T(rstack - Crstack) - E ||rstack - Crstack||2]

+ [0H<Dpstack - pstack) - % HDpstaCk - pstackHz} .

Moreover, by appealing to the standard analysis for ADMM algorithm (Lemma 2), and using
the fact thatC”C and D”D are both full rank matrices, we easily see that Algorithm 1
converges to the optimal solutions of probldml(19).

For the detailed step-by-step specification of Algorithm 1, we refer the readers to Appéndix B.
The main message from the derivation therein is that each step in Algorithm 1 can be computed
distributedly in closed-form. More specifically, Step 3 of the algorithm is decompoaainiey
all links in the system (wireless and wired), while Step 4 of the algorithm is decomposable
among all the nodes in the system (also see Sectibn #-A for elaboration). These properties
allow the entire algorithm to be easily implemented in a parallel fashion.[FFig. 1 provides a
flow chart showing the relationship among different algorithms
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Main Problem EquivalentProblem
Problem (6) Problem (8)

Solution: N-MaxMin (J
Variables: u, w, r, p

I Update(u,w)’[(lo}, (11) ] I I Upda;e(r,p) I

¥
Solution: Al. 1

Variables:( 7, p), (r, 2), ( 6,5 )

Updating: (r, p)
Step3inAl1l
[(34),(37),and (39)]

Updating: (7,p ) Updating: (6, &)
Step4in Al 1 Step 5in Al 1, [(24)]
|[(41)r (43), (44), and (46)]

Fig. 1. Flow chart of the proposed solution approddh (6).

4. DISTRIBUTED IMPLEMENTATION AND EXTENSIONS
A. Distributed Implementation and Information Exchange

In this section, we briefly elaborate how the N-MaxMin algorithm can be implemented in
a distributed manner. Let us first look at the implementation for the backhaul network (i.e.,
the update for andr when ignoring the wireless links). Suppose there is a master node in
the system. Consider the update of the optimization variabte Step 3 of Algorithm 1 (cf.
Step (i) in AppendiX_B-1). In this step, to updafe, r,, | m = 1 ~ M}, the source node and

L . . m 5(m)
destination node of each commodity, m = 1 ~ M, should respectively Ser(dﬂi( ) —5";,1 )

and (fﬁ(m) — ‘%ﬁ) to the assumed master node. After the master node afplies (34) to update
{r,rm | m = 1 ~ M}, it would transmitr,, back to nodeS(m) and D(m). To update
ri(m), m =1~ M, V1 € L, the procedure is decoupled acraseh link (cf. step (ii) in
Appendix[B-1). Therefore without loss of generality, we can let the destination node of each
link [ = (s,d) € L perform the bisection updating stdp (37). Thus, the source node of link
should transmit\/ real values{r;(m) — %), V' m =1~ M, to the destination node of that
link. After updatingr;(m), m =1 ~ M, the destination node of the link would transmit them
back to the source node. Afteris computed, the second block variableand the Lagrange
dual variabled can be updated in each node, ded (41), (43), (44),[and (24).

Next we discuss the implementation for the wireless part, i.e., the updaje dod p. We

assume that) each mobile user has local channel state information from all interfering BSs;
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Algorithm 1: ADMM for (19):
1: Initialize all primal variables,r(O),1?(0>,p(0>,f>(0 (not necessarily a feasible solution
for problem [I9)): Initialize all dual variable§”, 0 sett = 0
2: Repeat
3. Solve the following problem and obtairt*? pit+1):
)

maix LPl,P2 (I', f)v ( )7 P e(t
r7p
st.r>0,rp,>r, r(m) >0, m=1~M, l €L,
(@) and [(18) (22)

This step can beolved in parallel across all links, cf. (34), [37), and[(39).
4:  Solve the following problem and obtairt* pt+1):

max Ly, p, (x0, p0Y, £, p; 61, 61)
s.t. (4) and [16) (23)

This problem can beolved in parallel across all nodes, cf. (41), [43), [44), and (46).
5. Update the Lagrange dual multiplief§*? and 8"V by

oD =50 — p (0 — crlit)),

Fstack

0D = 90 — p,(DplTY — plily, (24)

stack

6: t=t+1
7: Until Desired stopping criterion is met

TABLE 1lI
SUMMARY OF THE PROPOSEDALGORITHM 1

andii) v; and w,; are updated according tb {10) arid](11) respectively at the receiver side of
link I € £, Let us first look at the update fgru {r;(m) | m =1 ~ M, V1 € L'} (cf. (38)).

Recall that this step is decoupled over each wireless link, and all necessary information needed
for the computation (such as w, p and the channel state information) is available at each user
except(r;(m) — %) m =1~ M. It follows that this update can be processed at the mobile
usersd, provided that for wireless link = (s, d, k) € £*!, the BSs sends(r;(m) — @),

m = 1 ~ M to mobile userd. After mobile userd updatesr;(m), m = 1 ~ M, it sends

them back to BS. Next we analyze the step that updatdcf. (43)). In order to solve this
problem locally at each BS € B, the mobile users whose transmissions interfere with the

users associated with BS i.e.,

d e {d|(s.d k) € I(s,d,k).Y d, k=1~ K, st (s.dk) e L") (25)
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should send(pf;, ,, + W) v (s',d' k) € L* with BS s. After BS s obtains the
updatedp’, by (48), it can broadcast these quantities back to those mobile users.
Given the information exchanges described above, Algorithm 1 (and therefore, the N-MaxMin

Algorithm) can be implemented in a distributed and parallel manner.

B. Extension with Per-user QoS Requirements

For a subse® C{1,..., M} of the end-to-end commaodity pairs, we may require the flow
rates to be no less thar. For the rest of the commoditie@® = {1,...,M} \ Q, we can
maximize their minimum achievable rate. This gives rise to the following formulation:

max r
s.t.r>0, r(m) >0, m=1~M, VIeL,
Tg>Ty Vq€Q, 1y >r, Yme QF, (26)
@, @. @, and [3)

Different from problem[(B), this QoS constrained formulation is not always feasible for any
given tuple of QoS constrain{s’, } ,co. Therefore, the N-MaxMin algorithm proposed in Table
[Mcannot be directly applied. To circumvent this difficulty, we introduce an extra optimization
variable set

a={a,>0]qe Q}.

The variablen, can be interpreted as the QoS violation for tile QoS constraint. Using this
set of new variables, we replace the “hard” QoS constrgint r,, V ¢ € Q with the following
set of “soft” constraints

Tq 2T, — Qq Vg E Q.

In this way problem[(26) is always feasible. Hence, our goal becomes one that selects the
maximum number of commodities in the se® to satisfy the QoS requirements, in addition to
the joint optimization for power allocation and routing. In another word, besides optimizing
andr, we would like to find a vectorx that has the maximum number of zeros.

Mathematically, to induce zeros m, an extra regularization term that penalizes the nonzero
terms ina should be added to the objective function of problém (26)x r — ||«||. Here the
/y, norm measures the number of nonzero elements within a vector. Follow the conventional
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sparse optimization strategy [26], [27], we then relax the diffidglnorm to the convex,
norm, and consider the following problem instead

max 1 — E oy

qeQ

st.r>0, (m) >0, m=1~M, VieL,
a>0,rg+a,2r,VqeQ, rn,>r, Yme Q° (27)

@, @, @). and [3)

This problem can be solved to a stationary solution by applying a modified N-MaxMin algo-
rithm. In particular, the block variables are w, and{r, p, a}. We observe that the updating
procedures fom andw are the same as i (110) arid(11). To updatep, o}, we can apply

the ADMM algorithm developed in Sec._ 3-C for problem](19) with a few minor modifications
(omitted here due to space limitations).

5. SMULATION RESULTS

In this section, we report some numerical results on the performance of the proposed
algorithms as applied to a network with 57 BSs and 11 network routers. We have tested both the
the efficacy and the efficiency of the proposed algorithms. The topology and the connectivity
of this network are shown in Figl 2. For the backhaul links of this network, a fixed capacity
is assumed, and is same in both directions. These link capacities are given as follows:

« links between routers and those between gateway BSs and the routers: 1 (Gnats/s);

« 1-hop to the gateways: 100 (Mnats/s);

« 2-hop to the gateways: [10,50] (Mnats/s);

« 3-hop to the gateways: [2,5] (Mnats/s);

« More than 4-hop to the gateways: 0 (nats/s).

The number of subchannels 1§ = 3 and each subchannel hasMHz bandwidth. The
power budget for each BS is chosen equallyjby p,, V s € B, ando? = 1, V d € U.
The wireless links follow the Rayleigh distribution with N (0, (200/dist)?), wheredist is
the distance between BS and the corresponding user. The source (destination) node of each
commodity is randomly selected from network routers (mobile users), and all simulation results
are averaged ove00 randomly selected end-to-end commodity pairs. Below we refer to one
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Fig. 2. The considered network consists of 57 BSs and 11 routerd.]Fig. 2 (a) plots the locations and the connectivity of all the
BSs. Here, the solid triangles denote BSs, which only connect to other BSs, and the hollow triangles denote the gateway BSs

that are connected to routers and other BSs.[Big. 2 (b) plots the connections between BSs and routers, which are displayed in
the upper part of the graph.

10 : T .
—©— N-MaxMin Algorithm
—&— Greedy Approach
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@
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=
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# of commodities

Fig. 3. The minimum rate achieved by N-MaxMin algorithm an& tiwo heuristic algorithms for different number of
commodities. We havg = 20dB.

round of the N-MaxMin iteration as aouter iteration, and one round of Algorithm 1 for
solving (r, p) as aninner iteration.

In the first experiment, we assume that all mobile users can be served by BSs 30ithin
meters and are interfered by all BSs. For this problem, the parameters of N-MaxMin algorithm
are set to bep; = 0.1 and p, = 0.001; the termination criterion is

(F+D 4 D) — (p0) 4 50)
OO
max{ | Criy, — Eihalloo: DPh)” = (D) [} < 5 x 107 (28)

<1073
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where(-)? represents elementwise square operation.

For comparison purpose, the following two heuristic algorithms are considered.

« Heuristic 1 (greedy approach):
We assume that each mobile user is served by a single BS on a specific frequency tone.
For each user, we pick the BS and channel pair that has the strongest channel as its serving
BS and channel. After BS-user association is determined, each BS uniformly allocates its
power budget to the available frequency tones as well as to the served users on each tone.
With the obtained power allocation and BS-user association, the capacity of all wireless
links are available and fixed, so the minimum rate of all commodities can be maximized
by solving a multi-commaodity routing problem (which is essentially problelm (6) with only
backhaul links and network routers).

« Heuristic 2 (orthogonal wireless transmission):
For the second heuristic algorithm, each BS uniformly allocates its power budget to each
frequency tone. To obtain a tractable problem formulation, we further assume that each
active wireless link is interference free. By doing this each wireless link rate constraints of
problem [6) now becomes convex. To impose this interference free constraint, additional
variabless, € {0,1}, VI € £ are introduced, wherg, = 1 if wireless link [ is active,
otherwise; = 0. In this way, there is no interference on wireless lirik >, ;) 6, = 1.
To summarize, we solve the following optimization problem:

max 7

st.rm>r, m(m) >0, m=1~M, VIeL
M

Zrl(m)§5l10g< ‘h| /K),vzz(s,d,k)eﬁwl
d

m=1

Z Bn=1, B €{0,1}, Vi,ne L, (29)

nel(l

@ and [5)

Since the integer constraints di;, | vV [ € £*'} are also intractable, we relax it to
B = [0, 1]. In this way the problem becomes a large-scale LP, whose solution represents
an upper bound value of problein {29).
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In Fig.[3, we show the minimum rate performance of different algorithms wher20dB
and M =5 ~ 30. We observe that the minimum rate achieved by the N-MaxMin algorithm is
more than twice of those achieved by the heuristic algorithms.

In the second set of numerical experiments, we evaluate the proposed N-MaxMin algorithm
using different number of commodity pairs and different power budgets at the BSs. Here we
use the same settings as in the previous experiment, except that all mobile users are interfered
by the BSs within a distance 800 meters, and that we spt = 0.005 (resp.p, = 0.001) when
p = 10 dB (resp.p = 20 dB). The minimum rate performance for the N-MaxMin algorithm and
the required number of inner iterations are plotted in Eig. 4. Due to the fact that the obtained
{r,p} is far from the stationary solution in the first few outer iterations, there is no need to
complete Algorithm 1 at the very beginning. Hence, we limit the number of inner iterations
to be no more than00 for the first5 outer iterations. After the early termination of the inner
Algorithm 1, we use the obtaingal to updateu andw by (10) and [(Il1), respectively.

In Fig. [4(a)—(b), we see that when= 10 dB, the minimum rate converges at about the
10th outer iteration when the number of commodities is uB@pwhile less tharb00 inner
iterations are needed per outer iteration. Moreover, afterl tiie outer iteration, the number
of inner ADMM iterations reaches below00. In Fig.[4(c)—(d), the case with = 20dB is
considered. Clearly the required number of outer iterations is slightly more than that in the
case ofp = 10dB, since the objective value and the feasible set are both larger. However, in
all cases the algorithm still converges fairly quickly.

In the last set of numerical experiments, we demonstrate how parallel implementation can
speed up Algorithm 1 considerably. To illustrate the benefit of parallelization, we consider a
larger network (see Fidl 5 (b)) which is derived by merging two identical networks shown in
Fig.[2 (a). The new network consists of 126 nodes (12 network routers and 114 BSs).

For simplicity, we removed all the wireless links, so constraiits (2) &hd (4) of prolilem (6)
are absent. This reduces probldm (6) to a network flow problem (a very large linear program).
We implement Algorithm 1 using the Open MPI package, and compare its efficiency with the
commercial LP solver, Gurobi [32]. For the Open MPI implementation, we use 4 computation
cores for each basic BS set as illustrated in [Fig. 5 (a), and use 1 additional computation core for
all the network routers shown in Figl. 5 (b). Since we have two identical subnetworks (connected

by a common set of routers), we have in total 9 computation cores. We chpesé.01 and
let the BSs serve as the destination nodes for commaodities. [Table IV compares the computation
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Fig. 4. The minimum rate performance and the required number of iterations for the proposed N-MaxMin algorithm. In
[(@)(b)] p = 10dB and in [(c)(d)]p = 20dB. In [(a)(c)], the obtained minimum rate versus the iterations of N-MaxMin is
plotted. In [(b)(d)], the required number of inner ADMM iterations is plotted against the iteration for the outer N-MaxMin
algorithm.

time required for different implementation of Algorithm 1 and that of Gurobi. We observe that
parallel implementation of Algorithm 1 leads to more than 5 fold improvement in computation
time computed on SunFire X4600 server with AMD Opteron 8356 2.3GHz CPUs. We also
note that when the problem size increases, the performance of Gurobi becomes worse than
that achieved by the parallel implementation of Algorithm 1. Thus, the proposed algorithm

(implemented in parallel) appears to scale nicely to large problem sizes.

6. CONCLUDING REMARKS

In this paper, we have considered the joint backhaul traffic engineering and interference
management problem for a SD-RAN. In the considered problem, the resources in both the
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Fig. 5. The considered network consists of 114 BSs and 12 routers. Each computation core is responsible for one group of
nodes shown in the figure. Figl 5 (a) plots the locations and the connectivity of a single basic BS set (consists of 57 BSs).
The solid triangles denote the BSs, which only connect to other BSs, and the hollow triangles denote the BSs serving the
gateways that are connected to routers and other BSd]Fig. 5 (b) displays the connections between the BSs and routers.

Com#:nc())fdities 50 100 200 300
(Szgnjegsti)al) 104 | 203 | 473 | 853
(TFi,r;r‘;”(;)) 020 | 037 | 075 | 1.10
(T(';TJreoésg 020 | 064 | 165 | 251
v | Lax10 | 2.0¢10' | 5.8x10 | 8.7x10"
o 20101 | 42x10" | 8.4x10¢ | 1.3x10°

TABLE IV
COMPARISON OF COMPUTATION TIME USED BY DIFFERENT IMPLEMENTATIONS OALGORITHM 1 FOR THE ROUTING
ONLY PROBLEM. THE SIZE OF THE PROBLEMS SOLVED ARE SPECIFIED USING A RANGE OF METRIEBSOTAL NUMBER OF
COMMODITIES, VARIABLES AND CONSTRAINTS).

fixed backhaul links and the wireless radio access links are optimized. Although the problem
is nonconvex, large-scale, and the optimization variables are coupled in various constraints, our
proposed algorithm is capable of efficiently computing a high-quality solution in a distributed
manner. Key to the efficiency of the proposed algorithm is the use of the well-known rate-
MSE relationship, which helps transform the original problem into a form that is amendable
to alternating optimization. In each iteration of the algorithm, two separate subproblems are
solved, one admits a closed-form solution, while the other can be solved efficiently by using
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the ADMM algorithm. The proposed algorithm is scalable to large networks since all its
steps can be computed in closed-form independently and in parallel across all nodes of the
network. Simulation results show that the proposed algorithm significantly outperforms heuristic
algorithms in terms of the achieved min-rate. As a future work, we plan to investigate the use
of stochastic WMMSE algorithnm [33] to reduce the amount of channel state information.

APPENDIX
A. Proof of Theorem 1t

This proof follows a similar argument as in_[25], so here we only provide the main steps
of the proof. For the following discussion, we denote the KKT solutions of prob[ém (6) as
{r*,p*;6*,0", ", k*} where §*, 0%, ¢*, and k* respectively denotes the corresponding La-
grangian dual variables for the nonnegativeness constréints 0, r,, > r, r(m) > 0 |
leL,m=1~ M}, as well as{(@), (2)}, (4) and [(b). For probleni18), the KKT solutions
are similarly denoted a&t, p, i, w; 8, 0, €, &}, whered now is the Lagrangian dual variables
for constraints[{ll) and {9).

Step 1: If x* £ {r* p*;6*,0%, €, k*} is an arbitrary KKT solution of problem (@),

~

{t,p,0,w: 48,0, ¢ &} chosen as
y* = {I'*, p*7 u<p*>7 W(p*)7 6*7 0*7 6*7 K'*}

is also a KKT solution of problem (8). The converse statement is also true. Here u(p*)
and w(p*) are the u and w obtained by (10) and (1) for a given p*.

Since some of the constraints of problem (6) and probleém (8) are the samd,li.€l] (1), (4),
and [3), the corresponding feasibility and the complementary slackness conditions of these
constraints are of the same form for both problems. Hence; dan satisfy these constraints
for problem [6),y* can satisfy those of problenil(8). Hence, we should only consider the
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remaining KKT conditions given below. For problefd (6), we have

=2+ Y Vg Ta(p) =0, ViI=(s,d k) € £, (30a)
n=(s',d',k)e€l(s,d,k)
M
Y o =1, (30b)
=1
55 4 K3 (m) — kP (m) =0, m =1~ M, (30c)
— 0 + Z K" (m) — Z K (m)=0,VveV, m=1~ M, (30d)
v:l€ln(v) v:leOut(v)
M
0<6f Lm(p*)—> ri(m)>0,VieL™ (30e)
m=1

For problem|[(8), we have

— 2P+ 0V i En(ily, b, ) = 0, (31a)
n=(s',d' k)€l (s,d,k)
éSSVUlEl(/ah UAJl, IA)) = 07 (31b)
0% N, Ey(tig, 0, D) = 0, V1 = (s,d, k) € L, (31c)
~ M ~
0+ bm=1, (31d)
m=1
O + K5 (m) — ZP (m) =0, m =1~ M, (31e)
o(m) =0+ D &(m)— Y &(m)=0,VeeV, m=1~M  (31f)
v:l€ln(v) v:leOut(v)
R M
0 <6, L Ef(i, 1y, p)— Y #(m) >0, Vie L™ (31g)
m=1

Obviously, by comparind (306)(@30d) and[(31dy(31f), we can conclude that* can satisfy

(B1d)»@1If). For [31b) and(31c), by the optimality ¢f {10) andl(11), they are also trug*for
Moreover, sincer;(p*) = Ej(w(p*), wi(p*), p*), it follows from Lemma[l that[(31g) can be

satisfied withy*.
For the last KKT condition of probleni(8), i.e[, (31a), let us first split the Lagrange multiplier
6" into two subsets

AL >0, VieL), A2{|6 =0 ViecL)
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Then by the same argument as Proposition Lin [25],](31a) is also satisfigtl Bje reverse
statement of step 1 can be argued similarly.

Step 2: Every global optimal solution of problem (€) corresponds to a global optimal
solution of problem (@), and they achieve the same objective value,

To show this step, we recall that the network is connected and the link capacities are positive.
It follows that the optimal value* must be strictly greater than 0. Hence, the corresponding
Lagrangian dual variablé* is always0 by the complementarity condition, and the KKT
condition [30b) become§ "_ 6% = 1. The argument is the same for so > 4, = 1.
With this fact, we can use the proof of Proposition 3[in/[25] to show the desired result.

Step 3: The proposed alternating optimization method can converge to the KKT
solutions of problem (@).

Given the results of previous two steps and by Theorem 2 df [25], the final convergence

result is proved. O

B. Derivation of Updating Steps of Algorithm 1

In this section, we go over Algorithm 1 step by step and explain each of its update procedure.
For notational simplicity, we ignore the superscript indices.

1) Solving Step 3 for Algorithm 1: In this step, probleni(22) is solved to upddtie p}.
This problem can be further decomposed over the variaples,,r,(m) | m =1~ M, VI €
L£*} andp U {r(m)|m=1~ M, VIe L},

The first subblock only has to do with the wired links. A closer look at Step 3 of Algorithm
1 reveals that its optimization problem can be solved via two completely independent subprob-
lems, one for variable$r,r,, | m =1 ~ M} and the other fo{r;(m) |m =1~ M,V €

£}, In the following we consider the two problems separately.
(i) Subproblem for {r,r,, | m = 1 ~ M}: This step updates the current minimum flow
rate among all commodities, and it can be mathematically expressed as

2 M Sem)\ 2 D(m)\ 2
max - — 2 f’—r—i —&Z f’i(m)—rm—gm + f’ﬁ(m)—rm—am
2 2 Pl 2 P1 P1

m=1

st.rp >r, m=1~DM, r>0. (32)

When r is fixed, the optimal{r* }*_, of problem [32) can be obtained by the first-order

m=1
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optimality condition as follows

1 sam) 4 D A*
o= = fﬂm)wﬁ(m)—; M) =1~ M, (33)
2 P1 P1

where{\r, > 0} are the optimal Lagrange dual variables for constrajnjs > r}. Due to the
complementarity condition, and the fact thgt is an increasing function of,, it follows that
Ar, > 0 only if the equality holds for*, > r. Thus, we can conclude

re =max {7, = [ #50m) 4 pD0m) —+ ) (34)
2 P1

After plugging the obtained?, back to the objective function of problein (32), the gradient of
the objective function with respect tois given by

1 5 1 5om) 4 §D(m)
il S I 92 E : _ 2| pStm) 4 aD(m) _ Zm T Em
3 + 1 <T Pl) p1LyT+ [T 5 <7"m + 7, o

S( m) D(rn)
i (fs( m) | pD0m)_ oy, :16 )S?‘

(35)
Notice that the obtained derivative is a decreasing functionrfor 0. Thus, the optimal
r* =0 if (85) is no more than 0 with- = 0. Otherwise,* can be obtained through bisection
procedure over > 0 such that[(35) equals 0.
(i) Subproblem for {r;(m) | m =1~ M, ¥V [ € L"}: It turns out that for this subset
of variables, the corresponding updating procedure can be performed indepemsentsch
link. For each linkl = (s,d) € L£", the following optimization problem is solved

min i [(f;’(m) —ry(m) — 5f(m))2 + (ﬁd(m) —ri(m) — @)1

m=1 P
M

s.t. Zrl(m) <y, r(m) >0, m=1~ M. (36)
m=1

The optimal solution}(m), m = 1 ~ M, of problem [[(36) can be obtained by the first-order
optimality condition

S * +
ri(m)* = L (ff(m) + 7+ (m) — 7 (m) + d(m) _ A—l) >0, m=1~M (37)

2 P1 2

where \ is the optimal Lagrange dual variable of the capacity constraint onlliklsing the
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complementarity condition and the fact that the left hand side of the capacity constraint is a
decreasing function of;, it follows that A7 = 0 is true only if

L 0 m) +6i(m)\
mZ:l§<rl(m)—|—rl(m)— p ) < Q.

Otherwise,\; should be chosen such that the capacity constraint is active, and;toen be
obtained by bisection procedure over > 0.

(iii) Subproblem for puU{r;(m) |m =1~ M, V1 € L*'}: The rest of variables are related
only to the wireless links, and they are in fact decoupled across the wireless links. To be more
specific, the problem for the wireless lik= (s,d, k) € £L*! is shown below

win 2 [(fﬂm) —n(m)—M)2+ (#ttm) = o) - & “’”)2]

2 — P1 P1

P2 0\
+ E Z (pS’s’ - pgs,d’s’ - _")

—(a! P2
n=(s',d",k)eI(l)
s.t.r(m) >0, m=1~M (38)

M
Z ri(m) < e+ Cz,lpzs,ds - Z C3Jn‘pld€s,d’s’|2'
m=1 n=(s',d" ,k)el(l)

The optimal solution of this problen{y;(m), pk: 4 | m =1~ M, (s',d' k) € I()}, can be
obtained by the first-order conditions below

1 s d *\ T
ri(m) =3 <f=f(m) T () - A E f)l m) + Al) ,m=1~M,  (39)
1
k Ou *
ok p2(Pgs — 55 ) + Afcay
= 39b
pds,ds Do + 2)\?037” ( )
Eo_ O

p]df:;:dlsl = M \V/ n = (S/, dl, k) € I(l), n # l (39C)

P2+ 2N e um
where )\ is the optimal Lagrange dual variable for the rate-MSE constraint.

After plugging the obtained optimal solutiods139) into the rate-MSE constraint of problem
(38), it can be observed that the left hand side of the const@@i{il rf(m), is a decreasing
function of \;. Furthermore, taking the gradient of the right hand side of the rate-MSE constraint
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with respect to\r gives

d(ery + C2,lp§§,ds - Zn:(s’,d’,k)el(l) 0371n|p§§,d's/|2)

ON;

kx Ou 2 k O1n 2
1 | (c20 — 2csulpg; — 71) 2¢3,n(Pgs — )
P2 (1 + p%)‘l*c&ll) n=(s',d' k) eI\ {1} <1 + ,%Az*cs,ln)

where the nonnegativity is due to the fact that, > 0, V n. Hence, the right hand side of
the rate-MSE constraint is an increasing functiom\pf> 0. By the complementarity condition
and the monotonicity of the rate-MSE constraint, the valugjofan be computed as follows:
1) \; = 0 if the rate-MSE constraint is satisfied witi = 0; 2) otherwise, perform a bisection
search to obtain the optimaf. For the latter case, the search will terminate when the rate-MSE
constraint is active, i.e., when equality holds true.

2) Solving Step 4 for Algorithm 1: The corresponding problem to upddte p}, i.e., step
4 of Algorithm 1, can be decomposed into two parts. The first part has to do with the flow rate
conservation constraint with optimization varialileand the second part has to do wiih

The first part can again be separated into two independent subproblems, oratbanother
for the rest of the variables i

(i) Subproblem for 7: The subproblem for variablé is given by the following easy
unconstraint quadratic optimization problem

; 5\’ 1426
argmaxf—& r—r——| =r+ i . (41)
2 2 2p1

(i) Subproblem for {75™., 75 #5(m),#4(m)}: In this subproblem, the rest of the vari-
ables inr are updated, subject to the conservation constraints of flow rate. As we have discussed
before, the introduction of the auxiliary local optimization variables, ile.] (15), make this
subproblem decoupled over each nogde= V and commoditym. As such, problem[(23)
decomposes into a series of simpler problems, one for each (uplev)

- w0 5 (m)\* N 5o\
min > 7 (m) —ri(m) = =——= )+ Lis@m),pmyy (V) | 7y = 7 — ==

1EIN(v)UOut (v) p1 P1

st Y m) + Lsemp (o), = > (m) + Ly (0)7, (42)

leIn(v) leOut(v)

Since problem[{42) has only one equality constraint, it admits a closed-form solution. In
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particular, let us denote the optimal dual Lagrangian variable’&s:). Using the first-order
optimality condition, the optimal solution fof (#2) is given by

d7 (m) %
ﬁ%@z{nmﬂ+ﬂl — X (m), 1€ Out(v) (43)
ri(m) + IT + Ax(m), [ €lIn(v)
and
8y« v
72;;::{7»#5? Ni(m), v e D(m) )
Tm+ 22+ X5(m), veS(m)
where
. B 5”(m)) < o7 (m)> ( O )
A = r l — r — T + —
*(m) [Eg&»<mm+»pl lg%)l@n+ )T -+m

X (Lipgmyy (v) — 1{S(m)}(v))] (Itn(v) U Out(v)] + sy, pemy ()

(iii) Subproblem for p: The remaining part is for optimization varialjpewith power budget
constraints, and this updating procedure can be decoupled over each BS. kot BSthe
updating rule is,

K ‘91 2
. k k n
min 3 (b b )

k=1 d:i=(s,d,k)eLw!
n=(s’,d’ ,k)eI(l)

5.6, Z > Ik < b (45)

k=1 d:l=(s,d,k)eLv!

By denoting the optimal Lagrange dual variable for the power constraint as 0 and the
optimal solution of problen(45) a&"* | (s,d, k) € £*'}, the first-order optimality condition
can be expressed as

Ot d k), (s,d,k)

ke (st R)El(s.d,k) Pligras + s
. [1(s d, k)| + X5

k=1~K. (46)

Since the following sum

Z S kP

k=1 d:l=(s,d,k)eLw!

is a decreasing function of; and the complementarity condition, it follows th&t = 0 if the
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corresponding constraint is already satisfied

K
YooY kP <.

k=1 d:l=(s,d,k)eLw!

Otherwise,\} can be chosen via a bisection search to ensure the power budget constraint is
active.

To summarize, all the steps in Algorithm 1 (including the updating of the Lagrange dual
variables, [(2Z4)) can be efficiently computed.
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