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MIN-MAX BIAS ROBUST REGRESSION
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This paper considers the problem of minimizing the maximum asymp-
totic bias of regression estimates over e-contamination neighborhoods for the
joint distribution of the response and carriers. Two classes of estimates are

" treated: (i) M-estimates with bounded function p applied to the scaled
residuals, using a very general class of scale estimates, and (ii) bounded
influence function type generalized M-estimates. Estimates in the first class
are obtained as the solution of a minimization problem, while estimates in the
second class are specified by an estimating equation. The first class of
M-estimates is sufficiently general to include both Huber Proposal 2 simulta-
neous estimates of regression coefficients and residuals scale, and
Rousseeuw—Yohai S-estimates of regression. It is shown than an S-estimate
based on a jump-function type p solves the min-max bias problem for the
class of M-estimates with very general scale. This estimate is obtained by the
minimization of the a-quantile of the squared residuals, where a = a(¢)
depends on the fraction of contamination e. When ¢ — 0.5, a(e) = 0.5 and
the min-max estimator approaches the least median of squared residuals
estimator introduced by Rousseeuw. For the bounded influence class of
GM-estimates, it is shown the “sign” type nonlinearity yields the min-max
estimate. This estimate coincides with the minimum gross-error sensitivity
GM-estimate. For p =1, the optimal GM-estimate is optimal among the
class of all equivariant regression estimates. The min-max S-estimator has a
breakdown point which is independent of the number of carriers p and tends
to 0.5 as ¢ increases to 0.5, but has a slow rate of convergence. The min-max
GM-estimate has the usual rate of convergence, but a breakdown point which
decreases to zero with increasing p. Finally, we compare the min-max biases
for both types of estimates, for the case where the nominal model is multi-
variate normal.

1. Introduction. In spite of the considerable existing literature on robust-
ness, there is relatively little published work on global robustness. Huber’s
(1964) min-max variance approach is based on neighborhoods which are not
global by virtue of excluding asymmetric distributions. The shrinking neighbor-
hood approach introduced by Jaeckel (1971) and used also by Bickel (1984) and
Beran (1977a, b), among others, attempts to deal with asymmetry by putting
bias on the same asymptotic footing as variance. But the shrinking neighborhood
approach could hardly be called global. Approaches based on the influence curve,
such as optimal bounded influence regression [Hampel (1974), Krasker (1980),
Krasker and Welsch (1982) and Huber (1983)] inherit the local or infinitesimal
aspect of the influence curve itself.
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An important measure of the global robustness of an estimate is given by its
maximum asymptotic bias over an e-contamination neighborhood of the target
model. Naturally, such quantity will increase with & and eventually will become
infinite. The smallest values of &, £*, for which the maximum asymptotic bias is
infinite is called the breakdown point of the estimate. More formal definitions of
these concepts are given in Section 2.1.

It seems that the main global approach to robustness in recent years has been
centered around the construction of high breakdown point estimates, particu-
larly for multivariate problems where this approach presents real challenges. See,
for example, Donoho (1982), Donoho and Huber (1983), Stahel (1981), Rousseeuw
(1984), Rousseeuw and Yohai (1984), Yohai (1987) and Yohai and Zamar (1988).
In the last two papers, the authors construct regression estimators which have
both high breakdown points and high efficiency.

The breakdown point approach is highly attractive for a number of reasons,
not the least of which is the transparency of the concept and the ease with which
it can be communicated to applied statisticians and scientists. On the other
hand, one nonetheless wishes to have global optimality theory of robustness
which emphasizes bias control for fractions of contamination smaller than the
breakdown point. Furthermore, bias is itself a very transparent concept.

Along these lines we recall that Huber (1964) established the following result
in his by now classic paper: The sample median minimizes the maximum
asymptotic bias among all translation equivariant estimators of location, the
maximum being over epsilon contaminated distributions (and also Lévy neigh-
borhoods). It seems that this approach to global robustness, namely the con-
struction of min-max bias robust estimators has been essentially neglected until
quite recently, and this problem is quite clearly articulated in Hampel, Ronchetti,
Rousseeuw and Stahel (1986) (see lower left entry of Table 2, page 176). Among
the recent work in this area, we know of the following: Donoho and Liu (1988),
who establish attractive bias robustness properties of minimum distance estima-
tors, Martin and Zamar (1987a), who obtain min-max bias robust estimates of
scale, and Martin and Zamar (1987b), who construct min-max bias robust
estimates of location, subject to an efficiency constraint at the nominal model.
See also, Zamar (1985) for min-max bias orthogonal regression M-estimates.

In this paper, we construct min-max bias robust regression estimates for two
different classes of estimates: (i) M-estimates based on bounded p functions and
general scale (i.e., general scale estimate for residuals) and (ii) GM-estimates
having bounded influence curves. In the first case, the estimates are defined by a
minimization problem, whereas in the second case the estimates are defined by
an estimating equation.

It turns out that S-estimators introduced by Rousseeuw and Yohai (1984) can
be regarded as special cases of M-estimates with general scale, as can Huber
Proposal 2 M-estimates for regression and residuals scale. In fact, our min-max
bias M-estimate is just that, an S-estimate.

The paper is organized in the following way. Section 2 introduces the e-con-
taminated model for regression, M-estimates of scale based on bounded,
symmetric functions p and the related S-estimates for regression. Section 3
establishes an expression for the maximum bias of an S-estimate. We also
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display the special form this expression takes for nominal multivariate normal
models and also the special form obtained for jump functions p,, which take on
the values 0-1, with jumps at +c. Section 4 introduces the class of M-estimates
with general scale, constructs a lower bound A, for the maximum bias for fixed p
and a lower bound A* for A, as p ranges over a broad class of loss functions. It is
then shown that an S-estimate achieves A*. Section 5 constructs min-max bias
GM-estimates. These estimates are based on a “sign” function type nonlinearity
in the estimating equations, which corresponds to a weighted L, regression, with
weights.inversely proportional to the norm of the vector of carriers. Throughout
Sections 2-5, we have, for simplicity, considered the case where the intercept is
known. In Section 6 we indicate how our results may be extended to the case
when the intercept is unknown and must be estimated along with the slope
parameters. Finally, Section 7 provides a comparison of the biases of min-max
S-estimates and GM-estimates for the case where the nominal model is multi-
variate normal.

2. General setup and S-estimates.

2.1. The target model and maximum asymptotic bias. We assume the target
model is the linear model

y=x8 + u,

where x = (x, x5,..., x,) is a random vector in R?, 8, = (8yy,..., b,,) are the
true regression parameters and the error u is a random variable independent of
x. Let F, be the nominal distribution function of u and G, the nominal
distribution function of x. Then the nominal distribution function H,, of (y,x) is

X X
(2.1) Hyy,x) = [ - [ Fyy - s) dGqs).

- — Q0
We assume that G, is elliptical about the origin, with scatter matrix A.
Correspondingly, we work with zero intercept until Section 6, which discusses
how our results can be extended to deal with an intercept.

Let T be an R ? valued functional defined on a (“large”) subset of the space of
distribution functions H on R #*1. This subset is assumed to include all empirical
distribution functions H,, corresponding to a sample (¥, x,),...,(,,X,) of size
n from H. Then T, = T(H,) is an estimate of ,.

It is further assumed that T is regression equivariant, i.e., if § = y + x’b and
& = CTx for some full rank p X p matrix C, then T(H) = C™'[T(H) + b],
where H is the distribution of (#,%). Correspondingly, the transformed model
parameter is §, = C7'[8, + b].

We define the asymptotic bias b, = b,(T, H) of T at H so that it is invariant
under regression equivariant transformations,

(2-2) by(T, H) = (T(H) - 90)/A(T(H) - 00)-
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Therefore, we can assume without loss of generality, that G, is spherical, i.e.,
A is the identity matrix, and that 8, = 0. Accordingly, the nominal model (2.1)
becomes

(23) Hy(yx) = [ - [7 Ff) dGyllisl)

and, correspondingly, the asymptotic bias of T at H is given by the Euclidean
norm of T,
(24) (T, H) =|T(H)|.

If the operator T is continuous at H, then T(H) is the asymptotic value of the
estimate when the underlying distribution of the sample is H. It is assumed that
T is asymptotically unbiased at the nominal model H,,

(2.5) T(H,) = 0.

We will work the e-contamination neighborhood of the fixed nominal distribu-
tion H,,
(2.6) V,={H: H=(1-¢)H, + eH*},

where H* is any arbitrary distribution on R ?*!, The maximum asymptotic bias
of T over V, is

@.7) B(T) = sup{|T(H)|: HE V).
Finally the asymptotic breakdown point of T [see Hampel (1971)] is defined as
¢* = inf{e: B(T) = o0}.

2.2. M-estimates of scale. Let p be a real-valued function on R' satisfying
the following assumptions:

Al. (i) Symmetric and nondecreasing on [0, o0), with p(0) = 0.
(ii) Bounded, with lim, _, , p(u) = 1.
(iii) p has only a finite number of discontinuities.

Let 0 < b < 1. Then given a distribution function F, the M-scale functional is
defined [see Huber (1981)] as

(2.8) s(F) = inf{s > 0: EFp(%) < b}.

Given a sample u = (u,, ..., u,) from F, the corresponding M-estimate of scale
is obtained from (2.8) by replacing F by the empirical distribution F, of u.
It is easy to prove that

(2.9) s(F)>0 iff Po(u=0)<1-5b.
If this condition is satisfied with s(F) finite and p is continuous, we can replace
the inequality by equality in (2.8).

It can be shown that the breakdown point due to implosion, i.e., due to
contamination at the origin which results in s(F)=0, is 1 — b and the
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breakdown point due to explosion, i.e., due to contamination tending to infinity
which results in s(F) = oo, is b. The overall breakdown point is then ¢* =
min{b,1 — b}. For details, see Huber (1981).

In the case where one is interested in estimating scale for its own sake, one
usually forces consistency at a nominal model K, by setting b = E p(u). This
issue turns out to be irrelevant for our present purposes, since as we see in the
next section, we will only be interested in obtaining a smallest M-estimate of
scale with respect to the regression parameter 0 in a particular parametrization
of the scale functional. The choice of b will therefore remain at our disposal in
obtaining a min-max bias regression estimate.

2.3. S-estimators of regression for general H. Let (y,x) € R?*! be a ran-
dom vector with arbitrary distribution function H, e.g., H could be the empirical
distribution function for (y,x). For any 8 € R let F? be the distribution of the
residuals

(2.10) r(0) =y — x0.
Let s(F') be any M-estimate of scale as defined in Section 2.2 and, to emphasize
the independent roles of 8 and H in determining F?, let s(8, H) = s(F?).

A functional T(H) is said to be an S-estimate functional of regression [see
Rousseeuw and Yohai (1984)] if there exists a sequence 8, € R ? such that

(2.11) lim 6, = T(H)

and

(2.12) lim s(8,, H) = inf s(8, H).
n— o0 dcR?

With regard to the existence of such a sequence, we assert:
If p satisfies A1 and H satisfies

(2.13) sup Py(x0=0) <1—b,
ney=1

then there exist some sequence 8, and T(H) satisfying (2.11)
and (2.12).

This is a consequence of the following lemma.

LEMMA 2.1.  Suppose that p satisfies Al and H satisfies (2.13). Then ||8,|| = oo
implies lim, ,  s(8,, H) = o.

Proor. Suppose that ||0,]] = oo and let 0¥ = 8,//|0,]. Without loss of gener-
ality we can assume that 6* — 0* with ||8*|| = 1. To prove the lemma it is
enough to show that for all s > 0,

Eu{o(ly - x8,1/5)) > b,
for sufficiently large n. Indeed, we can write

EH{P([}' - X'On]/s)} = EH{P([}’ — 118,/1x"8 ]/S)I(x’e,‘f #0)}a
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where I, is the indicator of the set A. Since it is immediate to prove that
P((y = 118,]x8,%) /) xgx 20y = Lizpr 20y aS. H,, the lemma follows from the
dominated convergence theorem and (2.13). O

It is easy to prove that if Al is satisfied and p is continuous, then (2.11) and
(2.13) will imply
(2.14) s(T(H), H) = min{s(8, H): 6 € R?}.

However, in general, (2.14) may not be true.

Observe that there may be more than one value T(H) satisfying (2.11) and
(2.12). In that case, the choice of T(H) is arbitrary.

It is easy to verify that S-estimates of regression are regression equivariant, as
defined in Section 2.1. Furthermore, under very general conditions, these esti-
mates are consistent and asymptotically normal [see Yohai and Zamar (1988)].

3. Maximum bias of S-estimates.

3.1. Maximum bias of general S-estimates. Assume now the target model
H, is given by (2.3). We will need the following assumptions.

A2. F, is absolutely continuous with density f, which is symmetric, continu-
ous and strictly decreasing for u > 0.

A3. G, is spherical and F; (x0=0)=0V 6 € R” with § + 0.

Under A3, it is easy to see that the distribution of x’8 depends only on ||0]|.
Thus we set

(3.1) &(s, 18]) = EHop(y _sxle).

The following lemma is a key result.

LeMMA 3.1.  Assume that p satisfies Al, F, satisfies A2 and G, satisfies A3.
Then g is continuous, strictly increasing with respect to ||0|| and strictly decreas-
ing in s for s > 0.

Proor. Continuity of g follows from Al(iii) and A2: Since p is continuous
a.s. [F;], the expectation of p(y — x'0) with respect to F, is a continuous
function of x'8 [see for example Billingsley (1968), page 181]. Let s, > s,. Since

P((y - X’a)/sl) 2 P((y - X'O)/S2) a.s. [Ho],
we have
EHOP((y - x8)/s,) = EHOP((y - x'8)/s,).

In addition, we have strict inequality unless (y — x'0)/s, = (y — x'8)/s, a.s.
[H,], that is unless y — x’0 = 0 a.s. [H,]. The last is impossible because of
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independence of y and x. By A3, the distribution of x’a is the same for any unit
vector a. Thus the distribution of x’8 is the same as that of |8}z, where z is a
random variable distributed as x’a, ||a|| = 1. Assume without loss of generality
that s = 1 and let ¢, > ¢, > 0. Since y is symmetric about 0 and independent of
2, the conditional expectation g(¢, z) = E[p(y — tz)|z] is a nondecreasing func-
tion of |¢|. Hence

E{g(ty,2) —8(t,2)} 20

and equality holds only if {2z = £,z as., that is only if z = 0 a.s. The last is
impossible because of A3. [

From Lemma 3.1 it is immediate that an S-estimate T(H) is Fisher consistent
at the target model H,.

Let g7 (-, ||8])) be the inverse of g with respect to s and g; (s, - ) the inverse
of g with respect to ||8]. The following theorem gives the maximum bias of an
S-estimate.

THEOREM 3.1. Under the same assumptions as in Lemma 3.1, the maximum
bias B(T) of an S-estimate T over the contamination neighborhood V, is given

by
o b—¢ b ) .
(3.2) Q@%=g2%lh—eﬂy1—J # e < min(b,1 - 5),
0 if € > min(b,1 — b).

Therefore, the asymptotic breakdown point of T is ¢ = min(b,1 — b).

o (b b
=& & 1—8’0’1—8

and suppose that ¢ < min(d,1 — b). To prove that
(3.3) B(T) < ¢,

it is enough to show that for any H of the form H = (1 — e)H, + ¢eH*, ||8]] > ¢
implies 4

(3.4) s(0,H) > s(0, H).

Put s, = g7 (b — €)/(1 — ¢),0). Then by Lemma 3.1, ||8]| > ¢ implies that

Proor. Let

(35) g(s 181) > T—

Also by Lemma 3.1, there exists s, > s, such that

b
(3.6) &(sz, [181) > 1=
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Then
y—x0
o 222 = 0= 9o ) >
2

and, therefore, by definition of s(8, H) = s(F?) [see (2.8)], we have
(3.7) s, < s(0, H).
On the other hand,

. 0)= —.
(3.9) gs,0) = ——

Combining (3.8) and Lemma 3.1, we have for any H = (1 — ¢)H, + ¢H* and any
s > s,

EHp(%) <(1-¢)g(s,0) +e<(1—¢)g(s,0) +e=0.

Therefore, s > s(0, H) for all s > s, and so

(3.9) s, >s(0, H).
Thus (3.4) follows from (3.7) and (3.9), and so (3.3) holds. Now we will prove that
(3.10) B(T) > c.

Let ¢, be any positive number smaller than ¢ and let 8%} = ¢,. Let H* be the
distribution concentrated at the point mass (y,,x,) where x,, = A 0*, A, - o0
and y, = x/0*. Set H, = (1 — ¢)H, + e¢H*. In order to prove (3.10), it is enough
to show that

(3.11) sup |T(H,) | = e
n

Suppose (3.11) is not true. Then by passing to a subsequence, which we continue
to label H,, we have T(H,) = 0,, with

(3.12) lim 6,=4
and
(3.13) 1811 < 116%)| = c;.

It follows that
lim |y, — x,8| = lim A,(||6%)2 — 6*8) = co.
n— oo n-—>oo
Then since
Yo — X718,
G14)  Eyp| T = (1 - o 10D + oo 2 )

letting s < s; = g7 (b — £)/(1 — ¢),0) and using Lemma 3.1 gives
(y - x0,

y—x8,

lim Ey p

n— oo

) >(1-¢)g(s,0) +e> (1 —¢e)g(s,,0) +¢

b—¢
+e=b.
1—c¢

=(1-¢)
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This implies that
lim s(8,,H,) >s Vs<s
n—oo

and so we have
(3.15) lim s(8,, H,) > s,.

n— oo

On the other hand,
(1—e)g(s,¢)) < (1 —e)g(sy,c) =b
and by Lemma 3.1 we can find s, < s, such that
(1 —e)g(sy, ¢,) <b.

This gives
y — xle*
Ean ——;—‘—— = (1 — s)g(s2, 01) <b
2
and
(3.16) s(0*, H,) < s,.

Since (3.15) and (3.16) contradict the fact that T(H, ) = 8, minimizes s(-, H,) for
each n, we have established (3.10). In order to complete the proof it is enough to

show that if € tmin(b,1 — b), then

(8.17) gz‘l(gfl(b::,O) : )—*oo-

1 1—c¢
Let b < 0.5, so that min(b,1 — b) = b. Then we have

b—=¢
li Y ——,0| = limg;(8,0) =
i | 1=500) = Jmei 6.0 = o

i . _lb—eo b _ . b 3
e &\ T T T T s ST T T

and so

3.2. Maximum bias of S-estimates for (y,X) multivariate normal.
(y’ X) -~ N(O, Ip+1), then

g(s,y) = h((l + y2

where h(\) = Ep(Au), with u ~ N(0,1). Then
()

g\t y) = T

)1/2

/s),

and
g:'(s, 1) = ([sn ()" - 1) "

This gives the expression for squared bias,

R/ -e)
RH(b = 0)/(—¢))

2
1.

(3.18) BX(T) =

O

If z=
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3.3. Maximum bias of S-estimates when p is a jump function. Consider the
special family of jump functions p, (which satisfy Al),

0 if ju| <c,

(319) pw) - {}

if |u| = c.
Given a sample u = (u,,..., u,), the corresponding M-estimate of scale is given
by
1
sn(u) = _lul(n—[nb])’
c
where |u|), . .., |U], are the order statistics for the absolute values |y, ..., |u,].

For the choice p, the corresponding regression S-estimate minimizes the
absolute value of the (approximate) 1 — b quantile of the absolute values
lv; — x}08] of the residuals. Note that this regression S-estimate does not depend
on the choice of ¢ and so we henceforth set ¢ = 1.

When b = 0.5, s,(a) = |u|, ) is the median absolute value (MAYV) estimate
of scale. The corresponding S-estimate is identical to Rousseeuw’s (1984) least
median of squared residuals (LMS) regression estimate. (Minimization with
respect to 0 of a quantile of any monotone transformation of the absolute values
|v; — x.0] results in the same estimate.)

The following lemma gives the maximum bias of an S-estimate when p = p;.

LEMMA 3.2. Let T, be the S-estimate with jump function p, and right-hand
side b. Assume F, satisfies A2 and G, satisfies A3. Then

b

(i) B(T,) = GEO-lla—(b—e)/[za—e)])( 1—e )’
where
(3.20) G,(18])) = 1 — Eg Fo(t + x8) + E; Fy(—t + x0).

(ii) The following equation is valid:

1
(3.21) inf B(T,) = inf G;l(z(l - Fy(v)) + —-)
e<b<l—¢ F1/[2A - <t<oo I-e

Proor. In this case we have
g(s, 110]) = P(ly — x| = s)

= G,(l01)
and so ’
(3.22) g5 4(s,\) =G Y (N).
We also have
(3.23) £(s,0) = 2(1 — Fy(s)).

Using (3.20) and (3.23) in (3.2) gives (i). The result (ii) is obtained by substituting
t=F'1-(b-¢)/[2(1—g)in (). O
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Fi1g. 1. Maximal biases of T, for b= 0.85 and b = 0.15, with corresponding breakdown point
e* = 0.15.

In the case that (y, x) is multivariate normal, using (3.18) and the fact that for

P =P
h(A) = 2(1 - Q(i))
we get
\ (1 (b-e)/[20-¢)]))
o2 - [T R

where @ is the N(0,1) distribution function.

It is interesting to note from (3.2) that two distinct values of b give rise to any
specified breakdown point & € (0,0.5), namely, b=¢* and b =1 — ¢*. The
estimates T, for two such values of b have different maximal bias curves [i.e.,
plots of B(T,) versus ¢], both of which explode at ¢*. In Figure 1 we display two
such curves, with bias as a function of ¢ given by (3.24) for the values b = 0.15
and b = 0.85, which corresponds to a breakdown point &* = 0.15. The break-
down at &* = 0.15 is due to implosion for b = 0.85 and due to explosion for
b = 0.15 (cf. comments in Section 2.2).
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4. M-estimates with general scale.

4.1. Definition of M-estimates with general scale. Let p be a function
satisfying Al and let s(H) be a (very) general estimate of the residuals scale. For
example, the general scale functional s(H) may be determined simultaneously
with 0 or independently of 8. It is assumed that s(H) is regression invariant
(i.e., invariant under regression transformations # = y + x’b and ¥ = C”x) and
residuals scale equivariant (i.e., equivariant under residuals scale change & = au).
Furthermore, we will assume that s(H) has a breakdown point greater than ¢,
namely,

Ad. s, =inf{s(H): H= (1 —-¢)H, + eH*} >0,
s, =sup{s(H): H= (1 — ¢)H, + eH*} < o0.

Then an M-estimator T(H) of regression, with general scale, is determined by
solving the minimization problem

s(H)

Under the assumptions on s(H), T(H) is clearly regression equivariant.

If the infimum in (4.1) is attained, then it defines T(H), with the choice of
T(H) arbitrary in the case of nonuniqueness. If a value 8 which attains (4.1) does
not exist, then T(H) is defined by

— x
(4.1) iIngHp(y x )

(4.2) T(H) = lim 0,

where 0, satisfy

43 lim Eyp| | = ing By L
(43) nove HP s(H) | sers P s(H) |

Again, in the case of nonuniqueness, the choice of T(H) is arbitrary. It is easy to
check that S-estimates are special types of M-estimates with general scale [see
Rousseeuw and Yohai (1984)], as are Huber (1981) Proposal 2 simultaneous
M-estimates of regression and scale.

4.2. Lower bound for the minimax bias of M-estimators. Let g(s, ||8]]) be as
in (3.1) and put ;

[
(44) Afs) = g'(5.8(5,0) + T ),
4.5 A= inf A .
43 7 el )

The following lemma shows that A, is in fact a lower bound for the maximum
bias over V, of an M-estimate with general scale.

LEMMA 4.1. This proof follows closely the second part of the proof of
Theorem 3.1. Let T be an M-estimate with general scale. Assume p satisfies Al,



1620 R.D. MARTIN, V. J. YOHAI AND R. H. ZAMAR

F, satisfies A2, G, satisfies A3 and the scale s(H) satisfies A4. Then
B(T) = A,.

ProoF. Let B = B(T), suppose that B < A, and take y > 0 such that
(4.6) B<A, -y.
Also take § such that
n A,- 2 <lBls4,- 7.
Let H* be the distribution corresponding to a point mass at (y,,x,) where
¥, — x80=0and x, =0\, with A, » 0. Put H,= (1 — ¢)H, + ¢H} and
(4.8) 0* =T(H,).

If 8* is unbounded, (4.6) is contradicted and the theorem is proved. Assume 0*
is bounded and then we may also assume that 0* — 6*. By A4 we may assume
that s, = s(H,) = s > 0. According to (4.6) we have

(4.9) 107 < A, - v.
Let

Ln(0)=Ean(y_s /0).

n

Then by Lemma 3.1 we have

L(87) 2 (1= )Ego | + o

n

812 — 0x9
Anu |2 — 6, )

Sp

Since (4.7) and (4.9) imply
(18117 - 88)|

s

— 00,
n

we have
lim L, (8*) > (1 — e)EHop(%) te

=(1-¢)g(s,0) +e.
We also have

e

Lo(B) = (1 - &) Byp| >

) = (1 — e)g(sn, 6)

and then by Lemma 3.1 we have
lim L,(6) > (1 — ¢)g(s, 8).
Since L,(8*) < L,(#) we also have
(1-¢)g(s,0) +&< (1—¢)g(s,b).
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€
1—8)

Therefore, by Lemma 3.1 we have

161 = 57 5, £(5,0) +
=A,(s) 2 A,
and this contradicts (4.7). O
4.3. Optimality of S-estimates with jump function p. From now on it will be

convenient to show explicitly that g depends on p and so we will write g,(s, ||]).
For t € R and s > 0 define

y—t
bl ) = Brp| )
We will need the following assumption.

A2*, F; has a density f, satisfying A2 and, for £ > 0 and y > 0,
aly) = foly +t) + fo(y = t)
fo(¥)

is a nondecreasing function of y.

A2* is satisfied, for example, in the important case where F, is the Gaussian
distribution N(O, ¢%). This follows because in the Gaussian case we have
y+t)+f(y—t ty
a(y) - fO( ) O(y ) - 2e_t2/02 COSh(—)
fo( ) 4

and
t .. ty .
a'(y)=2—et/° smh(—) >0 ift>0and y> 0.
c o

A2* evidently holds in a number of other interesting situations: For example,
it is easy to verify A2* when F, is double exponential.

The following lemmas will show that A, is minimized when p is a jump
function. This will enable us to compute the minimum of A,.

LEMMA 4.2. Assume p satisfies Al and F, satisfies A2*. Let s >0 and
suppose that the jump function p, satisfies

(4.10) h,(s,0). = h,(s,0).
Then
h,(s,t) = h(s,t) VteR.

PROOF.

By, t) = hy(s.t) = =5 [0(3) sy + &) + fo(sv = 1)

+Sfc°°(1 —o())(folsy + £) + fo(sy — t)) dy
—I, + 1,
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With
_ folse +t) + fose — ¢)
B fo(sc) ’

A2* gives

I < Sk'/:P(y)fo(Sy) dy,

I~ skfo p(¥)fo(sy) dy.
Thus (4.10) gives

c 00
o(5:3) = (5, 0) = B =3 [ o) dy + [ (1 = p() i) ) = 0.
c
O

LEMMA 4.3. Assume p satisfies Al, F, satisfies A2* and G, satisfies A3.
Then for any s > 0 there exists a jump function p, such that:

(1) 8,(5,0) = g,(s,0).

(i) g,(s,t) 2 g(s,t)VEER.

Proor. Follows from Lemma 4.2 conditioning on x. O

LEMMA 44. Assume p satisfies Al, F, satisfies A2* and G, satisfies A3.
Then:

(i) A(s) > inf, A,
(i) A,(s) = GX21 — Fy(sc)) + ¢/(1 — ¢),

where G,(\) is defined in (3.20).

Proor. (i) Follows immediately from Lemma 4.3.
(ii) Follows from the definition of A (s), (3.22) and (3.23). O

The following theorem gives a lower bound for the maximum bias of an
M-estimate for each fixed e.

THEOREM 4.1. Let T be an M-estimate and assume Al, A2*, A3 and AAd.
Then

€
(411)  B(T)= inf G;l(z(l — Fy(t)) + 1——)
Ry 1/ -e)<t<oo —&

ProoF. The theorem follows from Lemma 4.4 since G, '(2(1 — Fy(¢)) +
e/(1 — ¢)) is only defined when 2[1 — F(¢)] + ¢/(1 — ¢) < 1 and this is equiva-
lent to

t> Fy Y (1/[2(1 - ¢)]). O
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TABLE 1
Min-max biases of optimal GM-estimates with estimated covariance matrix and optimal S-estimates

GM-estimates
P e = 0.05 e =010 e =015 e = 0.20
1 0.083 0.18 0.28 0.41
2 0.11 (0.11)* 0.25 (0.23) 0.42 (0.37) 0.68 (0.55)
3 0.12 (0.11) 0.29 (0.25) 0.60 (0.44) 1.39 (0.70)
4 0.15 (0.14) 0.39 (0.31) 0.95 (0.52) o (0.82)
5 0.19 (0.17) 0.49 (0.36) 2.85 (0.59) oo (1.00)
10 0.31 (0.23) oo (0.50) oo (0.97) o (c0)
15 0.62 (0.29 o (0.68) o (1.71) o0 ()
S-estimates
b(e) 0.33 0.34 0.35 0.36
S* 0.49 0.77 1.05 1.37
LMS 0.53 0.83 1.07 1.52

#Numbers in parentheses are biases with covariance known (i.e., they correspond to points on the
curves in Figure 2).

The following theorem shows that for a proper choice of b, which depends on
g, the S-estimate T, as defined in Lemma 3.2, minimizes the maximum bias over
the class of M-estimates with general scale.

THEOREM 4.2. Assume that F, satisfies A2* and G, satisfies A3. Given
e > 0, there exists b = b(e) such that

Be(Tb) = BE(T)
for all M-estimates with general scale T with p-function satisfying Al and scale
s satisfying A4.

Proor. Follows immediately from Lemma 3.2(ii) and Theorem 4.1. O

The value b(¢) is the minimizing value of & in (3.21). For the Gaussian
situation b(¢) may be obtained by minimizing (3.24). For this case values of b(e)
for ¢ = 0.05,0.1,0.15,0.2 are given in Table 1.

5. GM-estimates.

5.1. Characterizing the bias of GM-estimates. We now consider GM-esti-
mates of regression T = T(H) obtained by solving

X

5.1 Exq(y —x0,|x|)— =0
(5.1) o ) o

for 6. The following assumptions will be used.
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A5, q(u,v)is:

(i) Continuous.
(ii) Odd and monotone nondecreasing in u.
(iii) Bounded, with sup, , n(u,») = 1.

Observe the optimal bounded influence estimates obtained by Krasker (1980)
and Krasker and Welsch (1982) of this form with n(u, ) = ¢ (ur) in the Huber
family
(5.2) Y (u) = sign(u)min(c, |u]).

The following lemma characterizes the possible biases of GM-estimates when
HeV,

LEMMA 5.1. Assume that 7 satisfies A5 and F,, satisfies A2. Let T(H) be the
GM-estimator defined by (5.1). Then there exists H, = (1 — e)H, + eH,* such
that T(H,) — 8 if and only if

(5.3)

A X £
Eyn(y — x9, IIXII)M <14

ProoF. If there exists an H € V, such that T(H) = 8, then (5.3) follows
immediately from (5.1). Suppose now that (5.3) is satisfied with strict inequality.
We will show that in this case there exists an H € V(H,) such that T(H) = 8.
In this case, there exist u, v with » > 0 such that

n(u, ») = Iwll——,

where w = E;n(y — x'f, [xI)x/|x|. Take as H* the distribution with point

mass at X, = —»|w|, 3, = 4 + x'0,. Then if H = (1 — ¢)H, + ¢H*, we have
Eyn(y — %0, xl) — = (1 - e)w + el ||1_£(_”W) 0
My — X0, |x|)— = (1 —g)w + ¢|jw||— =0. 0
" x| e \ 7wl

5.2. Optimality of the sign function n,. Consider the GM-estimate based on
the sign function n4(u, v) = sgn(u),

x
54 Esgn(y — x0)— =
(5.4) ( 1 ) ]
The solution 8( H) of (5.4) minimizes
1
(5.5) E—|y — x9).

Il
Thus the estimate is a weighted L, estimate with weights ||x,||™' for a finite
sample (y,x;), i=1,...,n. In the case of p =1 it is easy to see that the
estimate is the median of the slopes,
. k2
(5.6) 6_ = med{—l}.

ms
i
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We shall now show that the choice 7, minimizes the maximum bias over V.. We
need the following lemma.

LEMMA 5.2. Assume ¢: R — R is (a) odd, (b) monotone nondecreasing and
(c) sup ¢ = 1. It follows that:

() q(¢) = Egy(y + ¢t) is monotone nondecreasing.
(ii) If F, is symmetric, then q,(¢)t > 0 and q(—t) = —q(?).
(iii) If F, satisfies A2, then |q,(t)| < |q,(t)| where y(u) = sgn(u).

Proor. (i) Let ¢, > ¢,. Then
ay(t;) —qy(t) = f_ww[tP(y +t) —¥(y+ )] dFy(y) 20

by property (b) of 1.
(ii) Since g(0) = 0, (i) gives g (¢)¢ > 0. On the other hand,

q,(—t) = Eg¥(y — t) = Egy(-y— t)
= —Egy(y+1t) = —q,(2).
(iii) By (ii) we can assume ¢t > 0 and, therefore,
a(t) = [V~ 0) = i(y+ )] d.
Since Yy(y) <land f(y —t) = f(y + t) for y > 0, we have
a)() s [Ty~ = 1(y+ O] dy
= Q¢0(t)- a

Now we can prove that 7, is optimal.

THEOREM 5.1. Suppose that 1 satisfies A5, F, satisfies A2 and G, satisfies
A3. Let T be the GM-estimate based on v and T, be the GM-estimate based on
19- Then

B(T) > B(T,).
Proor. Let
(5.7) t,(1181) =

A3 implies that the right-hand side expectation depends only on ||8]. Then
according to Lemma 5.1, it is enough to show that

X

EHOU(.)’ - ,0’ “X”)

(23]

(5.8) t(1161) < ¢, (1181).

Setting 6 = A(1,0,...,0) for A > 0 without loss of generality, we have
x

(5.9) t,(A) = Ega(y — Ay, Ixl) —

x|l
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Taking conditional expectation with respect to x in (5.9) we get
) Een(y — Axy, IIXII) i ”

and, therefore, by Lemma 5.2, putting 1[/( ¥) = n(y, |Ix||) and t = —}\xl, we get

(5.11) Epn(y — Axy, IIXII)

Then (5.9)-(5.11) yield (5.8). O

(510) t,T()\,X) é Ho 71(.)’ >‘x1, ||X||)

< Eymo(y — Ax, IIXII)

5.3. Optimality of nm, among all equivariant estimates for p = 1. So far we
have obtained min-max bias robust estimates over two specific classes of equiv-
ariant regression estimates. It would, of course, be highly desirable to obtain a
min-max bias solution over the class of all equivariant regression estimates.
Although it is not yet clear how to obtain such an estimate for general p, we
have the following solution for the special case p = 1.

THEOREM 5.2. For the model (2.6) with p= 1, the median of the slopes
estimate 0 given by (5.6) minimizes the maximum bias among all regression
equivariant estimates.

Proor. The proof follows lines quite analogous to Huber’s (1964) proof of
the min-max bias property of the median among all translation equivariant
estimates. O

5.4. Computing the maximum bias.

LEMMA 5.3. Assume 0 satisfies A5, F, satisfies A2 and G, satisfies A3. Then
if T is the GM-estimate corresponding to v, we have:

(i) t,(A) is monotone nondecreasing in A.

(i) B(T) = £, (¢/(1 — ¢)).

PROOF. According to Lemma 5.2, t*(A,x) defined in (5.7) is monotone
nondecreasing in |A| for all x. Then (i) follows. Use of (i) and Lemma 5.1 gives (ii).
O

We will compute now ¢, (A), when y and x are normal. From (5.6) we have for
p>1

s

X
tno()\) =|E sign(y - Ax)m

where y and x are N(0,1) and » is chi-squared with p — 1 degrees of freedom.
(x%_1), ¥, x and » are independent. Then

t,(A) =|E(2¢(Ax) — 1)

X
(2 + »)2]
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In the case that p =1,
t,(A) =|E sign(y — Ax)sign x|

= lE sign( z_ }\)
x
where y, x are independent N(0,1). In this case » = y/x is Cauchy and then

£, (\) = (1 - 2(355-;—@ " 1)) - 2 d)

b

2 T

Therefore, in this case we have

B(T,) = tan(é(—l%).

6. Including the intercept. The results so far do not cover the case of a
regression model with an intercept. This is because they were obtained under the
assumptions that the contamination affects all the coordinates of x. Neverthe-
less, all our results for the regression parameter remain unchanged for the
regression model with intercept

(6.1) y=a+x0+u,

where y, X, 8 and u are as before and « is the intercept parameter.

Consider the following class of S-estimates of (a, 8): Let T* be any location
functional defined on the class of distribution functions on R. Given a p function
as in Section 2.1 and a distribution function H on R?*!, we define an S-estimate
T(H) of the regression parameter as the vector 8 which minimizes the scale
functional s(Hg*), where Hg* is the distribution function of y — x'0 — T*(H,)
and where H, is the distribution function of y — x’0. Now one naturally takes
the final location estimate to be T*(Hyy,), i.e., the location estimate 7* applied
to the “residuals” y — xT'(H). This class contains as a particular case the usual
S-estimate of the regression and intercept parameters, simply by taking 7% equal
to the corresponding S-estimate of location. Similar extensions are possible for
M- and GM-estimates.

Assume now that T* is Fisher consistent, i.e., for any symmetric distribution
Fon R, T*(F) = 0 and has breakdown point at least £. Then it can be shown
that the results of Theorems 3.1, 4.1 and 5.1 still hold for estimating 6 in the
model (6.1).

It remains to find (T, T%), with T an M-estimate with general scale (or a
GM-estimate) and T* a location estimate, such that the maximum bias of the
intercept is minimized. We conjecture that choosing T* to be the median and T
the corresponding min-max bias estimate for 8 will solve this problem.

7. Comparing min-max bias estimates. The result of solving the min-max
bias problem over the class of regression M-estimates with general scale and
bounded p, yields the discontinuous jump function p,. Consequently, the
S-estimate which achieves the min-max bias does not have an influence curve
and it has a slower rate of convergence than usual, namely n~1/3, the same rate
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Fic. 2. Bias curves for min-max bias S-estimate (S*) and min-max bias GM-estimates
(p = 1,2,3,5,10,15), and maximal bias curve for least median of squared residuals (LMS) estimate.

of convergence as Rousseeuw’s (1984) least median squared residuals (LMS)
estimate. This is evidently the price one has to pay when one wishes to control
bias over the class of M-estimates with bounded p. On the other hand, the
min-max bias is independent of the number of carriers p.

The min-max bias GM-estimate of Section 5 does have a bounded influence
curve [see Hampel, Ronchetti, Rousseeuw and Stahel (1986)] and enjoys the
usual rate of convergence under regularity conditions. However, its bias and
breakdown point depend on the dimensionality p of the carrier space [see
Maronna, Bustos and Yohai (1979) and Maronna and Yohai (1987a)]. Further-
more, it is necessary to robustly estimate the covariance matrix to implement the
GM-estimate, and this is not necessary for the S-estimate.

Nonetheless one wonders how the two min-max estimates compare for frac-
tions of contamination smaller than their breakdown points. First some compu-
tations were carried out under the unrealistic assumption that the covariance
matrix for the carriers is known. Figure 2 displays the resulting bias curves of the
min-max GM-estimate p = 1,2, 3, 5,10, 15 carriers, along with the bias curves of
the min-max S-estimate S* and the maximal bias curve of the LMS estimate
(these latter biases being independent of the number of carriers p). Several
observations are immediate: For each p > 2 the optimal GM-estimate has
significantly smaller bias than the optimal S-estimate for fractions of contamina-

0.5
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tion not too close to the GM-estimate breakdown point. Of course, as & ap-
proaches the breakdown point of a GM-estimate for any given p, the S-estimate
will strongly dominate the GM-estimate. Also, it is interesting to note that the
performance of LMS = T, 5 [which is the limiting form of S* = T}, as ¢ > 0.5
and correspondingly b(¢) — 0.5] is sufficiently close to that of the min-max bias
solution S* = T ,,, which uses an optimal b = b(e) for each ¢ (see Theorem 4.2),
to regard it as an “excellent” approximation. [This is very similar to the results
of Martin and Zamar (1987a), who show that an appropriately scaled median is
an excellent approximation to the min-max bias scale estimate for a positive
random variable.]

By Theorem 5.2 the optimal GM-estimate éms for p =1 is min-max bias
optimal among all regression equivariant estimates with model intercept zero
and also has breakdown point 0.5. This global optimality of the GM-estimate
and its actual degree of dominance over the optimal S-estimate at p = 1 begs
the following important question: Does there exist a min-max bias regression
estimate among the class of all regression equivariant estimates?

We also made some calculations to reveal how estimation of the covariance
matrix inflates the min-max biases of the GM-estimates. In order to do so we
made use of recent results on the maximal bias of covariance estimates due to
Maronna and Yohai (1987b). The results are displayed in Table 1 for the case of
the covariance matrix estimate studied by Tyler (1987). Clearly, the price of
estimating covariance can be high, even when the fraction of contamination is
far from the breakdown point of the GM-estimate with known covariance. See,
for example, the ¢ =0.05, p =15 and ¢ =02, p =3 cases. Of course, the
smaller breakdown points of the covariance matrix estimates result in smaller
breakdown points for the GM-estimates with estimated covariance.

The gross-error-sensitivity (GES) is the supremum of the norm of the influ-
ence curve and it is a measure of the maximal bias caused by a vanishingly small
fraction of contamination. The GES is the derivative of the maximal bias curve
at ¢ = 0, for well-behaved estimators having an influence curve (which LMS and
S* do not). In Figure 2, we display GES-based linear approximations to maximal
bias for the optimal GM-estimates for p = 1 and p = 10. The GES approxima-
tion seems rather good for values of ¢ up to, say, 40 or 50% of the breakdown
point. This is in agreement with Hampel’s rule of thumb [see Hampel, Ronchetti,
Rousseeuw and Stahel (1986), page 178].

REFERENCES

BERAN, R. (1977a). Robust location estimates. Ann. Statist. 5 431-444.

BERAN, R. (1977b). Minimum Hellinger distance estimates for parametric models. Ann. Statist. 5
445-463.

BickEL, P. J. (1984). Robust regression based on infinitesimal neighborhoods. Ann. Statist. 12
1349-1368.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

DonoHo, D. L. (1982). Breakdown properties of multivariate location estimates. Ph.D. qualifying
paper, Dept. Statistics, Harvard Univ.

DonoHo, D. L. and HUBER, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich
L. Lehmann (P. J. Bickel, K. A. Doksum and J. L. Hodges, Jr., eds.) 157-184. Wadsworth,
Belmont, Calif.



1630 R. D. MARTIN, V. J. YOHAI AND R. H. ZAMAR

DoNoHo, D. L. and Liu, R. C. (1988). The “automatic” robustness of minimum distance functionals.
Ann. Statist. 16 587-608.

HampEL, F. R. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42
1887-1895.

HampEL, F. R. (1974). The influence curve and its role in robust estimation. JJ. Amer. Statist.
Assoc. 69 383-393.

HaMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J. and STAHEL, W. A. (1986). Robust Statistics:
The Approach Based on Influence Functions. Wiley, New York.

HUBRER, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101.

HUBER, P. J. (1981). Robust Statistics. Wiley, New York.

HUBER, P. J. (1983). Minimax aspects of bounded-influence regression (with discussion). J. Amer.
Statist. Assoc. 18 66--80.

JAECKEL, L. A. (1971). Robust estimates of location: Symmetry and asymmetric contamination.
Ann. Math. Statist. 42 1020-1034.

KRASKER, W. A. (1980). Estimation in linear regression models with disparate data points. Econo-
metrica 48 1333-1346.

KRASKER, W. S. and WELscH, R. E. (1982). Efficient bounded-influence regression estimation.
J. Amer. Statist. Assoc. 77 595-604.

MARONNA, R. and YoHaAl V. J. (1987a). The breakdown point of simultaneous general M-estimates
of regression scale. Unpublished.

MARONNA, R. and Yonalr, V. J. (1987b). The maximum bias of robust covariances. Unpublished.

MARONNA, R., Bustos, O. H. and YoHar, V. J. (1979). Bias and efficiency —robustness of general
M-estimators for regression with random carriers. Smoothing Techniques for Curve
Estimation. Lecture Notes in Math. 757 91-116. Springer, New York.

MARTIN, R. D. and ZaMARr, R. H. (1987a). Min-max bias robust M-estimates of scale. Technical
Report No. 72, Dept. Statistics, Univ. Washington.

MARTIN, R. D. and ZaMAR, R. H. (1987b). Min-max bias robust M-estimates of location. Unpub-
lished.

Rousseeuw, P. J. (1984). Least median of squares regression. /. Amer. Statist. Assoc. 79 871-880.

ROUSSEEUW, P. J. and YoHAL, V. J. (1984). Robust regression by means of S-estimators. Robust and
Nonlinear Time Series Analysis. Lecture Notes in Statist. 26 256-272. Springer, New
York.

STAHEL, W. A. (1981). Breakdown of covariance estimators. Research Report 31, Fachgruppe fiir
Statistik, ETH, Zurich.

TyLER, D. E. (1987). A distribution free M-estimate of multivariate scatter. Ann. Statist. 15
234-251.

Youal, V. J. (1987). High breakdown point and high efficiency robust estimates for regression. Ann.
Statist. 15 642-656.

Yonal, V. J. and ZaMar, R. H. (1988). High breakdown estimates of regression by means of the
minimization of an efficient scale. JJ. Amer. Statist. Assoc. 83 406-413.

ZAMAR, R. H. (1985). Robust estimation for the errors-in-variables model. Ph.D. dissertation, Dept.
Statistics, Univ. Washington.

DEPARTMENT OF STATISTICS GN-22 ' DEPARTAMENTO DE MATEMATICA
UNIVERSITY OF WASHINGTON FacuLTAD DE CIENCIAS EXACTAS Y NATURALES
SEATTLE, WASHINGTON 98195 UNIVERSIDAD DE BUENOS AIRES
PABELLON 1
1428 BUENOS AIRES
ARGENTINA
R. H. ZAMAR
DEPARTMENT OF STATISTICS
WEST MALL 2021

UNIVERSITY OF BRITISH COLUMBIA
VANCOUVER, BRITISH COLUMBIA
CAaNADA V6T 1W5



