
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 3, MAY 1984 

REFERENCES P11 

W. 0. Alltop, private communication. 
I. F. Blake and J. W. Mark, “A note on complex sequences with low WI 
correlations,” IEEE Trans. Inform. Theory, vol. IT-28 pp. 814-816, 
Sept. 1982. 

[31 

[41 

F. D. Garber and M. B. Pursley, “Performance of offset quadriphase P31 
spread-spectrum multiple-access communications,” IEEE Trans. 
Commun., vol. COM-29, pp. 305-314, Mar. 1981. 
R. Gold, “Study of multistate PN sequences and their application [I41 
to communication systems,” Rockwell Int. Corp. Rep., AD A025137, 
1976. 

[51 

161 

[71 

S. W. Golomb, Shift Register Sequences. 
WI 

San Francisco: Holden- 

PI 

[91 

WI 

Day, 1967. 
S. W. Golomb and R. A. Scholtz, “Generalized Barker sequences,” 
IEEE Trans. Inform. Theoy, vol. IT-11, pp. 533-537, Oct. 1965. 

1161 

S. M. Krone, “Quadriphase sequences for spread-spectrum com- 
munication,” Coordinated Science Laboratory Tech. Rep. T-118, [I71 
Univ. of Illinois, Urbana, Oct. 1982. 
R. M. Lemer, “Signals having good correlation functions,” [181 
WESCON Convention Record, 1961. 
F. J. MacWilliams and N. J. A. Sloane, The Theoy of Error-Correct- 
ing Codes. Amsterdam, The Netherlands: North-Holland, 1977. 
M. B. Pursley and F. D. Garber, “Quadriphase spread-spectrum 
multiple-access communications,” IEEE International Conference on 
Communications, Conference Record, vol. 1, pp. 7.3.1-7.3.5, 1978. 

1191 

PO1 

529 

M. B. Pursley, F. D. Garber, and J. S. Lehnert, “Analysis of 
generalized quadriphase spread-spectrum communications;” (In- 
vited paper), IEEE International Conference on Communications, 
Conference Record, vol. 1, pp. 15.3.1-15.3.6, 1980. 
M. B. Pursley, “Spread-spectrum multiple-access communications,” 
in Multi-User Communication Svstems. G. Lonao. Ed. Vienna and 
New York: Springer-Verlag pp.‘1399199, 1981: 
D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of 
pseudorandom and related sequences,” (Invited paper), Proc. IEEE, 
vol. 68, pp. 593-619, May 1980. 
W. M. Schmidt, Equations Over Finite Fields (Lecture Notes in 
Mathematics). New York: Springer-Verlag, 1976. 
R. A. Scholtz and L. R. Welch, “Group characters: Sequences with 
good correlation properties,” IEEE Trans. Inform. Theory, vol. 
IT-24, pp. 537-545, Sept. 1978. 
V. M. Sidelmkov, “Some k-valued pseudo-random sequences and 
nearly equidistant codes,” Probl. Peredach. Informatsii, vol. 5, pp. 
16-22, Jan. 1969. 
V. M. Sidelnikov, “On mutual correlation of sequences,” Soviet 
Math. Dokl., vol. 12, pp. 197-201, 1971. 
R. Turyn, “Four-phase Barker codes,” IEEE Trans. Inform. The- 
ON. vol. IT-20. DD. 366-371. Mav 1974. 
L: k. Welch, “Lower bounds on’the maximum cross correlation of 
signals,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 397-399, 
May 1974. 
G. R. Welti, “Quaternary codes for pulsed radar,” IRE Trans. 
Inform. Theory, vol. IT-6, pp. 400-408, June 1960. 

Min-Max Detection of Weak Signals in 
q-Mixing Noise 

GEORGE V. MOUSTAKIDES AND JOHN B. THOMAS, FELLOW, IEEE 

Abstract-Detection of weak signals in a special v-mixing noise class is the signals are weak, asymptotic performance is of interest. 
considered. The detector structure is restricted to sums of memoryless 

nonlinear transformations of the observations, correlated with the data 
A common measure of asymptotic performance is the 

sequence and compared to a fixed threshold. Using the efficacy to measure 
efficacy. It is well-known that for independent identically 

performance, the nonlinearity that has min-max performance is derived. distributed (i.i.d.) observations the efficacy is maximized 
when the nonlinear transformation is given by the locally 

I. INTR~DLJCTI~N 
optimum nonlinearity defined by the marginal density. 
When this density is not known exactly, optimality is often 

F OR the detection of signals in additive noise, a very defined in a min-max way. Following the ideas of Huber 

commonly used detector structure consists of a sum on robust estimation and hypothesis testing [l], [2] the 

of memoryless nonlinear transformations of the observa- min-max nonlinearities for detection are derived in [3]-[5] 

tions, correlated with the signals and compared to a fixed for the i.i.d. case and for densities belonging to an e-con- 

threshold. When the number of observations is large and tamination class. In [3], [4] the noise densities are assumed 
to be symmetric. In [5] noise symmetry is assumed inside 
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for the m-dependent case, the optimum nonlinearity satis- 
fies a Fredholm integral equation of the second kind. 

Min-max detection with dependent observations is con- 
sidered in [8]. Following similar ideas from [9], [lo] the 
min-max nonlinearity is derived under the assumption 
that the observations are generated by a moving average 
process and are weakly dependent. In [ll] the problem of 
min-max detection of a constant signal in stationary 
Markov noise is considered. It is shown that, for a special 
class of Markov noise processes, the min-max nonlinearity 
is very closely related to the one for the i.i.d. case. Here we 
consider an extension of [ll]. We consider detection of 
nonconstant signals in a class of cp-mixing noise processes. 
The class defined in [ll] is a special case of this q-mixing 
class. We optimize over structures that consist of sums of 
memoryless nonlinear transformations. It is important to 
point out that, even though this structure is optimum for 
the i.i.d. case, this optimality does not hold under depend- 
ency. But, in any case, we would like to see how much the 
independence-assumption structure changes under depend- 
ency and also if the performance changes drastically. 

II. PRELIMINARIES 

Let { Ni} be a strictly stationary noise sequence. Denote 
by &f,” the u-algebra generated by the random variables 

{N,, Nu+l,. . ., Nh }. Let f(x) be the common marginal 
density for the random variables Ni. We assume that this 
density is symmetric, that it has a continuous derivative 
different from zero almost everywhere with respect to f(x) 
and that it has finite Fisher’s information for location. For 
simplicity we will denote random variables with capital 
letters and sequences of random variables with boldface 
capital letters. We call the stationary sequence N a cp-mix- 
ing sequence if there exists a sequence { T,~ } of real num- 
bers satisfying 

1 2 ‘pi 2 (p2 2 . . * 2 0 (1) 

such that, for each positive integer n, if A an event from 
J4: and B from Mr+,, then 

(P(A n B) - P(A)P(B)( I pJ(A). (2) 

This is the q-mixing class defined in [13, p. 1741. We call a 
q-mixing sequence acceptable if in addition to (1) and (2) it 
satisfies 

(3) 

Here we consider a subclass of the acceptable q-mixing 
sequences. We say that a sequence N belongs to the class 
~Vif it is an acceptable q-mixing sequence and also satis- 
fies the following conditions concerning the bivariate and 
univariate densities of two components Nk and Nk+n. If A 
is an event for Nk and B is an event for Nk+,, then, for 

every k and n, we have 

IP(A n B) - P(A)f’(B)I 2 ~,,f’(d+) (4) 

with 

(5) 

and also 

f(x) = (1 - e)g(x) + E/z(X). (6) 

Notice that (4) is different from (2) since it is defined only 
for two random variables. Also the right side of (4) in- 
volves the product of the two marginal probabilities rather 
than one marginal as in (2). Even though every bivariate 
density satisfies (2) for some ‘p, (for example, QZJ~ = l), 
such is not the case for (4). Finally (6) defines an E-con- 
tamination model for the marginal density f(x). We as- 
sume that g(x) is a known symmetric strongly unimodal 
density, with continuous derivative different from zero 
almost everywhere with respect to g(x) and with finite 
Fisher’s information. For h(x) we assume that it is a 
symmetric density; and E a known constant in [0, 1). 

Let us now consider the detection of a known signal 
sequence { si }. In particular, we would like to decide 
between the two hypotheses 

Ho: Xi = Ni 

HI : xi = N, + th,, i = 1,2;**, (7) 

where X is the observation sequence, N is the noise 
sequence, and 6 tends to zero. We assume that the signal 
sequence is bounded and that the following limits exist 

vj = lim 
SlSj+l + S2Sj+2 + **. +s,-jSn 

3 
n+oo n 

j=O,l,2;... (8) 

Without loss of generality, assume ~a = 1. For detection 
we use the nonlinear correlator (NC) detector, which is of 
the form 

(9 

and the decision is made as follows 

i 

1, if T,(X) > 7, 

f&,x) = P, if T,(X) = 7, (10) 

0, if T,(X) < 7, 

where u(J/, X) is the probability of deciding HI. The 
threshold r and the probability p are selected to control 
the false alarm probability. 

As we mentioned before, the performance measure we 
consider here is the efficacy. In order for the efficacy to 
exist and to be a valid measure we must impose restrictions 
on G(x) that will determine the class ‘P of allowable 
nonlinearities. Let E, denote expectation under HI and E, 
under Ho. Also define S,, = k/ fi, where k is any non- 
negative constant. We assume that #(x) is a measurable 
function, with E{[J/(N,)12} < cc, that satisfies the follow- 
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ing: We now prove a proposition that gives the limiting form of 

d44 = -J/(-x) 
cl11 (9) under both hypotheses. 0 

As_” e4.fb - 6) *i~s=o 
Proposition I: Let N be an acceptable q-mixing se- 

w 
quence, let { si} be a bounded sequence of real numbers 
satisfying (8), and let q(x) be a measurable function with 

= /e~.-&x)~(x - s)~s=o~x (12) -W(W~ = p and J%WJI~~ < ~0 that satisfies (16) 
and (17). Define h(t) = E{#(N, + t)}, then 

lW 444f’b) dx < 0 (13) 

n 

lim Srn +(x)iyx - 6,) dx = lrn $(x)f’(x) dx 

T,” = * islsi+(N,) ’ N(“,uO(+)) (21) 

n-00 -w -cc 

(14 
T,’ = $ jllsi\l(N, + ‘nsi) 

lim 
n-w nE,,( [T,(X)]*) ” 

(15) 

ill_moE( MN1 + 4 - w1)1*] = 0 (16) 

d(#> = E{ $(Nd2} + 2 E vjE{ +(N&(N,+d} ’ 0. 
j=l 

(17) 

With condition (11) we restrict the nonlinearities to be odd 
symmetric, a reasonable restriction since all locally opti- 
mum nonlinearities are odd symmetric under our assump- 
tions. We now present two lemmas that will give us useful 
properties of the cp-mixing and the acceptable q-mixing 
sequences. 

Lemma 1: Let N be a q-mixing sequence and E and 
0, two random variables defined on M! and Mp+,,, re- 
spectively. If E{ I=]‘} < cc and E{ ]0]‘7} < cc with (l/r) 
+ (l/q) = 1 and r, q > 1, then 

where 2 means-convergence in distribution. The proof of 
this proposition is given in the Appendix. Notice that (21) 
or (22) is not a direct consequence of [13, th. 20.1, p. 1741 
since the sequence { si#( Ni)} is not a stationary sequence. 
For the proof we apply a more general theorem [13, th. 
19.2, p. 1571 and we show that our case satisfies all the 
hypotheses of this theorem. 

Under our assumptions the Pitman-Noether theorem 
may be invoked, and the efficacy takes the following form: 

[ 
E swf’(+x 2 

eff (#(x), N) = --w 1 dW 9 (23) 
where u,“(G) is defined in (17). Now we prove a lemma 
that gives us a property that characterizes the class JV. 

Lemma 3: Let #(x) be a measurable function with 
E{[#(NJ]2} < cc. Also let NE Jlr. Then 

jE{ZO} - E{Z}E{@}I < 2~‘rE1”{IEI’}E1’~{~0~4}. IE{+(N~)+($+~)} -[E{+(N~))121 

(18) s YjLE{ l+(NI)l}12e (24) 
(For a proof see [13, p. 1701.) Proof: It is enough to show (24) for simple functions. 

Lemma 2: Let q(x) be a measurable function with Thus let 
E{$(N,)} = 0 and E{[$(NI)]*} < 00. Let also N be an 
acceptable q-mixing sequence. Then u,‘(#) defined in (17) 
is absolutely summable. #tx) = f #itI,* (25) 

i=l 

Proof: Using the inequality JabI I *(a2 + b2), it is 
easy to see that Iv,] I v0 = 1. Thus it is enough to show 

Let Bi be the event { Ni E Ai} and Ci, the event {N,,, E 

that 
~~ 1. Then using (4), we obtain 

E IJq ww(N,+1)} I < cfJ. (19) 
IE{ w&(N,+,)} - PbmIm 

j=l 

Applying (18) for r = q = 2 and E = #( Ni) and 0 = 
4 (N, + i) and remembering that N is stationary, we obtain 

j=l 

i=l I=1 

(26) 

E([$(N,)]*} < 00. (20) The difference again between (24) and (18) is that (24) 
involves only bivariate densities. 
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III. MIN-MAX DETECTION obtain 

The problem we would like to solve is the following. 
Find a nonlinearity J/,(x) E \k and a sequence N, E Jlr 
such that 

eff*(+W,f(x)> 

sup inf eff (q(x), N) = eff($,(x), N,), (27) 
+(X)E+ N=J 

[ jrn Hx)f’(x) q* 
= /” +yx,icx,l + y [Jo ll)(x)lf(x) dx12’ (32) -lx -Cc 

subject to the constraint 

(28) 

where y = 2Cj”,,]vjlyj. The case y = 0 is of little interest 
here since it is no different from the i.i.d. case. Thus we 
assume y > 0. Next, we have to find a pair q,(x) and 
f,(x) such that 

where P,, is the asymptotic false alarm (FA) probability 
of deciding HI given HO. We now proceed as follows: for a 
given q(x) we find the N E JV that minimizes the ef- 
ficacy. Then the resulting expression is maximized over the 
nonlinearity #(x). The minimization is done in two steps. 
First, we keep the marginal density fixed and minimize 
over all sequences that have the same marginal, and then 
we minimize over the marginal. If the marginal is fixed, we 
can see from (23) that, in order to minimize the efficacy, 
we need to maximize $( J/). Using (24) and remembering 
that G(x) is odd symmetric (zero-mean), we have 

It turns out that this new min-max problem defined by 
(33) has a saddle point; in other words, the pair rc/,(x) and 
f,(x) satisfies the following double inequality 

eff*(~WA4) 5 eff*(~,b>Ax)) 

5 eff*bhb>, f(4) (34) 

for any #(x) E * and any f(x) satisfying (6). Any pair 
that satisfies (34) is known to satisfy (33). Thus we will 
solve (34) instead of (33). The left inequality in (34) indi- 
cates that q,.(x) is the optimum nonlinearity for f,(x) 
when the criterion function is the eff*. The following 
theorem gives the form of this optimum nonlinearity in 
terms of the marginal density. 

+2 
i i[ 

ft I’jlYj Jm li(x)l.f~x~dx]2’ (29) 
j=l -00 

The series in (29) is summable because 

m 00 

C IvjlYj s C Y, < O”. 
J=l j=l 

(30) 

We have equality in (29) when the bivariate densities 
4(x, y) of Ni and A$+1 are given by 

J;(X,Y) =f(x>f(Y){l + Yjsgn(vj)sn~(x>sn~<Y)}~ 

(31) 

The function sn,+(x) is defined to be odd symmetric and 
for x > 0 is equal to the sign of J,(x) when q(x) f 0, and 
maytakeanyvaluein[-l,l]when~(~)=O.Alsosgn(v~) 
is equal to the sign of vJ when vi # 0. When vj = 0 the 
bivariate density can be anything. The odd symmetry of 
sn+(x) is important because it makes fj(x, y) a legitimate 
bivariate density with marginal f(x). Even though these 
densities are of the right form, it is possible that there is no 
sequence in JV’ that will have them as bivariate densities. 
Here we will assume that such a sequence always exists 
and, in the examples we present, we show a way to 
construct its multivariate density. We must point out that 
if we cannot show the existence of a sequence in JV, then 
this approach does not necessarily lead to the min-max 
solution. Let us now substitute (29) into the expression for 
the efficacy and call the resulting expression eff*. We thus 

Theorem 1: Let f(x) be a symmetric density with finite 
Fisher’s information and continuous derivative different 
from zero almost everywhere with respect to f(x). Then 
the optimum nonlinearity qO(x) that maximizes the eff* is 
given by 

h(x) = - g$ - yv”(x), 

where rO(x) is defined as follows 

(35) 

c 1 1 f’b> --- for -1 2 f’(x) - 
’ P f(x) E-l f(x) 

5 1 
’ 

q)(x) = { 1, for 1 5 - 1 f’b) ’ l-l f(x) 

-1, for-l> -If’(X) 
\ P f(x) ’ 

(36) 

and p is a positive constant that satisfies 

Iw f’bb-o(x) dx 
s(P)=P+ -mm 

$ + j $(x)f(x)dx = ” (37) 
-CC 

The proof of this theorem is given in the Appendix. From 
(35) and (36) we see that $a(~) is odd symmetric and 
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closely related to the locally optimum nonlinearity. The 
function rrO(x) is defined in a way such that #a(x) be- 
comes zero whenever -f ‘(x)/f (x) takes on values be- 
tween -p and p. Now we are ready to define the pair that 
satisfies the saddle-point relation (34). Since #,(x) is opti- 
mum for f,(x), we need to define only f,(x) and this is 
done in the following theorem. 

where xi 2 0 and such that f,(x) has total mass equal to 

Theorem 2: The density f,(x) that gives the solution to 
the saddle-point problem defined by (34) is the following 

I 

(1 - c)g(xi)exl(x+X1), for x I -x1, 

f,(x) = (1 - MxL for Ix] I x1, 

(1 - e)g(xi)e-X1(X-X1), for x 2 xi, 

(38) 

then, since #,(x) is odd and nondecreasing, we have 
]#Jx)] I M. Call n(f) and d(f) the numerator and the 
denominator of the eff*( J/,.( x), f(x)); then 

+c (” $,(x)h’(x) dx]*. (43) 
J-m 1 

Because #,(x) is nondecreasing, the two terms in the last 
expression are nonpositive; thus 

n(f) 2 [(I - c)j+m +rCx)g’(x)dx]2 = n(f,), 

also 

(44) 
-00 

unity. 

The nonnegativity of h,(x) can be proven using the strong 
unimodality of g(x) (see [l], [2]). To find the nonlinearity 

Proof: This density is exactly the one defined by 
Huber in [l], [2] for the i.i.d. case. It belongs to the 

#,(x) we use Theorem 1 and obtain 

r-contamination class with a density h,(x) that places all 
the mass outside the interval [-xi, x1] 

a4 

i 

(1 - e)[ g(xi)exl(X+X1) - g(x)], for x I -xi, 

= 0, for Ix] I xi, 

(1 - 6)[ g(xl)e-xl(x-X1) - g(x)], for x 2 x1. 

(39) 

d(f) =Jm #,“(x)f(x)dx+ Y[/- 
-00 -Co 

lAb)lf(+x]2 

5 (1 - e)Jw #;(x)g(x) dx + cM2 
--w 

+Y (1 - dJm I1c/,(x)ldx) dx + CM 1 
2 

-CO 

= d(L). (45) 

Thus f,(x,) simultaneously minimizes the numerator and 

Returning now to our original min-max problem de- 

maximizes the denominator of the eff*(Jl,(x), f(x)), which 
means that the right-hand inequality in (34) is also satis- 

fined in (27), we have that I/J,.(X) is the nonlinearity 

fied. This concludes the proof. 

defined in (40) and N, is any sequence from JV that has 

0 

for 0 I x I x2, bivariate densities given by - - g’(x) + g’b2) -- for x2 2 x I xi, f,‘(X, Y> =f,(x)f,(.Y){l + Yjsgn(vj)sn~,(X>sn~,.(Y)}, 

J/r(x) = g(x) dx2) ’ 

S’bl) + g’b2) 

(46) 

-- 

dXl> dx2) ’ 
for xi I x. where f,(x) is defined in (38). 

In order now to satisfy (28) we must set the threshold for 

(40) the detection structure 

For x I 0 we recall that I/,(X) is odd symmetric. We 
define x2 as 

g’(x2 1 --= 

gb2> lJL, 

where p is a solution to the equation defined by (37). In 
order for (40) to be valid, the x2 defined by (41) must 
satisfy 0 I x2 I x1. In the Appendix we show that such an 
x2 always exists. Up to this point, because of Theorem 1, 
we have that #,(x) and f,(x) satisfy the left inequality in 
(34). To prove that they also satisfy the right inequality, 
notice that, since g(x) is strongly unimodal, we have that 
q,(x) is a nondecreasing function. If we define 

(47) 

Notice that T,‘(X) under HO is Gaussian in the limit. 
Hence if (28) is satisfied for the sequence that has the 
maximum asymptotic variance it will be satisfied for any 
sequence. But the asymptotic variance of (47) is the square 
root of the denominator of the eff (q,.(x), N). This de- 
nominator is majrimized when N = N, and the maximum 
value is equal to d( f,) defined in (45). Thus the threshold r 
is given by 

‘-‘( jd(f;7)]‘/2)=a’ (48) 

M = _ g’b1) + 6(x2) 

dXl> dx2) ’ 
(44 

where Q(x) is the lV(O, 1) Gaussian cumulative distribu- 
tion. Note that the sequence N, achieves simultaneously 
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TABLE I 
VALUESFOR x2 (LASTCOLIJMNVALUESFOR x1) 

the worst performance for the efficacy and for the false 
alarm probability. Before going to Section IV we must 
point out that the cp-mixing assumption and the bounded- 
ness of the sequence { si } were used only in the proof of 
Proposition 1. Thus, as long as the central limit theorem 
holds, the optimum nonlinearity will be given by Theorem 
2 for cases where the bivariate densities are given by 
(4)-(6). For the case where we cannot prove existence of a 
sequence in X that has bivariate densities defined by (31), 
we still satisfy a min-max relation. Only, instead of the 
class JY of sequences, we will consider the class of bi- 
variate densities that satisfy (4)-(6). In other words, the 
min-max problem will be defined over a larger class of 
bivariate densities than the one that JY defines. Thus the 
lower performance bound on the min-max problem will 
not necessarily be the best for the class Jlr. 

IV. EXAMPLES 

0.2 0.337 0.472 0.549 0.600 0.636 0.730 0.786 0.662 

0.3 0.291 0.402 0.436 0.502 0.530 0.595 0.637 0.665 

’ 0.4 0.247 0.337 0.365 0.416 0.436 0.485 0.515 0.550 
I 

0.5 0.204 0.276 0.314 0.337 0.353 0.390 0.412 0.436 

0.8 0.080 0.107 0.121 0.130 0.135 0.147 0.154 0.162 

As we can see from Theorem 2 the n-tin-max nonlinear- 
ity and its worst performance depend on the density g(x) 
and the constants e and y and not on the actual sequences 
{y;} and {s;}. In th e o f 11 owing we give tables for the point 
x1 and the performance of the min-max nonlinearity, for 
the case in which g(x) is N(0, 1). In Table I there are the 
values of x2 for different y and E. The parameter xi 
depends only on e, and it turns out that as y + 00 then 
x2 + xi. Thus the last column (y = 00 in the table) gives 
also the values for xi. Table II gives the values of the ARE 
of I/~(X) versus the locally optimum nonlinearity 
-f,‘(x)/f,(x) when the underlying sequence is the N,. 
Notice that this locally optimum nonlinearity would have 
been the one to use if we had falsely assumed that the 
observations were i.i.d. Now we present two cases where 
the theory in Section III can be applied. 

TABLE II 
ARE OF$,(X)VERSUSTHELOCALLYOPTIMUMNONLINEAR~TY 

One-Dependent Case: Assume .YJ: = 0 for j 2 2. Here 
y = 2yi(vi], and the bivariate densities defined in (31) take 
the form 

0.05 1.07 1.14 1.21 1.26 1.30 1.46 1.56 1.77 

I I 

0.1 1.06 1.12 1.17 1.20 1.23 1.32 1.39 1.49 

0.15 1.05 1.10 1.13 1.16 1.16 1.24 1.29 1.35 

II I I I I I I I 
0.2 1.04 1.08 1.11 1.13 1.15 1.19 1.22 1.27 

0.3 1.03 1.06 1.08 1.09 1.10 1.12 1.14 1.16 

0.4 1.02 1.04 1.05 1.06 1.07 1.08 1.09 1.10 

fib, 14 = fb)fb){l + y1 ddw&+n.Jr>> 

f,bY Y) = fb)f(YL j = 2,3,.-e. (49) 

In order to be able to apply the results in Section III, we 
will show that there exists a multivariate density of a 
stationary sequence in JY that has bivariate densities given 
by (49). To define such a density, let u be a stationary 
one-dependent sequence of random variables with L$ sup- 
ported on [ - 1, l] and 

WWd = widd. (50) 

Then the following expression is a multivariate density that 
possesses the properties we need 

{U,,- . ., u,-,> and {uk+I,. * -) U, } are independent. Thus 
by interchanging integrals and expectations, we have 

f(Xl,“~,Xk~l,Xk+l,~~~,X~) 

= / ( O” f xl;..,x,)dxk 
-cc 

= EU 
ti 

k-l 

zGf(x,)[l + qsn+txi)] 

one-dependent sequence. To show this, notice that the sets 

f(x,, X2,‘. -7 Xn) = Eu fIf(ni)[l + qsn+(xi)] ) 
i i=l I 

(51) 

where E, means expectation with respect to the sequence 
U. It is easy to see that (51) defines a density of a 

’ iztlf(xi)[ ( 
1 + u;sn,(xJ] 

iI 

t 

k-l 

= EU rJfCxi)[l + risn+Cxi)] 
I 

i=lfIlf(xi)[l + qsn+(~i)]] 

=f(X~~..‘~X~-~)f(Xk+~,“‘,~,). 

(52) \ I 
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ever the performances of the two nonlinearities, in the 
example that was presented, were drasticaily different. 

Also this sequence is an acceptable cp-mixing sequence 
because it is an m-dependent sequence. The only problem 
is that (50) cannot be true for an arbitrary value of yi. For 
example, if we generate the ICJ from the following model 

(53) 

where the Ri are i.i.d. with support on [ - 1, 11 and r a real 
number, we can realize only yi I $. The one-dependent 
case can be extended to the m-dependent by taking the 
sequence U to be m-dependent. 

Markov Case: Assume yj = mj with 0 I m < 1 and 
vj 2 0. This is the case treated in [ll]. Here y = 2C,“,,mjvj, 
and 

fjb,~) =f(x)f(y)(l + mjwJx)q(r)). (54) 

Now fi(x, y), the density between consecutive points, de- 
fines a strictly stationary Markov sequence with multi- 
variate density 

f(x,, x2; * *> xJ 

n n-1 

= jrJf (x,) g 11 + msn~(xj>sn+(xj+I>}* (55) 

If the function sn+(x) takes values of only + 1 or - 1 
(always possible), using induction we can show that the 
resulting Markov sequence has bivariate densities given by 
(54). To show that it is an acceptable cp-mixing sequence 
consider A E Mf and B E Mf+. with q any integer such 
that q 2 k + n. Let Ai be the range of values of Ni under 
the event A, for i = 1;. ., k. Similarly let Bj be the range 
of values of N, under B, for j = k + n, . . . , q. Define 
A’ = A, x . . . XA, and B’ = Bk+,, X . . . XB,. The two 
sets A’ and B’ are Bore1 sets. Then, because we have a 
Markov sequence, 

-f(Xk+n,-‘,xq)dx, (56) 

where x = (xi;. ., xk, x~+~; . a, xq), and because of (54), 

If’(A n B) - P(A)f’(B)I 

I m” f(X~,~~~,X~)f(X~+~,‘~‘,Xq) 

. { Sn~(Xk)Sn+(Xk+n)} dx 

2 m”P(A)P(B) I m”P(A). (57) 

From (57) we conclude that the sequence is acceptable 
cp-mixing with qj = mj. 

V. CONCLUSION 

In this paper we have found the min-max nonlinearity 
for detection of signals in a class of cp-mixing noise 
processes. This nonlinearity was shown to be closely re- 
lated to the min-max nonlinearity for the i.i.d. case. How- 

APPENDIX 

Proof of Theorem 1: Notice that in (32) the value of the eff* 
does not change if we multiply the nonlinearity by a constant. 
Thus we maximize the numerator assuming that the denominator 
has some fixed value. Using (13) this is equivalent to maximizing 
the following expression 

ff(#) = -J” Jl(x)f’(x) dx 
--M 

-p(J:m$2(x)f(+fx + r[/m_i~(x)l/(x)dx]‘)~ 

(Al) 
where p is a Lagrange multiplier. We will show that (Al) is 
maximized by 

where p and rc(x) were defined in (36), (37). Let #r(x) be some 
other nonlinearity from the class \k. Define the following varia- 
tion 

J(t) = -lrn [(l - T)h(x) + &(x)lf’(d dx --M 

j_z_[(l - S)&,(x) + l+dx)12f(4 dx 

+u[f_:J(l - Olh,(~>l+ Zl~d411f(4dx]2)~ 

643) 

where 5 E [0, 11. Notice that J(0) = H($,) and J(1) = H(J/,). 
By manipulating (A3) we can write it as 

J( 5) - J(0) = 11 + I, + I,, (A41 
where 

11 = E/I{ -f!(x) - bh(x)f(x) 
00 

-2w[Jm I~,(z)lf(z)dz]~~(x)f(x~)[~I(x) -#o(x)ldx 
-CO 

(A3 

12 = -2Eyp[l_mml~~(z)lf(z)~] 

0 -mm~l~~(~)l - Ih(~)l}f(x)dx 

- 
/~mm%w[h(4 - iowlfw~) WJ) 

la f.444 - h(412f(4dx -03 

+y[im_(bhWl- I+o(x)l}f(x)dx]2). (A71 

To prove that J(0) is the maximum, it is enough to show that 
J(t) - J(0) I 0 or that Ii I 0 for i = 1,2,3. From the definition 
of rra(x) in (36) notice the following: 

I~o(x)I = h(X)%(X) (A@ 

hI( 5 1. (A91 
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If we multiply (A2) by rO( x)f( x) and integrate and also use (37), 
we obtain 

(AlO) 
Substituting (AlO) in the expression for Zi and using (A2), we get 
zero. On using (A8), the term Z, becomes 

Because of (A9) we have /J/i(x)] 2 ~(x)J/i(x), and thus for 
p > 0, the Z, becomes nonpositive. Finally, for p > 0, the I, is 
clearly nonpositive too. If we define p = l/2 then (A2) becomes 
the same as (35). 

In order to complete the proof of Theorem 1 we must show 
that the equation defined in (37) has always a solution. Using 
continuity arguments, it is enough to show existence of two 
points p1 and pz such that S( z.QS(~,) 5 0. Notice that as 
).t -+ 0 then -(l/p)(f’(x)/f(x)) ---) + cc except on sets of f- 
measure zero. Thus, n,,(x) -+ sgn (-f’(x)/f(x)) = 
- sgn (f’( x)). Substituting in (37), we find 

jtc If’(x)1 dx 

S(0) = -m 

$+1 
< 0. (A=) 

Now using (A9) and the Schwatz inequality, we have 

(A131 

where Z(f) is Fisher’s information. Thus the second term in (37) 
i.s bounded by y [ Z( f )]‘/*, and as ~.t + + cc, we have that 
S(p) -+ + 00 or it becomes positive. And this concludes the 
proof of Theorem 1. Cl 

Existence of x1: In Theorem 2 we assumed that there exists an 
x2, with 0 5 x2 5 xi that satisfies (41), where ZJ satisfies (37). 
Now, because S(0) < 0, if we show that S( -g’(x,)/g(x,)) 2 0, 
then there exists a solution to (37) that will satisfy 0 < p < 

- g’(xl)/g(xl)~ and because of the monotonicity of 
-g’(x)/g(x), we will have 0 5 x2 I- x1. To prove this, notice 
that the locally optimum nonlinearity for the f,(x) defined in 
(38) is 

g’(x) -- 
f,l(x> _ g(x) ’ 

for 1x1 I x1, 

fr(x) gY-4 (A141 

----w(x), 
d-4 

for 1x1 r xi. 

Thus for p = -g’(x,)/g(x,) we are always in the first case of 
(36), and we have 

Substituting into (37) we obtain 

(A161 

And this proves the existence of x2. 

Proof of Proposition 1: The proof is based on the following 
theorem that gives sufficient conditions for convergence. 0 

Theorem 3: Let U be a sequence of random variables and 
define 

R,=& (A171 
i=l 

1 Intl 

w’=J=,p t E I&l], 6418) 
n, 1 

where by [. ] we mean the integer part. If 

a) X,(t) has asymptotically independent increments; 
b) E{ Xn(t)} + 0 and.,E{ X,2(t)} + o*t; 
c) X,‘(t) is uniformly integrable; and 
d) for every e there exist a /3 > 1 and an integer no such that 

for every li and n 2 no, 

then X,?(t) tends in distribution to a Brownian motion. For the 
proof see [13, ths. 8.4 and 19.21. 

We will now show that our case satisfies the conditions given 
in Theorem 3. We will base our proof on the fact that an 
acceptable v-mixing sequence satisfies all the above conditions 
(see [13, th. 20.11). We prove first (21). Let us define 

R,, = i vb(fi) (A191 
i=l 

(A201 

&l= im) (A211 
i=l 

1 [ntl 

r,(t) = x igmi). 6422) 

Notice that X,(t) is the process which we want to show satisfies 
the conditions of Theorem 3 and Y,(t) is the stationary case we 
know satisfies the conditions. 

To show condition a), let 0 I: ui 5 vi < u2 I v2 < . . . < u, 
I v,. I 1 and b = min,(u, - v,-J. Also let Ai E MI[,“$. Then 
from (2), using induction, we can show 

IP 
i 1 

ii Ai - fJfY4)ls vbh] -+ 0. (A231 
i=l 

For condition b), we have E { X,(t)} = 0. Also for t > 0, 
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To show condition c), we have to show that 

lim sup 
s 

x,f( t) dP = 0, for every t. (A25) 
a-rm n IXnl>a 

Let it4 be a bound for the sequence { Isi]}. Then, since Is/M] I 1, 
we have for the two events 

(A261 

Thus if we define A,(w) = P{Xi(t) > w} and h2(m) = 
P{ y:(t) > o}, we have that 

A1(M2w) s h,(w). (A27) 

Because both X,(x) and Y,(t) have finite variance, we can write 

= M2( a2h,(a2M2) +l-h,(wM*) dw 

(A28) and this concludes the proof of the Proposition 1. 

and, because y,(t) is the stationary case, we have 

I a<mm s~pM’{~ (i,,,,Yz(t) dP = 0. (A29) 
n II 

To prove condition d), notice that 

P 
( 

maxlRkti - R,I 2 po& 
ian I 

= p ,cl i i iI’ S,,kog 
j=l I 1) 2 padi > (A30) 

and thus using (A26), 

(A31) 

for sufficiently large p and n. The last inequality is true because 
it comes from the stationary case. And if we define c’ = <M2 

and j3’ = PM, we prove d). And this concludes the proof of (21). 

To show (22) it is enough to prove that (see [13, p. 251) 

nt%E{[‘I;:- T,:]‘} =o. (A321 

Notice that 

E{[T:- T,‘]‘} =+E (A33) 

where we define 

K =$(A$+ 6,Sj)-+(N,) -h(S,Si). (A34) 

Because { si} is bounds d by M, if we use (16), for large enough II 
we can have E{ y2} < c for every i, where E an arbitrary 
positive real. Thus, using Lemma 1 for r = 4 = 2 and making n 
large enough, we have 

E{ CT,” - cl*) 

5; is;E{y2} +~&s~$;[E{W:)E{~~}]~‘~ 

i i=l 
k<j 

: 

E, (A35) 

0 
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