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Statement 2:Under the assumptions of this theorem for any0 �
t0 � t

�~u(t)� �~u(t0) � �~u (t)� �~u (t0)

= �
1

h
�#T (t)L�1�#(t) + o!(h)

where

�~u(t) :=
t

0

(2~uT (�)d#(�) + ~uT (�)L~u(�)d�) (20)

�#(t) := B
T

u0P [Bu0(ucomp(t)� x
�(t))h

+ (K + A0C
+
0 )�y(t)]; �y(t) = y(t)� y(t� h)

and this minimum is reachable for

~u(t)dt = ~u�(t)dt := �L�1BT

u0P [Bu0(ucomp(t) + x
�(t))dt

+ (K + A0C
+
0 )dy(t)]:

As a result, we have:d�~u (t) � 0 (in symbolic form).
Proof of Statement 2:Using the Euler–Maruyama’s formula

[3], [9] we obtain the following relation:(h := t � t0 !

0): �~u(t)� �~u(t0) = 2~uT (t)�#(t) + ~uT (t)L~u(t)h+ o!(h).
Minimizing then the right side for each fixedt, we derive

min
~u(t)

[�~u(t)� �~u(t0)] = �~u (t)� �~u (t0)

= �
1

h
�#T (t)L�1�#(t) + o!(h) � o!(h): (21)

Hence, taking into account the definition (20), we haved�~u (t) � 0.

Rewriting (18) in differential form and taking into account that
P is the solution of the Riccati equation (see Assumption 4 of this
theorem) we finally derive

dV (e(t))
a:s:

� ['(t) + I(t)]dt+ S
T (t)dw(t)� e

T (t)Qee(t)dt:

According to the Kronecker lemma, the Large Number law for
martingale, and Skorohod lemma (see [2] and [4]), we obtain the
result of the theorem. Details of this proof can be found in [13].
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Min–Max Feedback Model Predictive Control
for Constrained Linear Systems

P. O. M. Scokaert and D. Q. Mayne

Abstract—Min–max feedback formulations of model predictive control
are discussed, both in the fixed and variable horizon contexts. The control
schemes the authors discuss introduce, in the control optimization, the
notion that feedback is present in the receding-horizon implementation
of the control. This leads to improved performance, compared to standard
model predictive control, and resolves the feasibility difficulties that arise
with the min–max techniques that are documented in the literature.
The stabilizing properties of the methods are discussed as well as some
practical implementation details.

Index Terms—Feedback, min–max optimization, model predictive con-
trol.

I. INTRODUCTION

Model predictive control (MPC) is a control methodology that
is becoming mature. The basic aspects of the method are now
well understood, and stabilizing formulations of the control law are
documented in the literature, both for linear and nonlinear processes
[1], [2].

The MPC strategy optimizes an open-loop control sequence, at
each sample, to minimize a nominal cost function, subject to some
state and input constraints. The optimization is usually based on
the assumption that the process model is exact and that future
disturbances are constant. Because the control law ignores the effects
of possible future changes in disturbance and model mismatch,
closed-loop performance can be poor [3], with likely violations of
the constraints, when disturbances or model mismatch are present.

Some formulations of MPC have been proposed that address these
issues [4], [5]. These methods rely on a min–max optimization of
predicted performance. However, these formulations optimize a single
control profile over all possible disturbance (or model mismatch)
sequences and therefore do not include the notion that feedback is
present in the receding-horizon implementation of the control. When
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unknown disturbances affect the process, the result is often that the
control law is inapplicable, due to infeasibility.

In this paper, we consider a min–max feedback MPC approach,
in which the model is assumed to be exact, and the effects of
possible future disturbances are taken into account. The formulation
we propose does introduce the notion of feedback in the control
optimization that is performed at each sample.

II. FEEDBACK MIN–MAX MPC

We consider linear time-invariant discrete-time systems described
by

xt+1 = Axt +But + wt (1)

wherext 2 R
n; ut 2 R

m are the state and input vectors, at timet;
A andB are the state transition and input distribution matrices; and
we assume that(A;B) is controllable. The vectorwt 2W � Rn is
an unknown, but bounded, deterministic disturbance;W is compact,
convex, and contains an open neighborhood of the origin.

Because the system cannot be controlled to the origin, due towt,
the standard MPC law must be modified. An obvious possibility is
to ignore the disturbance. However, the resulting performance can be
poor [3]. To overcome this deficiency, we may consider the use of
min–max MPC formulations, similar to those proposed in [4] and [5].
However, this raises other difficulties. On one hand, the usual stability
constraintxt+N = 0 cannot be included in the formulation, since the
system cannot be steered to the origin. Also, the worst case scenarios
corresponding to a nominal control can be considerably worse than
actually achieved by feedback control. This is highly likely to lead
to infeasibility, when state constraints are used.

In this paper, we consider an MPC variant that is also based on
a min–max optimization of the control, but in which we include the
notion that feedback is present. The result is a control law that is
more computationally intensive but which leads to more reliable and
consistent performance.

A. The Control Law

As the state cannot be steered to the origin, the control objective is
to regulate the state of the system to a predetermined robust control
invariant set. A set of state and input constraints must also be satisfied.
We denote the robust control invariant set byX0 and the constraints
are given by

xt 2 X; ut 2 U (2)

whereX0; X; andU are compact, convex sets, each containing an
open neighborhood of the origin, andX0 � X � Rn; U � Rm.

We consider a dual-mode control law, for which we design both an
“inner” and an “outer” controller. The inner controller operates when
the state is in the robust control invariant set,X0, and its role is to
keep the state in this set, despite the disturbance. The outer controller
operates when the state is outside the invariant set and steers the
system state to the invariant set.

The inner controller we use is linear, of the formu = �Kx, and
is such that(A�BK)s = 0, for some finite integers. This property
of the inner controller is important in the construction of the control
robust invariant set, as seen in Section II-B.

For the outer controller, we propose two feedback min–max MPC
schemes, which form the focus of this paper. First, we consider a
fixed horizon formulation; then we present, in Section III, a variable
horizon variant of the method.

We start with the fixed horizon formulation of the control law. At
time t, let fw`

jjtg denote the possible realizations of the disturbance;
` 2 L indexes the realizations. Further, letfu`jjtg denote a control

sequence associated with the`th such realization, and letx`t+jjt
represent the solution of the model equation

x
`
j+1jt = Ax

`
jjt +Bu

`
jjt + w

`
jjt; ` 2 L (3)

with x`tjt = xt, for all ` 2 L. In the fixed horizon case, we consider
the min–max optimization

min
fu g

max
`2L

N�1

j=0

L x
`
t+jjt; u

`
t+jjt

s.t. x`jjt 2 X; j > t; 8` 2 L;

u`jjt 2 U; j � t; 8` 2 L;

x`t+Njt 2 X0; 8` 2 L;

x
`

jjt = x
`

jjt ) u
`

jjt = u
`

jjt; j � t; 8`1; `2 2 L (4)

where N is the control horizon, and the stage cost,L: Rn �
R
m ! R, is a positive semidefinite function. The outer controller is

obtained by receding-horizon implementation of the solution to this
optimization.

The terminal constraintx`t+Njt 2 X0 is the stability constraint
for this formulation and is necessary in order to guarantee stability.
The notion of feedback is introduced into the control optimization
by allowing a different control sequence for each realization of
the disturbance. Combined with this, however, is the “causality
constraint,”x`

jjt = x
`

jjt ) u
`

jjt = u
`

jjt, which restricts the freedom
on the control sequences considered by enforcing a single control
action for each state. Thus, the control predicted for timej depends
only on the state prediction for timej, not on the path taken to reach
that prediction.

Note that in the min–max formulation of [4] and [5] a single control
sequence is optimized over all disturbance realizations. Thus, the
notion that more measurements become available as time progresses
is not included in the formulation; this is the cause of the feasibility
difficulties that are likely to arise with that formulation.

B. Construction of the Robust Control Invariant Set

A setX � Rn is said to be robust control invariant if system
(1), with the predetermined control lawu = �Kx, satisfies the state
and input constraints inX and if (A � BK)X+W � X. Thus, if
the initial state,x, lies in robust a control invariant set, the control
law, u = �Kx, keeps all subsequent states in this set, despite the
disturbance.

The first step in the construction of the robust control invariant
set,X0, is to define the inner controller. We may use any linear
controller,u = �Kx, that steers the system state to the origin in
finite time, when the disturbance is absent. Such a controller always
exists because(A;B) is assumed controllable. For all appropriate
designs ofK, we thus get an integers � n such that(A�BK)s = 0.

The inner controller is used as soon as the state entersX0. For all
initial statesxt 2 X0, we therefore getxt+1 = Fxt + wt, where
F = A �BK. By design ofK, we also haveF sx = 0; F sw = 0,
for all x; w 2 Rn. If xt+j 2 X0 for all j � 0, it follows that, with
j � s; xt+j = wt+j�1 + Fwt+j�2 + � � � + F s�1wt+j�s. In view
of this, we define the set

X0 =W+ FW + � � �+ F
s�1
W: (5)

This set is robust control invariant ifX0 � X and�KX0 � U.

C. The Control Algorithm

The fixed horizon feedback min–max MPC law we propose is
summarized as follows.
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Algorithm 1—Fixed Horizon Feedback Min–Max MPC:

Data: xt.
Algorithm: If xt 2 X0, setut = �Kxt. Otherwise, find

the solution of (4) and setut to the first control
in the optimal sequence calculated.

D. Properties

Certain properties follow immediately from the formulation of
the control optimization. The worst case performance obtained with
this control law, i.e., the performance obtained with the disturbance
realization that is most “upsetting” to the system, has a cost no
greater than the optimal cost for a min–max approach that does not
incorporate the notion of feedback. This results from the increased
number of degrees of freedom in the control optimization.

Under certain assumptions on the cost, the fixed horizon feedback
min–max control law can also be shown to be stabilizing.

Assumption 1:The functionL is convex and such that

L(x; u) = 0; 8x 2 X0; u = �Kx

L(x; u) � �(d(x;X0)); 8x 62 X0; 8u
(6)

where� is a K-function andd(x;X0) denotes the distance of a
point x to the setX0.

Theorem 1: Suppose Assumption 1 holds. Then, the feedback
min–max MPC law given by Algorithm 1 drives the statext

asymptotically to the robust control invariant setX0.
Proof: At time t, statext, let fw`

jjtg; ` 2 L, represent the
possible disturbance realizations and letf�u`jjtg denote the corre-
sponding optimal control sequences. Further, letfx`jjtg and �`t
denote the state trajectories and costs associated with each of the
optimal control/disturbance realizations. The optimal cost, at timet,
is ��t = max`2L �

`
t . At time t, the first of the optimal controls is

applied and the disturbance takes a certain valuewt. Let L1 denote
the set of indexes such thatw`

tjt = wt for all ` 2 L1, andw`
tjt 6= wt

for all ` 62 L1. At time t+ 1, the state has moved along a trajectory
that coincides with the predicted state trajectories indexed by` 2 L1.
The control sequences[�u`t+1jt; �u

`
t+2jt; � � � ; �u

`
t+N�1jt;�Kx`t+Njt];

` 2 L1, then satisfy the constraints and yield costs�`t �L(xt; ut)+
L(x`t+Njt;�Kx`t+Njt) = �`t �L(xt; ut), sincex`t+Njt 2 X0 for all
` 2 L. The optimal cost at timet + 1 is no larger than the largest
of these costs; denoting by��t+1 the optimal cost at timet + 1, we
therefore get��t+1 � max`2L �`t � L(xt; ut), and consequently

��t+1 � ��t � L(xt; ut) (7)

since max`2L ��`t � max`2L ��`t = ��t. The cost is therefore
monotonically nonincreasing. As it is bounded below by zero, it must
consequently converge to a constant value, so that��t� ��t+1 ! 0, as
t!1. From (7), we haveL(xt; ut) � ��t� ��t+1, and it follows that
L(xt; ut) ! 0, as t ! 1. In view of Assumption 1, we conclude
that d(xt;X0) ! 0, as t ! 1, i.e., the state converges toX0

asymptotically.
Remark 1: Note that, if the state entersX0 at any time, it is

subsequently kept inside this set by the inner controlleru = �Kx.
Remark 2: Note also that if, in addition to Assumption 1, we have

L(x; u) � �(jjxjj), for all x 62 X0; u 2 R
m, then the state can be

shown to enterX0 in finite time.
The min–max optimization for the outer controller associates a

separate control sequence for the state trajectories that can result from
every possible disturbance realization. In general, prior knowledge of
the disturbance is limited to a compact convex setW, within which
wt may be assumed to lie. This means an infinite number of dis-
turbance realizations must be considered, leading to an optimization
of infinite dimension. Practical implementation of the controller then

appears possible only in an approximate sense, through quantization
of the disturbance; moreover, this type of approximation invalidates
the proof of Theorem 1. However, due to linearity of the process and
convexity of the constraints and cost, this problem can be resolved.
Indeed, we show below that ifW is a polytope inRn, considering, in
the control optimization, only the “extreme” disturbance realizations,
which take values at the vertices ofW, it leads to a stabilizing
control law that satisfies the constraints for all disturbance realizations
that lie inside the convex hull of the realizations considered in the
optimization.

Remark 3: An “extreme disturbance realization” is a sequence
which takes values at the vertices of the convex setW. Therefore,
every disturbance realization that takes values inW lies in the convex
hull of the extreme disturbance realizations.

Again, at timet, let fw`
jjtg denote the possible realizations of the

disturbance, with̀ 2 L. Further, letW be a polytope inRn and
let Lv denote the set of indexes̀, such thatfw`

jjtg takes values
only on the vertices ofW. We now consider the min–max control
optimization

min
fu g

max
`2L

N�1

j=0

L x
`
t+jjt; u

`
t+jjt

s.t. x`jjt 2 X; j > t; 8` 2 Lv;

u`jjt 2 U; j � t; 8` 2 Lv;

x`t+Njt 2 X0; 8` 2 Lv;

x
`

jjt = x
`

jjt ) u
`

jjt = u
`

jjt; j � t; 8`1; `2 2 Lv (8)

and we obtain the outer control by receding-horizon implementation
of the solution to this optimization. We note immediately that this
optimization has finite dimension, becauseLv contains only a finite
number of indexes; this number depends on the number of vertices of
W and the horizonN . We show that the resulting min–max control
law satisfies the state and input constraints and is stabilizing for all
disturbance realizationsfw`

jjtg; ` 2 L.
Theorem 2: Suppose Assumption 1 holds, and letW be a poly-

tope inRn, with fw`
jjtg; ` 2 Lv, denoting the extreme disturbance

realizations, which take values at the vertices ofW. Then, the
feedback min–max law given by Algorithm 1, with the optimization
of (4) replaced by (8), drives the statext asymptotically to the robust
control invariant setX0.

Proof: At time t, statext, let f�u`jjtg; ` 2 Lv denote the opti-
mal control sequences corresponding to the disturbance realizations
fw`

jjtg; ` 2 Lv. Further, letfx`jjtg denote the state trajectories
associated with each of these optimal control/disturbance realizations.
Finally, let �ut denote the first control in the optimal control sequences.
At time t, state xt, the optimal control�ut is applied and the
disturbance takes a certain valuewt 2 W, driving the state to
xt+1 = Axt + B�ut + wt. Due to linearity of the process,xt+1
lies in cofx`t+1jt j ` 2 Lvg, wherex`t+1jt = Axt +B�ut +w`

tjt, and
cof�g denotes the convex hull of the points in a setf�g. Therefore,
xt+1 may be expressed as

xt+1 =
`2L

�`x
`
t+1jt (9)

where�` are appropriate scalar weights. At timet + 1, statext+1,
consider the control sequence defined as

`2L

�`�u
`
t+1jt; � � � ;

`2L

�`�u
`
t+N�1jt;

`2L

��`Kx
`
t+Njt : (10)

Under this control strategy, the state and input predictions evolve in
the convex hulls of the predictions made at timet so that

x`jjt+1 2 co x`jjt j ` 2 Lv ;

u`jjt+1 2 co �u`jjt j ` 2 Lv ;
8` 2 L: (11)
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Fig. 1. Example: nominal MPC,wt = �1=t.

Since x`jjt 2 X and �u`jjt 2 U for all ` 2 Lv ; j, it follows that,
under this control sequence,x`jjt+1 2 X and u`jjt+1 2 U for all
` 2 L; j. Also, becausex`t+N�1jt 2 X0 for all ` andX0 is robust
control invariant under the control lawu = �Kx, it follows that
x`t+Njt+1 2 X0 for all ` 2 L. So we find that the control sequence
in (10) leads to satisfaction of the state, input, and stability constraints,
at time t+ 1. Furthermore, it yields a cost that is no larger than the
largest cost at timet, becauseL is convex, making the cost a convex
function of the state and input predictions.

As the control sequence in (10), which may be suboptimal, satisfies
the constraints and yields a cost that is no larger than the optimal
cost at timet, we conclude that the optimal cost, at timet + 1, is
no larger the optimal cost at timet. Thus, the cost is monotonically
nonincreasing with time, and using the same arguments as in the proof
for Theorem 1, we conclude that the state converges asymptotically
to the setX0.

E. Computational Issues

The control optimization may be stated as

min
u

max
`2L

�
`
t j u 2 C (12)

where

u = (u1;u2; � � �) (13)

with u` = (u`tjt; u
`
t+1jt; � � � ; u

`
t+N�1jt); the setC is defined by the

stability, state, and input constraints.
This is a linearly constrained convex min–max optimization, which

can be solved using standard optimization techniques. IfW hasp
vertices, the number of controls that are computed ism(1+p+p2+
� � �+ pN�1). This is the dimension of the min–max optimization.

An alternative formulation of the control optimization is

min
u;v

v j �`t � v, for all ` 2 Lv;u 2 C (14)

which is a standard nonlinear program, of dimensionm(1+p+p2+
� � � + pN�1) + 1, the extra dimension being due to the addition of
v as a degree of freedom. We note that although the constraints that
defineC are linear, the constraints�`t � v are not linear inequalities.
However, the problem is convex and can therefore be solved by
available algorithms.

Finally, we note that when the process model is exact, and the
disturbance remains inW, open-loop implementation of the optimal
control sequence computed at any time satisfies the constraints and
drives the state to the invariant set,X0, in finite time. Further reduc-

tions in cost may be obtained by receding-horizon implementation of
the outer controller; nevertheless reoptimization is not necessary, if
computation is at a premium.

F. Illustrative Example

To illustrate the points we make, we consider a very simple
example. The system is described as

xk+1 = xk + uk + wk (15)

with w� � wk � w+, wherew� andw+ are known bounds on the
disturbance,wk. The constraints are given by

xj+1jt 2 X = fx 2 R: � 1:2 � x � 2g;

ujjt 2 U = R;
8j � t: (16)

For this example, we use�w� = w+ = 1. The inner controller is
u = �x, and the robust control invariant set isX0 = fx 2 Rn :
jxj � 1g. We use a horizonN = 3 and the stage cost isL(x; u) = 0,
if x 2 X0, andL(x; u) = x2 + u2, otherwise.

Nominal MPC: In nominal MPC, a single control sequence,
[utjt; ut+1jt; ut+2jt], is optimized at each timet, and the effects
of the disturbances,w0; w1; and w2, are ignored in the control
optimization.

The optimal control ensures that the state constraints are satisfied,
only if w0 = w1 = w2 = 0. Therefore, we havext+1jt 2 X.
However, the actual disturbance may not be zero, and the best
approximation we have ofxt+1 is: xt+1 2 [xt+1jt � w� xt+1jt +
w+]. Consequently, we may get violations of the state constraint in
closed-loop, even though the controller predicts satisfaction of the
constraints at all times.

Also, becausext+1 may not coincide withxt+1jt, the control
sequence[ut+1jt; ut+2jt;�Kxt+3jt] may not satisfy the state con-
straints at timet + 1. Consequently, the stabilizing properties of
traditional MPC are lost.

To illustrate this, we use an MPC scheme, in which the control
is given by minimization of the nominal objective, subject to the
nominal constraints, ifx 62 X0, and byu = �x otherwise. (The
nominal objective and constraints are based on the predictions that
result by assuming thatwt = 0 for all t.)

In Fig. 1, we show the results obtained withx0 = 2 andwt =
�1=t; t � 1; in Fig. 2, the results obtained withx0 = 2 and
wt = � cos(t=5); t � 0 are presented. For this example, we find,
in both cases, that the state is brought to the robust control invariant
setX0 in finite time. However, constraint violations are experienced
during the transient toX0.
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Fig. 2. Example: nominal MPC,wt = �cos(t=5).

Traditional Min–Max MPC: In traditional min–max MPC, a sin-
gle control sequence,[utjt; ut+1jt; ut+2jt], is optimized over all
possible disturbance profiles, at each timet. We therefore get the
prediction

xt+3jt = xt + utjt + ut+1jt + ut+2jt + w0 + w1 + w2 (17)

which yieldsxt+3jt = xt+u0+u1+u2�3, if w0 = w1 = w2 = �1,
andxt+3jt = xt + u0 + u1 + u2 + 3, if w0 = w1 = w2 = 1.

From this, we find that it is impossible to satisfy the state constraint,
xjjt 2 X, for all disturbance realizations. The control optimization
is therefore infeasible and the control law fails.

Even if the state constraint is removed, it is impossible to satisfy
the stability constraint,xt+Njt 2 X0, for all disturbance realizations.
Consequently, the control law still fails, due to infeasibility. More-
over, attempts to continue control in spite of this problem result in
a loss of the stability guarantee.

We cannot present simulations for traditional min–max MPC
because the control law is infeasible, and therefore undefined, for
the example we consider.

Feedback Min–Max MPC:In feedback min–max MPC, a family
of control sequences,[u`tjt; u

`
t+1jt; u

`
t+2jt], is optimized at timet,

each one corresponding to a different disturbance profile.
In view of the above discussion, we need only consider the

extreme disturbance realizations. Over the horizonN = 3, these are
f�1;�1;�1g; f�1;�1; 1g; f�1; 1;�1g; f�1; 1; 1g; f1;�1;�1g;
f1;�1; 1g; f1; 1;�1g andf1; 1; 1g. The corresponding state trajec-
tories are depicted in Fig. 3, and we have the following predictions:

x1t+1jt = xt + utjt � 1 x1t+2jt = xt + utjt + u1t+1jt � 2

x2t+1jt = xt + utjt + 1 x2t+2jt = xt + utjt + u1t+1jt
x3t+2jt = xt + utjt + u2t+1jt
x4t+2jt = xt + utjt + u2t+1jt + 2

x1t+3jt = xt + utjt + u1t+1jt + u1t+2jt � 3

x2t+3jt = xt + utjt + u1t+1jt + u1t+2jt � 1

x3t+3jt = xt + utjt + u1t+1jt + u2t+2jt � 1

x4t+3jt = xt + utjt + u1t+1jt + u2t+2jt + 1

x5t+3jt = xt + utjt + u2t+1jt + u3t+2jt � 1

x6t+3jt = xt + utjt + u2t+1jt + u3t+2jt + 1

x7t+3jt = xt + utjt + u2t+1jt + u4t+2jt + 1

x8t+3jt = xt + utjt + u2t+1jt + u4t+2jt + 3: (18)

Consider now the control sequences,u`jjt, defined by

utjt = �xt u1t+1jt = 1 u1t+2jt = 1

u2t+1jt = �1 u2t+2jt = �1

u3t+2jt = 1

u4t+1jt = �1: (19)

Fig. 3. Example: possible state trajectories.

These lead to the following predictions:

x1t+1jt = �1 x1t+2jt = �1 x1t+3jt = �1

x2t+1jt = 1 x2t+2jt = 1 x2t+3jt = 1

x3t+2jt = �1 x3t+3jt = �1

x4t+2jt = 1 x4t+3jt = 1

x5t+3jt = �1

x6t+3jt = 1

x7t+3jt = �1

x8t+3jt = 1: (20)

For allxt, we find, therefore, that the above set of controls satisfies the
stability and state constraints. The control optimization is therefore
feasible for all initial states, and it follows that the optimal feedback
min–max MPC law is always defined. Moreover, this control law
leads to no constraint violations and is guaranteed stabilizing, as
long aswt 2 [w�; w+].

To conclude, we present simulation results obtained by use of
feedback min–max MPC law. In Fig. 4, we show the results obtained
with x0 = 2 andwt = �1=t; t � 1; in Fig. 5, the results obtained
with x0 = 2 andwt = � cos(t=5); t � 0, are presented. As expected,
we find in both cases, that in spite of the disturbance, the control law
drives the state to the robust invariant setX0 allowing no constraint
violations at any time.
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Fig. 4. Example: min–max MPC,wt = �1=t.

Fig. 5. Example: min–max MPC,wt = �cos(t=5).

III. V ARIABLE HORIZON FORMULATION

The use of variable horizons in MPC has recently come under in-
creasing scrutiny, due to the advantages it offers over fixed horizons.
First, the use of a variable horizon removes the need to design the
fixed horizon, which can be a tricky task. Variable horizon control
schemes, moreover, can lead to identical nominal performance in
open-loop and receding-horizon implementations; provided there is
no model error, this property of the control may be used to avoid any
further computation, without loss of performance, once an acceptable
initial trajectory has been computed. In practice, there is always some
deviation, but the control assuming zero model error is usually a good
first guess for further optimization.

In this section, we formulate the variable horizon variant of
feedback min–max MPC and discuss its properties.

The variable horizon scheme we consider is based on the following
optimization:

min
fu g;N

max
`2L

N

s.t. x`jjt 2 X; j > t; 8` 2 L;

u`jjt 2 U; j � t; 8` 2 L;

x`t+Njt 2 X0; 8` 2 L;

x
`

jjt = x
`

jjt ) u
`

jjt = u
`

jjt; j � t; 8`1; `2 2 L (21)

where the control horizonN becomes a degree of freedom. The
outer controller is obtained by receding-horizon implementation of
the solution to this optimization. As before, the inner controller,
u = �Kx, is used when the state entersX0.

A. The Control Algorithm

The variable horizon feedback min–max MPC law we propose is
summarized as follows.

Algorithm 2—Variable Horizon Feedback Min–Max MPC:

Data: xt

Algorithm: If xt 2 X0, setut = �Kxt. Otherwise, find
the solution of (21) and setut to the first
control in the optimal sequence calculated.

B. Properties

Because the cost in the variable horizon control law is the time
taken to reach the robust control invariant setX0 the controller drives
the state to this set in minimal time. Stability is also easily established.

Theorem 3: The variable horizon feedback min–max MPC law
given by Algorithm 2 drives the statext to the robust control invariant
setX0 in finite time and keeps it in this set for all subsequent times.

Proof: Let fw`
jjtg; ` 2 L represent the possible disturbance

realizations, and letf�u`jjtg denote the corresponding optimal control
sequences at timet. Further, given that the state at timet is xt,
let fx`jjtg and �`t denote the state trajectories and costs associated
with each of the optimal control/disturbance realizations. The optimal
cost, at timet, is ��t = max`2L �

`
t. At time t, the first of the

optimal controls is applied and the disturbance takes a certain value
wt. Let L1 denote the set of indexes such thatw`

tjt = wt for
all ` 2 L1 and w`

tjt 6= wt for all ` 62 L1. At time t + 1,
the state has moved along a trajectory that coincides with the
predicted state trajectories indexed by` 2 L1. The control sequences
[�u`t+1jt; �u

`
t+2jt; � � � ; �u

`
t+N�1jt;�Kx`t+Njt]; ` 2 L1 then satisfy the

constraints and yield costs�`t�1. The optimal cost at timet+1 is no
larger than largest of these costs; denoting by��t+1 the optimal cost at
time t+1, we therefore get,��t+1 � max`2L �`t � 1, and therefore

��t+1 � ��t � 1 (22)

sincemax`2L ��`t � max`2L ��`t = ��t. The cost therefore decreases
to zero in finite time. As��t > 0 for all xt 62 X0, it follows that the
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state entersX0 in finite time. Finally, once the state entersX0, it is
subsequently kept inside this set by the inner controlleru = �Kx.

Like Theorem 1, for the fixed horizon case, this theorem establishes
stability only for the case where the disturbance follows one of the
realizations considered in the optimization. If the disturbance veers
away from the realizations considered, the stability proof no longer
applies. However, as in the fixed horizon case, linearity of the process
and convexity of the constraints allow us to obtain a stability result
that states that only the extreme realizations of the disturbance need
to be considered in the min–max optimization in order to obtain a
control formulation that is stabilizing for all disturbance profiles that
lie in the convex hull of the extreme realizations, i.e., all disturbance
sequences that take values inW (see Remark 3).

As before, we assumeW is a polytope inRn, and we letLv

denote the set of indexes`, such thatfw`
jjtg takes values only on the

vertices ofW. We then consider the min–max control optimization

min
fu g;N

max
`2L

N

s.t. x`jjt 2 X; j > t; 8` 2 Lv;

u`jjt 2 U; j � t; 8` 2 Lv;

x`t+Njt 2 X0; 8` 2 Lv;

x
`

jjt = x
`

jjt ) u
`

jjt = u
`

jjt; j � t; 8`1; `2 2 Lv (23)

and we obtain the outer control by receding-horizon implementation
of the solution to this optimization. Again, this optimization has finite
dimension, becauseLv contains only a finite number of indexes. We
show that the resulting min–max control law satisfies the state and
input constraints and is stabilizing for all disturbance realizations
fw`

jjtg; ` 2 L.
Theorem 4: Let W be a polytope inRn, with fw`

jjtg; ` 2 Lv

denoting the extreme disturbance realizations, which take values
at the vertices ofW. Then, the feedback min–max law given by
Algorithm 2, with the optimization of (21) replaced by (23), drives
the statext to the robust control invariant setX0 in finite time and
keeps it in this set for all subsequent times.

Proof: The first part of the proof proceeds exactly as the proof
for Theorem 2; we find that, at timet + 1, statext+1, the control
strategy of (10) leads to satisfaction of the state, input and stability
constraints. Also, because under that control strategy the state is
forced toX0 in one less sample than at timet, we find that the
control sequence of (10) yields a cost��t � 1, where ��t denotes the
optimal cost at timet. The optimal cost at timet+1 is therefore no
larger than��t�1, and we find consequently that the cost decreases to
zero in finite time. As the cost is greater than zero for all states outside
the invariant setX0 this leads to the conclusion that the state enters
X0 in finite time. Finally, once the state entersX0, it is subsequently
kept inside this set by the inner controlleru = �Kx.

C. Computational Issues

Because of the simplicity of the cost, which involves only the
horizon N , the formulation of the control optimization is simpler
here than in the fixed horizon case.

The control optimization for the variable horizon formulation of
the control law is a mixed-integer nonlinear program, of dimension
m(1 + p + p2 + � � � + pN�1) + 1, the extra degree of freedom
being due to the addition of the variable horizonN as a degree
of freedom. However, as the cost involves only the integer-valued
variableN , the efficient solution of the optimization results from a
simple integer search for the lowestN for which there exists a control
sequence that satisfies the constraints. Once the optimal trajectory
has been calculated at timet, the optimal trajectory at all subsequent
times is known, provided there is no model error. This is because

implementation of the appropriate linear combination of the control
sequences calculated at timet satisfies the constraints and yields a
cost reduction of one at each sample until the state entersX0 (see
proofs of Theorems 2 and 4). This performance must be optimal
since it cannot be improved upon if, indeed, the trajectory calculated
at time t was optimal. When the process model is exact, and the
disturbance remains inW, therefore, the control optimization needs
to be performed only once.

IV. CONCLUSION

In this paper, we have outlined the details of min–max MPC for-
mulations that introduce, in the control optimization, the notion that
feedback is present in the control implementation. This often leads to
improved performance compared to standard MPC schemes, which
do not take into account the effects of possible future disturbances.
The method also avoids the likely feasibility problems that result
from the use of min–max formulations that optimize a single control
profile over all possible future disturbance realizations. These points
were illustrated with a simple example.

The price that must be paid for these benefits is that the compu-
tational demands of the feedback min–max algorithms can be very
high, both in the fixed and variable horizon cases. We showed that
because the process is linear, all possible disturbance realizations do
not need to be considered in the optimization; the control needs to be
optimized only over the extreme disturbance realizations. However,
the number of extreme realizations grows combinatorially with the
horizonN . Although the number of control profiles that are computed
at each sample is smaller than the number of disturbance realizations,
due to the causality constraint, this can make the control optimization
prohibitively expensive if large horizons are used. The method can,
however, be very effective with small horizons. Furthermore, when
the process model is exact and the disturbance remains inW,
the control optimization needs to be performed only once, and
reoptimization is not necessary at each sample. Hence, if the model
error is small, the current control differs little from that obtained
from the previous optimization which, therefore, provides an excellent
initial guess.
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