
Min-max Hypergraph Partitioning1

Dan Alistarh, Jennifer Iglesias, Milan Vojnović

March 2015

Technical Report
MSR-TR-2015-15

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1Dan Alistarh is with Microsoft Research, Cambridge, United Kingdom (daalista@microsoft.com). Jennifer Iglesias is with Carnegie
Mellon University, Pittsburgh, PA (jiglesia@andrew.cmu.edu). Her work was conducted in part while an intern with Microsoft Research.
Milan Vojnović is with Microsoft Research, Cambridge, United Kingdom (milanv@microsoft.com).

Abstract – In many applications, the structure of data
can be represented by a hypergraph, where the data items
are vertices, and the associations among items are repre-
sented by hyperedges. Equivalently, we are given as input
a bipartite graph with two kinds of vertices: items, and as-
sociations (which we refer to as topics). We consider the
problem of partitioning the set of items into a given num-
ber of partitions, such that the maximum number of topics
covered by a partition is minimized.

This is a natural clustering problem, with various applica-
tions such as partitioning of information objects like docu-
ments, images, and videos, or allocation of system resources
in data centers in the context of distributed streaming pro-
cessing platforms or graph computation platforms.

In this paper, we introduce an approximation algorithm
for the offline version of the problem, which is guaranteed to
yield a good approximation for every input instance where
a solution of small cost exists. Further, we consider the
online version of the problem, in which items arrive online
and each item must be assigned irrevocably to one of the
partitions at the time of its arrival. We show that a simple
greedy online assignment of items is able to recover a hidden
co-clustering of vertices under a natural set of recovery con-
ditions. We also report on extensive experimental results,
covering both synthetically generated and real-world input
bipartite graphs, which demonstrate that the greedy online
assignment of items consistently yields superior performance
when compared with alternative approaches.

1. INTRODUCTION
In a variety of applications, the structure of data can be

represented by a hypergraph, where the data items are rep-
resented by vertices and associations among items are rep-
resented by hyperedges, i.e. subsets of items. This can be
equivalently represented by a bipartite graph that has two
kinds of vertices: the vertices representing the items, and the
vertices representing the associations between items, which
we refer to as topics. In this bipartite graph, each item is
connected to one or more topics. The input can be seen as a
graph with vertices belonging to (overlapping) communities.
There has been significant work on partitioning sets of

items such that similar items are assigned to the same parti-
tion, see, e.g., reference [14] for a survey. This problem arises
in the context of clustering information objects such as doc-
uments, images or videos. For example, in the case of docu-
ments, the goal would be to partition documents such that
the maximum number of distinct topics covered by a parti-
tion is minimized, resulting in a parsimonious summary of
each partition. Similar problems arise in the context of data
centers and cloud services, where complex data processing
requirements of applications need to be addressed to design
a scalable system architecture. In the case of distributed
stream processing platforms such as Amazon Lambda [1],
or the Microsoft Bing stream processing platform [23], one
would like to assign user queries to machines, such that
queries which receive streams from similar sources are as-
signed to the same machine, minimizing machine load. Fur-
ther, the same difficulties arise when replicating graph data
among multiple machines. This problem arises in the con-
text of processing enterprise emails [16], online social net-
works [25], and platforms for graph data analytics and ma-

chine learning, such as Giraph and GraphLab.1

Problem Definition. In this paper, we consider the prob-
lem of balanced graph partition with submodular graph cut
costs. The input to the problem is a set of items, a set of
topics, a set of partitions, and a demand matrix that speci-
fies which particular subset of topics is associated with each
individual item. Given an assignment of the items to parti-
tions, the cost of the assignment is the maximum cost of a
partition. The cost of a partition is defined as the number
of distinct topics associated with the items assigned to the
given partition. For instance, when partitioning a set of doc-
uments, the cost of the assignment can be interpreted as the
maximum number of distinct topics associated to the items
in a partition. In the context of load balancing of tasks in
a data center, the cost of the assignment can be interpreted
as the maximum processing cost of a machine, which is as-
sumed to be proportional to the total number of distinct
requirements of the set of tasks assigned to a partition.

In the online version of the problem, items arrive sequen-
tially in time one at a time, and each item needs to be as-
signed, irrevocably, to one of the partitions at its arrival
time. An online algorithm for assigning items to partitions
must have a small computation and storage overhead in or-
der to be practical for deployments at web scale.

The above problem is a natural generalization of a tradi-
tional load balancing problem, where each item is associated
with a fixed weight (possibly depending on the machine it
is assigned to), and the processing cost of a machine is the
sum of weights of the items assigned to it. (We obtain this
classic variant in our setting if we assume items with non-
overlapping sets of topics.) Traditional load balancing is
well studied with good approximation guarantees [3]. In
contrast, the load balancing problem that we consider is
more general, and far less understood. The difficulty stems
from the fact that the processing cost of a machine is a more
general submodular function of the set of items assigned to
the machine.2

To illustrate the graph partition problem with submodu-
lar graph cut costs, let us consider the toy instance of the
problem with the input as given in Figure 1. In this example,
there are four items and three topics, where the sets of topics
associated with individual items are specified by the edges
of the given bipartite graph. Suppose we want to partition
the set of items over two partitions. Assigning items 1 and 2
to partition 1 and items 3 and 4 to partition 2 results in the
cut costs of respective values 2 and 3, thus the maximum
cut cost of 3. However, one can do better. The optimum
value of the cut cost is equal to 2, which can be achieved,
for instance, by assigning items 1 and 3 to partition 1, and
items 2 and 4 to partition 2.

Balanced graph partition with submodular cut costs is NP
hard. The problem is even more challenging in its online ver-
sion, as less information is available to the algorithm when
decisions are made.

Contribution. We explore both offline and online algo-
rithms for balanced graph partition with submodular cut
costs, which we refer to as min-max submodular multi-way
graph cut problem.

1http://giraph.apache.org and http://graphlab.org
2Adding a specific item to a machine that is already assigned
a set of items A leads to an incremental cost less or equal
than if the set of items assigned to this machine was B ⊆ A.

Figure 1: A simple illustrative example of a set of items with
overlapping associations to topics.

Figure 2: An example of a hidden co-clustering with five
hidden clusters.

For the offline problem, we prove that it is possible to
obtain non-trivial approximation guarantees by taking ad-
vantage of approximate solutions to a balanced hypergraph
bisection problem. The balanced hypergraph bisection prob-
lem is known to have anO(

√
logn) approximation [19], where

n is the number of items, and there are well-developed off-
the-shelf software packages that implement efficient heuris-
tics for this problem, e.g. hMetis [17]. We obtain the ap-
proximation guarantee via a recursive partitioning scheme
combined with a well-chosen weight function. The guaran-
tee is useful for problem instances which have small optimum
min-max submodular graph cut cost. Specifically, if the op-
timum solution f∗ to the problem instance satisfies, for some
positive constant c,

f∗ ≤ 1

1− c/k
· m
k

wherem is the number of topics and k is the number of parti-
tions, then our recursive algorithm has O(α) approximation
ratio guarantee, where α is the approximation guarantee
of the algorithm solving the balanced hypergraph bisection
problem. It can be easily shown that m/k is a lower bound
for the optimum value of any instance of the min-max sub-
modular graph cut problem, therefore, the above condition
on f∗ can be interpreted as saying that the problem instance
allows an efficient solution. The key ingredient of our analy-
sis is a careful formulation of a specific instance of a balanced
hypergraph bisection problem which is approximately solved
in a subroutine of our algorithm.
For the online problem, our analysis considers a random

bipartite graph input, as for the worst-case inputs the prob-
lem is intuitively infeasible. In this input model, each item is
associated with a set of topics that is drawn independently
from a probability distribution over the subsets of the set
of topics. This is a mixture distribution, where the compo-
nents of the mixture represent the underlying structure of a

hidden clustering defined as follows.
The set of topics is assumed to be partitioned into a given

number ℓ ≥ 1 of hidden clusters. The distribution over
the set of items is defined as a mixture of distributions
p1, p2, . . . , pl, each defined over the subsets of topics, where
the distribution pi has a higher mass for a topic from cluster
i than for a topic from cluster j ̸= i. Specifically, pi is as-
sumed to be such that a topic from cluster i is selected with
probability p, and a topic from a cluster j ̸= i is selected
with probability q ≤ p. This model is similar in spirit to
the popular stochastic block graph model. The given con-
struction also corresponds to a hidden co-clustering [10, 11]
of the input bipartite graph (see Figure 2 for an example).
We consider asymptotically accurate recovery of this hidden
co-clustering: a hidden cluster is said to be asymptotically
recovered if the portion of items from the given hidden clus-
ter assigned to the same partition goes to one asymptotically
as the number of items observed grows large.

Our main analytic result is a set of sufficient conditions
under which a simple greedy algorithm asymptotically re-
covers the hidden clusters (Theorem 2). We prove that a
sufficient condition for the recovery of hidden clusters is that
the number of clusters ℓ is at least k log k, and that the gap
between the probability parameters q and p is sufficiently
large:

q <
log r

kr
<

2 log r

r
≤ p

where r is the number of topics in a hidden cluster. Roughly
speaking, this means that if the mean number of topics to
which an item is associated with from its corresponding clus-
ter is at least twice as large as the mean number of topics to
which an item is associated with from other clusters, then
the simple greedy online algorithm guarantees asymptotic
recovery of hidden clusters.

The proof is based on a technical coupling argument, where
we first show that assigning an item based on the number
of topics it has in common with each partition is similar
to making the assignment proportionally to the number of
items corresponding to the same hidden cluster present on
each partition. In turn, this allows us to couple the assign-
ment of every hidden cluster with a Polya urn process [9]
with “rich-get-richer” dynamics, which implies that the pol-
icy converges to assigning each item from a hidden cluster to
the same partition. This recovery property then implies that
this strategy will ensure a constant factor approximation of
the optimum assignment.

Further, we provide experimental evidence showing that
the practical performance of this greedy online algorithm
matches its good predicted behavior, on real-world bipar-
tite graph datasets, outperforming more complex assign-
ment strategies, and even offline approaches.

Roadmap. Section 2 introduces the problem and presents
basic results. Section 3 presents an offline approximation,
while Section 4 presents our main theoretical results. Ex-
perimental results are presented in Section 5, and related
work is discussed in Section 6. Technical proofs are deferred
to the online companion technical report [?].

2. SYSTEM MODEL AND DEFINITIONS
In this section we provide a formal problem formulation,

and present some basic results on the computational hard-
ness and lower bounds.

2.1 Problem Formulation
Input. The input includes:

• A set of items N = {1, 2, . . . , n},

• A set of topics M = {1, 2, . . . ,m},

• A set of partitions K = {1, 2, . . . , k},

• A demand matrix D = (di,l) ∈ {0, 1}n×m where di,l =
1 indicates that item needs topic l, and di,l = 0, oth-
erwise.3

There are multiple different ways to represent a set of
items and their corresponding topics. One such representa-
tion is by a bipartite graph G = (N,M,E) where there is
an edge (i, l) ∈ E if and only if item i needs topic l. An
alternative representation is by a hypergraph H = (N,E)
where a hyperedge e ∈ E consists of all items that use the
same topic.

The Optimization Problem. An assignment of items to
partitions is given by x ∈ {0, 1}n×k where xi,j = 1 if item
i is assigned to partition j, and xi,j = 0, otherwise. Given
an assignment of items to partitions x, the cost of partition
j is defined to be equal to the minimum number of distinct
topics that are needed by this partition to cover all the items
assigned to it, i.e.

cj(x) =
∑
l∈M

min

{∑
i∈N

di,lxi,j , 1

}
.

As defined, the cost of a partition is a submodular func-
tion of the items assigned to it. We consider the min-max
submodular graph cut problem defined as follows:

minimize max{c1(x), c2(x), . . . , ck(x)}
subject to x ∈ {0, 1}n×k (1)

hypergraph Partition Formulation. Given an input set
of items and topics specified by a hypergraph H = (N,E),
the problem can be phrased as that of a graph partition
problem where the goal is to partition the set of vertices N
into a given number of k ≥ 2 parts N1, N2, . . . , Nk so as
to minimize the maximum load on a part. The load on a
part is the number of hyperedges adjacent to that part. A
hyperedge is considered to be adjacent to a part if at least
one of its vertices is assigned to that part.

2.2 Basic Results
NP Completeness. We note that our problem is NP-
Complete. The proof follows by reduction from the subset
sum problem.

Lemma 1. The min-max submodular graph cut problem
is NP-Complete.

Lower Bound. The following lemma provides a lower
bound on the optimal value of the problem for a given in-
put, using the observation that each topic needs to be made
available on at least one partition.

3The framework allows for a natural generalization to allow
for real-valued demands. In this paper we focus on {0, 1}-
valued demands.

Lemma 2. For any assignment of items to partitions, the
maximum cost of a partition is at least m/k.

Uniform Random Item Assignment. We now analyze
the performance of an algorithm which simply assigns items
to randomly chosen partitions upon arrival. Although this is
a popular strategy among practitioners, the following result
suggests that random assignment is not a good solution.

Lemma 3. The expected maximum load of a partition un-
der random assignment is of at least(

1− 1

m

m∑
j=1

(
1− 1

k

)nj
)

·m,

where nj is the number of items which have j as a topic.

The proof follows by simply expressing the probability
that a topic j is present on a fixed partition i. As an ex-
ample, if we assume that nj ≥ k for each topic j, we obtain
that the expected maximum load is of at least (1 − 1/e)m.
This suggests that the performance of random assignment is
rather poor, as the maximum load does not decrease as we
increase the number of partitions k.

2.3 Hidden Co-Clustering
We consider a set of topics R, partitioned into ℓ clusters

C1, C2, . . . , Cℓ, each of which contains r topics. Based on
these (hidden) clusters, an incoming item τ is associated
with (subscribes) to topics as follows. The item τ is first as-
signed to a “home” cluster Ch, chosen uniformly at random.
The item then subscribes to topics inside its cluster, picking
each topic independently with some probability p. Next, the
item subscribes to topics from a fixed arbitrary “noise” set
Q of size ≤ r/2 outside its home cluster, where each topic
in Q is subscribed to independently, with some probability
q.4

We say that a bipartite graph with n nodes is in HC(r, ℓ, p, q)
if it is constructed using the above process, with n items
and ℓ clusters with r topics per cluster, where each item
subscribes to topics inside its randomly chosen home clus-
ter with probability p, and to topics from the noise set with
probability q.

Allocating Items. We iterate the generative process over
time, where at each time step t we generate a new item, and
consider a set of k partitions S1, S2, . . . , Sk. At each time
step, the incoming item is immediately assigned to one of the
k partitions, together with all its topics, according to some
policy. Policies do not know the number of hidden clusters
or their size, but can examine previous assignments.

Asymptotic Recovery. We say that an algorithm asymp-
totically recovers the hidden co-clustering C1, C2, . . . , Cℓ if
there exists a time tR and a partition Si for each cluster
Ci such that, after time tR, each item corresponding to the
hidden cluster Ci is assigned to server Si, with probability
1 − ϕ, where ϕ < 1 is some error parameter which we will
choose to asymptotically go to 0.

Balanced Recovery. The recovery condition above can
also be ensured by a trivial algorithm, which places all items

4Sampling outside topics from a large set, such as the set of
all possible topics, would lead any partition housing many
items from a cluster to contain practically all possible topics,
which renders the problem trivial.

Data: hypergraph H = (V,E), integer k
Result: A partition of V into k parts
Compute the weight function wH

Run the balanced hypergraph bisection algorithm on H with
cost function wH

Let V1, V2 be the bi-partition found
if k ̸= 1 then

Run the algorithm again with (H(V1), k/2) and
(H(V2), k/2)
Return the partitions from the results of these two runs

else Return V1, V2

Algorithm 1: Offline approximation using recursive
solving of balanced hypergraph bisection.

on the same partition. We avoid such solutions by requiring
that the ratio between the maximum and average partition
load after time tR is upper bounded by a constant B > 0.

3. OFFLINE APPROXIMATION
Since the problem as defined in (1) is NP-hard, as showed

in Lemma 1, it is natural to ask for an approximation algo-
rithm. By assigning all the items to the same partition, we
obtain a k approximation: this is because assigning all items
to the same partition incurs the maximum cost of a partition
of value m, and by Lemma 2 the optimum maximum cost of
a partition is at least m/k. Therefore, any approximation
algorithm of interest must guarantee an approximation ratio
smaller than k.
We now provide an approximation algorithm for instances

whose optimal solution is close to the lower bound of m/k.
The algorithm is based on recursively finding approximate
solutions to a balanced hypergraph bisection problem which
we define in this section, based on a careful choice of the
weights assigned to vertices used as input to the balanced
hypergraph bisection problem.

3.1 Algorithm
The balanced hypergraph bisection problem takes as input

a hypergraph H = (V,E), a cost function of the vertices,
w : V → R+, and a slackness parameter ν ≥ 0. The goal
is to find a bi-partition of the vertices such that at most
ν
∑

v∈V w(v) of the weight is in each part, and the number
of crossing edges is minimized. An edge is crossing if it has
vertices in both parts of the bi-partition.
We shall use a specific definition of an induced subgraph:

the induced subgraph H(U) of H = (V,E) has vertex set U
and edge set F = {e ∩ U |e ∈ E, e ∩ U ̸= ∅}.
We define a weight function for the vertices of a hyper-

graph H = (V,E) as follows:

wH(v) =
∑

e∈E,v∈e

1

|e| , for v ∈ V

where |e| is the number of vertices in e. These weights may
be interpreted as an approximation of the load of a set of
vertices when there are few crossing edges. The pseudo-code
is given in Algorithm 1.

3.2 Approximation Guarantee
We now provide an approximation guarantee for the min-

max submodular graph cut problem.

Theorem 1. Let f∗ be the optimal cost for the min-max
submodular graph cut problem. For any integer k ≥ 2, given

Data: k; H = (V,E), receives H one vertex at a time; c the
capacity

Result: A partition of V into k parts
Set N1, N2, . . . , Nk to be the empty sets
while there are unassigned items do

Receive the next item t, and its topics R
Let I = {i : |Ni| ≤ minj |Nj |+ c}
Compute ri = |Ni ∩R| for all i ∈ I
Place t and its topics R on the partition i with largest
ri, update Ni

Break ties by choosing the least loaded partition
return N1, N2, . . . , Nk

Algorithm 2: The greedy algorithm.

an α-approximation for the balanced hypergraph bisection
problem, we get an 4[1 + α(k − m/f∗)] approximation al-
gorithm for min-max submodular graph cut.

An immediate corollary of this theorem is a sufficient con-
dition for a constant-factor approximation to our problem.

Corollary 1. Suppose f∗ ≤ m/(k − c), for some c not
depending on m,n, k. Then, an α-approximation for bal-
anced hypergraph bisection gives a O(α)-approximation for
min-max submodular graph cut.

Balanced hypergraph Bisection. Recent breakthrough
results by Anand [19, Theorem 6.1.8] gave an O(

√
logn)

approximation algorithm for the balanced hypergraph par-
tition problem. These results are based on semi-definite
programming and a complex series of reductions, and are
currently not practical. However, the hMetis package [17]
offers heuristic answers to balanced hypergraph bisection.

4. ONLINE APPROXIMATION
In this section, we show that the greedy strategy is ex-

pected to perform well on a hidden co-cluster input.

4.1 The Greedy Online Algorithm
We considered the online version of the problem, where we

receive one item at a time together with all its correspond-
ing topics. The item must be immediately and irrevocably
assigned to some partition.

In the following, we focus on a simple greedy strategy,
described in Algorithm 2. We show that this strategy has
a useful cluster recovery property, and that this theoretical
property is doubled by good practical performance.

The choice of this greedy strategy may appear unintu-
itive: its main goal does not appear to be balancing, but
rather to cluster similar items. This could in theory lead to
large imbalances, and in particular to one partition getting
all the topics. To prevent degenerate cases, we add a bal-
ancing constraint specifying the maximum load imbalance.
If adding the item to the candidate partition resulting from
greedy would violate the balancing constraint, then the item
is assigned to the first partition which can accommodate it
without violating the constraint, in decreasing order of in-
tersection size.

4.2 The Recovery Theorem
Our main technical result provides sufficient conditions

on the cluster parameters for the greedy strategy to provide
balanced recovery of hidden clusters, with high probability.

Theorem 2. We are given a random input consisting of
a hidden co-cluster graph G in HC(r, ℓ, p, q) to be distributed
across k ≥ 2 partitions. If the number of clusters is ℓ ≥
k log k, p ≥ 2 log r/r, and q < log r/(rk), then the greedy
strategy ensures balanced asymptotic recovery of the clusters
with high probability in r.

Coupling and High Probability. In the following, we say
that two random processes are coupled to mean that their
random choices are the same. We say that an event occurs
with high probability (w.h.p.) if it occurs with probability at
least 1− 1/rc, where c ≥ 1 is a constant.

Proof Overview. The proof of this result is quite involved,
and can be summarized as follows. The first step will be
to prove that greedy recovers a single cluster w.h.p. when
assigning to just two partitions. More precisely, given a
sequence of items generated from a single home cluster, and
two partitions, a version of the algorithm without balancing
constraints will eventually converge to assigning all incoming
items to a single partition. This is a main technical step of
the proof, and it is based on a coupling of greedy assignment
with a “rich get richer”Polya urn process [9], and then using
the convergence properties of such processes. Further, we
extend this coupling claim from two partitions to k > 2
partitions, again for a single cluster, showing that, when
the input consists of items from a single cluster, greedy will
quickly converge to assigning all items to a single partition,
w.h.p.
In the next step, we prove that the algorithm will in fact

recover ℓ clusters of items in parallel, assigning each of them
(i.e., most of their corresponding items) independently at
random to one of the partitions, and that this convergence
is not adversely affected by the fact that items also subscribe
to topics from outside their home cluster. The problem of
determining the maximum partition load is then reduced
to showing that the maximum number of clusters that may
be randomly assigned to a partition is balanced, as well as
bounding the extra load due on a server to topics outside
the home cluster and miss-assignments.
Due to space limitations, we defer complete proofs to the

full version of our paper.

Polya Urn Processes. For reference, a Polya urn pro-
cess [9] works as follows. We start each of k ≥ 2 urns with
one ball, and, at each step t, observe a new ball. We assign
the new ball to urn i ∈ {1, . . . , k} with probability propor-
tional to (bi)

γ , where γ > 0 is a fixed real constant, and bi
is the number of balls in urn i at time t. We shall employ
the following classic result.

Lemma 4 (Polya Urn Convergence [9]). Consider a
finite k-bin Polya urn process with exponent γ > 1, and
let xt

i be the fraction of balls in urn i at time t. Then,
almost surely, the limit Xi = limt→∞ xt

i exists for each
1 ≤ i ≤ k. Moreover, we have that there exists an urn j
such that Xj = 1, and that Xi = 0, for all i ̸= j.

4.2.1 Step 1: Recovering a Single Cluster
Strategy. We first prove that, in the case of a single home
cluster for all items, and two partitions (k = 2), with no
balance constraints, the greedy algorithm with no balance
constraints converges to a monopoly, i.e., eventually assigns
all the items from the cluster onto the same partition, w.h.p.
Formally, there exists some convergence time tR and some

partition Si such that, after time tR, all future items will be
assigned to partition Si, with probability at least 1− 1/rc.

Our strategy will be to couple greedy assignment with a
Polya urn process with exponent γ > 1, showing that the
dynamics of the two processes are the same, w.h.p. There is
one serious technical issue: while the Polya process assigns
new balls based on the ball counts of urns, greedy assigns
items (and their respective topics) based on the number of
topic intersections between the item and the partition. It is
not clear how these two measures are related.

We circumvent this issue by taking a two-tiered approach.
Roughly, we first prove that, w.h.p., we can couple the num-
ber of items on a server with the number of unique topics
assigned to the same partition. We then prove that this is
enough to couple the greedy assignment with a Polya urn
process with exponent γ > 1 (Lemma 12). This will imply
that greedy converges to a monopoly, by Lemma 4.

Notation. Fix a time t in the execution of the greedy
assignment process, corresponding to some new item being
randomly generated. A topic r is known at time t if it has
been a topic for some item up to time t. A known topic r
is a singleton if it has been placed on one partition, but not
on others. Otherwise, it is a duplicate. In the following, we
will focus on the above quantities around the special time
t0 = r/ log r, which we shall prove is close to the convergence
time. For simplicity, when referring to a value at time t0,
we omit the subscript.

Convergence to a Monopoly. We first prove that one of
two things must happen during the algorithm’s execution:
either one of the partitions gains a constant size advantage,
or the algorithm can be coupled with a Polya urn process.
In both cases, the algorithm will converge to a monopoly.

Lemma 5. Given a hidden cluster input HC(r, ℓ, p, q), with
ℓ = 1, p ≥ 2 log r/r and q = 0, for every t ≥ t0 = r/ log r, to
be allocated onto two partitions, one of the following holds:

1. With high probability, the greedy algorithm with a clus-
ter and two partitions can be coupled with a finite Polya
urn process with parameter γ > 1, or

2. There exists a constant ρ > 0 such that the ratio be-
tween the number of singleton topics on the two parti-
tions is > 1 + ρ at time t0.

Further, the algorithm converges to assigning all incoming
items to a single partition after some time t ≥ r/ log r,
w.h.p.

4.2.2 Step 2: k Partitions and Convergence
Multiple Partitions. Consider now greedy on k ≥ 3 parti-
tions, but with no load balancing constraint. We now extend
the previous argument to this case.

Let t ≥ r/ log r, and consider the state of the partitions at
time t. If there exists a set of partitions which have a con-
stant fraction more singleton topics than the others, it fol-
lows by a simple extension of Lemma 12 (considering sets of
partitions as a single partition) that these heavier partitions
will attract all future items and their topics, w.h.p. The only
interesting case is when the relative loads of all partitions
are close to each other, say within an ϵ fraction. However,
in this case, we can apply Lemma 12 to pairs of partitions,
to obtain that some partition will gain an monopoly.

Lemma 6. Given a single cluster instance in HC(r, ℓ, p, q)
with p ≥ 2 log r/r and q = 0 to be split across k partitions,
the greedy algorithm with no balancing constraints will re-
cover the cluster onto a single partition w.h.p.

Speed of Convergence. Note that, by Chernoff bounds,
once one of the partitions acquires a constant fraction more
topics from the single cluster than the other partitions, it
will acquire all future topics w.h.p. By Lemma 12, it ei-
ther holds that one of the partitions dominates before time
t0 = r/ log r, or that we can couple greedy with a Polya
urn process with γ > 1 after this time. The only remaining
piece of the puzzle, before we consider the multi-cluster case,
is how fast the Polya urn process converges to a configura-
tion where some partition contains a constant fraction more
topics than the others.
Drinea et al. [12] studied this question. We combine The-

orems 2.1 and 2.4 from their paper to bound the convergence
time of the algorithm as follows.

Theorem 3. Given a hidden co-cluster graph in HC(r, ℓ, p, q),
with parameters p ≥ 2 log r/r, q = 0, and a single hidden
cluster, i.e., ℓ = 1, to be split across k partitions, the follow-
ing holds. There exists a partition j such that, after 2r/ log r
items have been observed, each additional generated item is
assigned to partition j, w.h.p.

4.2.3 Final Step: The General Case
We now complete the proof of Theorem 2 in the general

case with ℓ ≥ 2 clusters and q > 0. We proceed in three
steps. We first show the recovery claim for general ℓ ≥ 2,
but q = 0 and no balance constraints, then extend it for any
q ≤ log r/(rk), and finally show that the balance constraints
are practically never violated for this type of input.

Generalizing to ℓ ≥ 2. A first observation is that, even if
ℓ ≥ 2, the topics must be disjoint across clusters if q = 0.
Also, since we assume no balance constraints, the clusters
and their respective topics are independent. The assignment
problem for clusters then reduces to throwing ℓ balls (the
clusters) into k bins (the partitions). We use concentration
bounds on the result bin loads to understand the maximum
number of clusters per partition, which in turn bounds the
maximum load.

Lemma 7. Assume a clustered bipartite graph G with pa-
rameters ℓ ≥ k log k, p ≥ 2 log r/r, and q = 0, to be split
onto k partitions with no balance constraints. Then, w.h.p.,
greedy ensures balanced recovery of G. Moreover, the max-
imum number of topics per partition is upper bounded by
(1 + β)rℓ/k, w.h.p., where β < 1 is a constant.

Generalizing to q > 0. The next step is to show that, as
long as q < log r/(rk), the greedy process is not adversely
affected by the existence of out-of-cluster topics, since out-
of-cluster topics have a very low probability of changing the
algorithm’s assignment decisions.

Lemma 8. Given q < log r/(rk), then w.h.p. the greedy
process can be coupled with a greedy process on the same
input with q = 0, where r/ log r topics have been observed
for each cluster of topics.

We can combine Lemma 16 and Theorem 3 to obtain that
greedy converges after 2r/ log r items have been observed
out of each hidden cluster.

The Capacity Constraint. Finally, we extend the ar-
gument to show that the partition capacity constraints do
not cause the algorithm to change its decisions, with high
probability. The proof follows by noticing that the load
distributions are balanced across servers as the algorithm
progresses, as items are either distributed randomly (before
convergence), or to specific partitions chosen uniformly at
random (after convergence).

Lemma 9. On a hidden co-cluster input, greedy without
capacity constraints can be coupled with a version of the al-
gorithm with a constant capacity constraint, w.h.p.

Final Argument. Putting together Lemmas 15, 16 and 17,
we obtain that greedy ensures balanced recovery for general
hidden cluster inputs in HC(r, ℓ, p, q), for parameter values
ℓ ≥ k log k, p ≥ 2 log r/r, and q ≤ log r/(rk). This com-
pletes the proof of Theorem 2.

Moreover, the fact that each cluster is recovered can be
used to bound the maximum load of a partition. More pre-
cisely, by careful accounting of the cost incurred, we obtain
that the maximum load is 2.4rℓ/k, with high probability,
where the extra cost comes from initial random assignments,
and from the imperfect balancing of clusters between parti-
tions.

5. EXPERIMENTAL RESULTS
In this section we present experimental performance eval-

uation results for the online assignment of items to parti-
tions. We conduct two types of analysis. The first is for
inputs according to the hidden co-cluster input. The goal
is to illustrate the sufficiency of the recovery condition in
Section 4 and to evaluate robustness of the algorithm to
removing some of the assumptions. The second part con-
siders several real-world instances of bipartite graph inputs
covering a wide range of scenarios and scale of data. In
brief, the first part of the analysis demonstrates sufficiency
of the recovery, while the second part demonstrates good
performance of the greedy online assignment considered in
this paper in comparison to several other natural alternative
assignment strategies.

5.1 Hidden Co-Cluster Graphs
Setup. In this section, we validate our theoretical results on
recovery through experiments. In particular, we generated
hidden co-cluster graphs for various values of parameters
r, ℓ, p, q, and m = rℓ. We focus on two measures. The
first is recall, which is defined as follows: for each cluster,
we consider the partition that gets the highest fraction of
topics from this cluster. We then average these fractions
for all clusters, to obtain the recall. The second measure is
the maximum partition size, i.e., the maximum number of
topics on a partition after m logm items have been observed,
normalized by m/k, which is a lower bound on the optimum.
We expect these two measures to be correlated, however
neither one in isolation would be sufficient to ensure that
greedy provides balanced recovery.

When generating the random inputs, we select a random
home cluster, then subscribe to topics from the home clus-
ter with probability p. When subscribing to topics from
outside the home cluster, we pick every topic from outside
the cluster independently with probability q (so the noise
set Q contains all topics).

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Value of q

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Value of q

0

2

4

6

8

10

12

R
e
la

ti
v
e
 M

a
x
im

u
m

 S
iz

e

(a) Testing the sufficient condition

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Value of q

0

2

4

6

8

10

12

R
e
la

ti
v
e
 M

a
x
im

u
m

 S
iz

e

(b) Experiments for non-uniform sources.

Figure 3: Experiments for hidden cluster bipartite graphs. The dotted line upper bounds the analytic recovery threshold.

Testing the Sufficient Conditions. Our first experi-
ment, presented in Figure 3a, fixes the value of p to 2 log r/r,
and increases the value of q from p/(10ℓ) (below the analytic
recovery threshold) to 8p/ℓ (above the recovery threshold).
The dotted line represents an upper bound on the recov-
ery threshold q = p/(4ℓ). The experiment shown is for
r = 64, ℓ = 64, and k = 20. The results are stable for
variations of these parameters.
The experiments validate the analysis, as, below the cho-

sen threshold, we obtain both recall over 90%, and partition
size within two of optimal. We note that the threshold value
we chose is actually higher than the value q = log r/(rk) re-
quired for the analysis.

Non-Uniform Clusters. We repeated the experiment
choosing home clusters with non-uniform probability. In
particular, we select a small set of clusters which have sig-
nificantly more probability weight than the others. The ex-
perimental results are practically identical to the ones in
Figure 3a, and omitted due to space limitations. These em-
pirical results suggest that non-uniform cluster probabilities
do not affect the algorithm’s behavior.

Non-Uniform Topics. Finally, in Figure 3b, we analyze
the algorithm’s behavior if topics have non-uniform proba-
bility weights. More precisely, we pick a small set of topics in
each cluster which have disproportionately high weight. (In
the experiment shown, four sources out of 64 have .1 prob-
ability of being chosen.) We observe that this affects the
performance of the algorithm, as recall drops at a higher
rate with increasing q.
The intuitive reason for this behavior is that the initial

miss-classifications, before the algorithm converges, have a
high impact on recall: topics with high probability weight
will be duplicated on all partitions, and therefore their are
no longer useful when making assignment decisions.

5.2 Real-World Bipartite Graphs
Datasets and Evaluation. We consider a set of real-
world bipartite graph instances with a summary provided in
Table 4. All these datasets are available online, except for
Zune podcast subscriptions. We chose the consumer to be

the item and the resource to be the topic.
In our experiments, we considered partitioning of items

onto k partitions for a range of values going from two to
ten partitions. We report the maximum number of topics in
a partition normalized by the cost of a perfectly balanced
solution m/k, where m is the total number of topics.

Online Assignment Algorithms. We compared greedy
to the following other online algorithms:

1. All-on-One assigns all items and topics to one parti-
tion.

2. Random randomly assigns each item to a partition.

3. Balance Big receives the items in a random order. It
assigns the the large items to the least loaded par-
tition, and the small items according to greedy. An
item is considered large if it subscribes to more than
100 topics, and small otherwise.

4. Prefer Big receives the items in a random order. It
keeps a buffer of up to 100 small items. When it re-
ceives a large item it puts it on the least loaded par-
tition. When the buffer is full, it places all the small
items according to greedy.

5. Greedy Random receives the items in a random order
and assigns them to the partition they have the most
topics in common with. This is the algorithm we ana-
lyzed. We allowed a slack of up to 100 in all cases.

6. Greedy Decreasing receives the items in decreasing or-
der of the number of topics. It assigns each item to
the partition it has the most in common with, using
the same slack constraint as Greedy Random.

7. Proportional Greedy Decreasing receives the items in
decreasing order of the number of topics. The proba-
bility an item is assigned to a partition is proportional
to the number of common topics with the partition.

In addition to these online heuristics, we also tried some
offline heuristics. We ran into multiple issues in this case,
reported below, given the size of our data sets.

Dataset Items Topics # of Items # of Topics # edges

Book Ratings Readers Books 107,549 105,283 965,949
Facebook App Data Users Apps 173,502 13,604 5,115,433

Retail Data Customers Items bought 74,333 16,470 947,940
Zune Podcast Data Listeners Podcasts 80,633 7928 1,037,999

Figure 4: A table showing the data sets and information about the items and topics.

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

k

N
or

m
al

iz
ed

 m
ax

im
um

 lo
ad

Greedy random
Greedy decreasing
Proportional greedy decreasing
Prefer big
Balance big
Random

(a) Book Ratings

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

k

N
or

m
al

iz
ed

 m
ax

im
um

 lo
ad

Greedy random
Greedy decreasing
Proportional greedy decreasing
Prefer big
Balance big
Random

(b) Facebook App Data

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

k

N
or

m
al

iz
ed

 m
ax

im
um

 lo
ad

Greedy random
Greedy decreasing
Proportional greedy decreasing
Prefer big
Balance big
Random

(c) Retail Data

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

k

N
or

m
al

iz
ed

 m
ax

im
um

 lo
ad

Greedy random
Greedy decreasing
Proportional greedy decreasing
Prefer big
Balance big
Random

(d) Zune Podcast Data

Figure 5: The normalized maximum load for various online assignment algorithms under different input bipartite graphs
versus the numbers of partitions. The dotted line shows the normalized maximum load of All-in-One assignment.

Results. We found that greedy generally outperforms other
heuristics (see Figure 5). Also, the performance of greedy
is improved if items arrive in decreasing order of number of
topics. This observation seems intuitive: the items with
larger number of topics would provide more information
about the underlying structure of the bipartite graph than
the items with smaller number of topics. Interestingly, adding
randomness to the greedy assignment made it perform far
worse; most times Proportional Greedy approached the worst
case scenario. The naive random assignment outperformed
Proportional Greedy and regularly outperformed Prefer Big
and Balance Big item assignment strategies.
We also tested offline approaches to this problem, such as

hMetis [17], label propagation [30], and basic spectral meth-
ods. We found that label propagation and spectral methods
are extremely time and memory intensive on our inputs, due
to the large number of topics and item-topic edges. (The al-

gorithms took more than a day to return, and often ran
out of memory on a 16GB machine.) hMetis returns within
seconds, however the assignments were not competitive—
we note however that hMetis provides balanced hypergraph
cuts, which are not necessarily a good solution to our prob-
lem. For instance, using the hMetis cuts, whether directly
or as an input to the offline algorithm in Section 3, yielded a
less efficient assignment than greedy, on all the above inputs.

6. RELATED WORK
Graph partition, or clustering, or community detection

problems have been studied under many variants of the ob-
jective function and constraints, e.g. see a survey [14].

The min-max multi-way cut problem is related to tra-
ditional load balancing problems formulated as bin pack-
ing and machine scheduling, see a survey on online algo-
rithms [3]. The key distinction from our work is that we

consider the more general case of submodular cost functions.
Online algorithms have also been studied for various other
assignment problems including packing of virtual circuits,
e.g. [2] and [26], multicast sessions, e.g. [15], virtual ma-
chines in data centers, e.g. [6], and dynamic data, e.g. [21].
Much progress has been recently made on approximation
algorithms for online integer linear programming problems
with packing and covering constraints, e.g. see [8] and [4].
Common to all these problems is that they are either of
bin-packing or minimum-congestion type where individual
requests consume fixed amounts of resources. A general
framework for vector assignment problems was formulated
by [13] under assumption that cost functions are convex. A
key difference from our work is that we consider submod-
ular cost functions, thus concave in the framework of [13].
A related problem is min-max multiway cut problem, which
was first introduced in [32]. Given an input graph, here
the objective is to partition the set of vertices such that the
maximum number of edges adjacent to a partition is mini-
mized. This has some similarity to our problem; however,
we consider a different submodular cost of a partition, where
each topic contributes a unit cost if the partition contains
at least one item associated with the given topic. More re-
cently, the min-max multi-way cut problem was also studied
with respect to expansion (the ratio of the sum of weights
of edges adjacent to a part of a partition and the minimum
between the sum of weights of vertices within the given part
and outside of the given part), e.g. [5] [20], which propose
approximation algorithms based on semi-definite programs.
All these problems are different from the one we consider.
Another related problem is balanced graph partition: given

a graph the goal is to find a balanced partition of the set of
vertices that minimizes the total number of edges cut. The
best known approximation ratio for this problem is poly-
logarithmic in the number of vertices [18]. Streaming algo-
rithms for balanced graph partition problem were recently
studied in [28] and [29]. Our work is different in that we
consider a hyper-graph partition problem and the min-max
multi-way cut objective with respect to submodular func-
tions of the vertices. The balanced graph partition problem
was also considered for the set of edges of a graph [7]. Our
problem is related to the bi-criteria optimization problem
considered therein, namely edge-partition problem with ag-
gregation. Notable distinctions include that we consider a
single-criteria optimization and a maximum of submodular
cut costs and not a sum of submodular cut costs. A first
theoretical analysis of streaming balanced graph partition
was presented in [27] using a framework similar to the one
we deploy for the problem of co-clustering. More precisely,
this paper gives sufficient conditions for a greedy strategy
to recover clusters of vertices in a variant of the stochastic
block model. As in our case, the argument uses a reduction
to Polya urn processes. There are two main differences from
our work: conceptually, we consider a different problem, as
we consider the recovery of clusters of topics in a hyper-
graph, as opposed to clusters of vertices in a graph. Second,
technically, we require a two-step reduction to Polya urn
processes: the first step shows that, roughly, item placement
decisions based on intersection of topics can be coupled with
a process deciding on item placement based on the number
of items on each partition. The second step reduces the lat-
ter random process to a Polya urn game, and is more similar
to the graph recovery case.

A popular problem is cluster recovery for graphs in the
stochastic block model. Tight recovery conditions are known
from the work in [24] and [22]. The conditions for recovery
of stochastic blocks in [27] are sufficient, not necessary. One-
pass streaming algorithms were also recently studied in [31];
their computation model is under weaker assumptions not
requiring irrevocable vertex assignments and allowing for
memory polynomial in the number of vertices.

7. CONCLUSION
We studied a hypergraph partition where the goal is to

partition the set of vertices into a given number of partitions
such that the maximum number of hyperedges incident to
a partition is minimized. This is a natural graph clustering
problem formulation which, in particular, arises in the con-
text of assigning complex workloads in data centers. The
formulation is a generalization of traditional load balancing
that allows for tasks with overlapping sets of requirements.

We established novel theoretical results on approximation
algorithms for this problem. In particular, we provided an
approximation algorithm for the offline version of the prob-
lem that guarantees to find a good approximation for every
instance with a small graph cut cost. For the online version
of the problem, we established analytic guarantees for sim-
ple and natural greedy online assignment of items for input
random bipartite graphs defining associations of items. This
amounts to a set of sufficient conditions for recovery of a hid-
den co-clustering of vertices. The performance of this online
item assignment is demonstrated by extensive experiments
using synthetic and real-world input bipartite graphs.

There are several interesting questions for further study.
One is the theoretical question of worst-case approximation
guarantees for the offline version of the problem. The sec-
ond is the study of upper and lower bounds for online algo-
rithms, and the study of online algorithms under different
relaxations of the input bipartite graphs. Another question
of interest is to study strategies for dynamic graph inputs
with addition and deletion of items and topics.

8. REFERENCES
[1] Amazon Web Services. Aws lambda, 2014.

[2] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts.
Competitive routing of virtual circuits with unknown
duration. In Proc. of ACM SODA ’94, 1994.

[3] Y. Azar. On-line load balancing. In Online Algorithms
- The State of the Art, Chapter 8, pages 178–195.
Springer, 1998.

[4] Y. Azar, U. Bhaskar, L. Fleischer, and D. Panigrahi.
Online mixed packing and covering. In Proc. of
ACM-SIAM SODA ’13, 2013.

[5] N. Bansal, U. Feige, R. Krauthgamer, K. Makarychev,
V. Nagarajan, J. SeffiNaor, and R. Schwartz. Min-max
graph partitioning and small set expansion. SIAM
Journal on Computing, 43(2):872–904, 2014.

[6] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer.
Minimum congestion mapping in a cloud. In Proc. of
PODC ’11, 2011.

[7] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced
graph edge partition. In Proc. of ACM KDD ’14, 2014.

[8] N. Buchbinder and J. S. Naor. The design of
competitive online algorithms via a primal-dual

approach. Foundations and Trends in Theoretical
Computer Science, 3(2–3), 2007.

[9] F. Chung, S. Handjani, and D. Jungreis.
Generalizations of Polya’s urn problem. Annals of
Combinatorics, (7):141–153, 2003.

[10] I. S. Dhillon. Co-clustering documents and words using
bipartite spectral graph partitioning. In Proceedings of
the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’01,
pages 269–274, New York, NY, USA, 2001. ACM.

[11] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In Proceedings of
the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’03,
pages 89–98, New York, NY, USA, 2003. ACM.

[12] E. Drinea, A. M. Frieze, and M. Mitzenmacher. Balls
and bins models with feedback. In Proc. of
ACM-SIAM SODA ’02, 2002.

[13] L. Epstein and T. Tassa. Vector assignment problems:
a general framework. Journal of Algorithms, 48(2):360
– 384, 2003.

[14] S. Fortunato. Community detection in graphs. Physics
Reports, 486(75), 2010.

[15] A. Goel, M. R. Henzinger, and S. A. Plotkin. An
online throughput-competitive algorithm for multicast
routing and admission control. J. Algorithms,
55(1):1–20, 2005.

[16] T. Karagiannis, C. Gkantsidis, D. Narayanan, and
A. Rowstron. Hermes: clustering users in large-scale
e-mail services. In Proc. of ACM SoCC ’10, 2010.

[17] G. Karypis and V. Kumar. Multilevel k-way
hypergraph partitioning. VLSI Design, 11(3), 2000.

[18] R. Krauthgamer, J. S. Naor, and R. Schwartz.
Partitioning graphs into balanced components. 2009.

[19] A. Louis. The complexity of expansion problems.
Ph.D. Thesis, Georgia Tech, 2014.

[20] A. Louis and K. Makarychev. Approximation
algorithm for sparsest k -partitioning. In Proc. of
ACM-SIAM SODA ’14, 2014.

[21] B. M. Maggs, F. Meyer auf der Heide, B. Vöcking,
and M. Westermann. Exploiting locality for data
management in systems of limited bandwidth. In Proc.
of FOCS ’97, 1997.

[22] L. Massoulié. Community detection thresholds and the
weak ramanujan property. In Proc. of ACM STOC
’14, 2014.

[23] Microsoft. Scalable information stream processing by
bing in support of cortana scenarios, 2014.

[24] E. Mossel, J. Neeman, and A. Sly. Reconstruction and
estimation in the planted partition model. Probability
Theory and Related Fields, pages 1–31, 2014.

[25] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,
N. Laoutaris, P. Chhabra, and P. Rodriguez. The little
engine(s) that could: Scaling online social networks.
IEEE/ACM Trans. Netw., 20(4):1162–1175, 2012.

[26] H. Räcke. Minimizing congestion in general networks.
In Proc. of FOCS ’02, 2002.

[27] I. Stanton. Streaming balanced graph partitioning
algorithms for random graphs. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’14, pages 1287–1301.

SIAM, 2014.

[28] I. Stanton and G. Kliot. Streaming graph partitioning
for large distributed graphs. In Proc. of ACM KDD
’12, 2012.

[29] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. FENNEL: streaming graph partitioning
for massive scale graphs. In Proc. of ACM WSDM ’14,
2014.

[30] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to
partition a billion-node graph. In Data Engineering
(ICDE), 2014 IEEE 30th International Conference on,
pages 568–579, March 2014.

[31] S.-Y. Yun, M. Lelarge, and A. Proutiere. Streaming,
memory limited algorithms for community detection.
In Proc. of NIPS ’14, 2014.

[32] Z. Z. Svitkina and E. Tardos. Min-max multiway cut.
In K. Jansen, S. Khanna, J. Rolim, and D. Ron,
editors, Proceedings of APPROX/RANDOM, pages
207–218. 2004.

APPENDIX
A. DEFERRED PROOFS

A.1 Proof of Theorem 1

Theorem 1. Let f∗ be the optimal cost for the min-max
submodular graph cut problem. For any integer k ≥ 2, given
an α-approximation for the balanced hypergraph bisection
problem, we get an 4[1 + α(k − m/f∗)] approximation al-
gorithm for min-max submodular graph cut.

Proof. Without loss of generality, we will assume k = 2ℓ

for some integer ℓ. Otherwise, we will lose a factor of 2 in
the approximation.

Consider the task-requirement problem for the input H =
(N,E) with k machines. Let N1, N2, . . . Nk be the optimal
solution of the task-requirement problem, let f∗ be the value
of this solution of the task-requirement problem, and let g∗

be the number of edges cut in this solution.
Let H ′ = (U,F) be the input graph in some application

of the algorithm with |F | = m′. We will show there is a
partition of H ′ with imbalance at most (m′+f∗)/(2m′) and
cost at most g∗. Let Ni = U ∩Ni.

We know that wH′(N ′
i) =

∑
v∈N′

i
wH′(v) ≤ f∗. The num-

ber of edges with a vertex in N ′
i is at most f∗ and each edge

adjacent to N ′
i can contribute at most 1 to the weight of N ′

i .
An edge e contributes 1/|e| to the optimistic cost function
of the |e| vertices it is adjacent to.

Now we will use greedy load balancing to make our desired
bipartition. Sort the N ′

i ’s from largest to smallest in terms
of wH′ , and place them one-by-one on the current smaller
weighted part. Let N ′

j be the piece last placed on the larger
part. It was placed on the larger part, when its weight did
not exceed the final weight of the smaller part. Therefore the
imbalance between the two parts can be at most wH′(N ′

j) ≤
f∗. This bipartition can also only have edges that were cut
in the original solution, so at most g∗ edges were cut.

Our approximation algorithm for balanced hypergraph bi-
section will find a cut with at most αg∗ edges and imbalance
at most (m′ + f∗)/(2m′), at each step. The larger part that
is created will have at most m′/2 + f∗/2 + αg∗ edges adja-
cent to it. Therefore, the largest part after ℓ iterations will

have at most

1

2

(
1

2

(
m′

2
+

f∗

2
+ αg∗

)
+

f∗

2
+ αg∗

)
+ · · ·

edges when the algorithm finishes. This simplifies to

m

k
+

ℓ∑
i=1

2if∗

2k
+

ℓ∑
i=1

2iαg∗

k

≤ m

k
+ f∗ + 2αg∗.

If we consider the number of cut edges in terms of f∗,
we get that kf∗ counts every cut edge at least twice, and all
edges at least once; so kf∗−m ≥ g∗. Also note that m

k
≥ f∗.

Therefore, we obtain a 2+2α(k−m/f∗) approximation when
k is a power of 2 and 4 + 4α(k −m/f∗), otherwise.
The algorithm needs to know the value of f∗. This can be

overcome by simply running the algorithm multiple times as
we know f∗ is bounded between m/k and m.

A.2 Proofs Omitted from Section 4

Lemma 10. 1. For 0 < ϵ < 1 constant, the number of
requirements inside the cluster to which a task τ sub-
scribes is in [2(1− ϵ) log r, 2(1 + ϵ) log r], w.h.p.

2. The expected number of known requirements by time t
is at least r(1− exp(−2t log r/r)).

3. For any time t ≥ r/ log2 r, the number of known re-
quirements is at least r/ log r and the number of single-
ton requirements is at least r/(2 log r), both w.h.p.

Proof. The first statement follows by straightforward
application of Chernoff bounds. To bound the number of
known requirements, notice that, at each step, a specific re-
quirement r is sampled with probability p. Therefore, the
probability that r has not been sampled by time t is (1−p)t.
Plugging in p = 2 log r/r, it follows that the expected num-
ber of unknown requirements up to t is r exp(−2t log r/r),
which implies the second claim.
In particular, this number of unknown requirements by

time t = r/ log2 r is at most r/e2/ log r ≤ r(1 − 3/2 log r),
by the Taylor expansion. Therefore, the expected number
of known requirements up to t is at least 3r/(2 log r). By
a Chernoff bound, it follows that the number of known re-
quirements up to t is at most r/ log r, w.h.p., as required.
To lower bound the number of singleton requirements, no-

tice that it is sufficient to lower bound the number of re-
quirements that have been sampled exactly once up to and
including time t. (Such requirements are necessarily single-
tons.) The probability that a requirement has been sampled
exactly once is tp(1 − p)t−1. Since t ≥ r/ log2 r, we obtain
that the expected number of requirements that have been
sampled exactly once is at least r/(log re1/ log r) ≥ r/ log r,
for large enough r. Hence, the number of singletons up to
this point is at least r/(2 log r), w.h.p., which completes the
proof.

Lemma 11. Assume that the singleton requirement ratio
at time t0 is µ ≤ 1/2 + ϵ, for fixed ϵ < 1, and let ϕ(ϵ) =(

1/2+2ϵ
1/2−2ϵ

)2
. Then, the ratio between the requirement-to-task

quotients of the two servers is in the interval [1/ϕ(ϵ), ϕ(ϵ)],
with high probability.

Proof. Without loss of generality, let partition 1 be the
more loaded one at t0, i.e., µ = σ1/(σ1 + σ2). Let T1 be
the set of tasks assigned to the first partition between times
r/ log2 r and r/ log r, and T2 be the corresponding set for
partition 2. By the Lemma statement, we have that σ1/(σ1+
σ2) ≤ 1/2 + ϵ at t0.

Given this bound, our first claim is as follows. If µ ≤
1/2+ ϵ at time t0, then, for all times r/ log2 r ≤ t ≤ r/ log r,
we have that µt ≤ 1/2+2ϵ, w.h.p. Also, |T1|/(|T1|+ |T2|) ∈
[1/2− 2ϵ, 1/2 + ϵ], w.h.p.

We focus on the proof of the first statement above, and
the second will follow as a corollary. Let us assume for con-
tradiction the converse, i.e., that there exists a time step
r/ log2 r ≤ t ≤ r/ log r for which µt > 1/2 + 2ϵ. We will
show that, after time t, the relative gap in terms of single-
ton requirements between the two partitions will increase,
with high probability, which contradicts our bound at time
t0.

For this, consider an incoming task τ . If this task is sub-
scribing to a known requirement, which we call case 1, then
it will be assigned by the intersection rule. In case 2, it will
be placed uniformly at random on one of the partitions. To
control this process, we split the execution from time t into
blocks of b = r/ log4 r consecutive tasks. Notice that, by
Lemma 10, there are at least r/ log r known requirements
after time r/ log2 r, w.h.p. This implies that the probability
that a task is not assigned by the intersection rule after this
time is at most (1 − 2 log r/r)r/ log r ≤ (1/e)2. Therefore,
each incoming task is assigned by the intersection rule after
this time, with at least constant probability.

Consider now the probability that a case-1 task gets as-
signed to partition 1, assuming that σ1/(σ1+σ2) > 1/2+2ϵ
at the beginning of the current block. This means that the
task has more requirements in common with partition 1 than
2. By simple calculation, this probability is at least

1/2 + 2ϵ

1/2− 2ϵ+ 7b log r/r + 1/2 + 2ϵ
≥ 1/2 + 7ϵ/4,

where we have pessimistically assumed that all the tasks in
the current block get assigned to the second partition, and
that each such task contains at most 7/3 log r new require-
ments. (This last fact holds w.h.p. by Lemma 10.)

For a task i during this block, let Xi be an indicator ran-
dom variable for the event that the task gets assigned to
partition 1, and fix X =

∑
i Xi. We wish to lower bound

X, and will assume that these events are independent—the
fact that they are positively correlated does not affect the
lower bound. We apply Chernoff bounds, to get that, w.h.p.,
X ≥ (1 − δ)7bϵ/4, that is, the first partition gets at least
(1 − δ)7bϵ/4 extra tasks from each block, where 0 < δ < 1
is a constant. On the other hand, the number of case-2
tasks assigned is balanced, since these tasks are assigned
randomly. In particular, it can be biased towards partition
2 by a fraction of at most (1− δ)ϵ/4, w.h.p. We have there-
fore obtained that partition 1 obtains an extra number of
tasks which is at least 3bϵ/2 in each block, w.h.p. Summing
over log2 r blocks, we get that, over a period of r/ log2 r
time steps, partition 1 gets at least (1/2+ 3ϵ/2)r/ log2 r ex-
tra tasks, w.h.p.

Notice that, in turn, this task advantage also translates
into a similar extra proportion of new requirements acquired
during each block. In particular, we obtain that the first
partition acquires an (1/2 + 4ϵ/3) fraction of the new re-

quirements observed in a block, w.h.p. Recall that, by as-
sumption, at the beginning of the process, partition 1 al-
ready had a fraction of (1/2 + 2ϵ) singleton requirements.
Therefore, the event that the singleton requirement ratio is
balanced by at most 1/2 + ϵ at t0 has very low probability,
as claimed. The proof of the second statement follows by a
similar argument.
To complete the proof of Lemma 11, it is enough to notice

that, by the previous claim, the ratio between the requirement-
to-task quotients of the two partitions is bounded as σ1+κ

σ2+κ
·

q2
q1

≤
(

1/2+2ϵ
1/2−2ϵ

)2
, which completes the proof of Lemma 11.

Lemma 12. Given a hidden cluster input Bp(r, ℓ, p, q), for
every t ≥ t0 = r/ log r, one of the following holds:

1. With high probability, the greedy algorithm with a clus-
ter and two partitions can be coupled with a finite Polya
urn process with parameter γ > 1, or

2. There exists a constant ρ > 0 such that the ratio be-
tween the number of singleton requirements on the two
servers is > 1 + ρ at time t0.

Proof. We proceed by induction on the time t ≥ t0. We
will focus on time t0 = r/ log r, as the argument is similar
for larger values of t. Notice that we have two cases at t0.
If there exists a constant ρ > 0 such that the ratio between
the number of singleton requirement on the two servers is
> 1 + ρ at time t, then we are obviously done by case 2.
Therefore, in the following, we will work in the case where

the load ratio between the two servers at time t0 is ≤ 1+ ρ.
W.l.o.g, assume 1 ≤ (σ1 + κ)/(σ2 + κ) ≤ 1 + ρ.
By Lemma 10, the number of singleton requirements at

time t ≥ t0 is at least constant fraction of r, w.h.p., and it
follows that there exists a constant ϵ > 0 such that the sin-
gleton ratio at time t0 is at most 1+ ϵ. Also, the probability
that a task with 3 log r/2 distinct requirements does not hit

any of these known requirements is at most 1/r3/2. Hence,
in the following, we can assume w.h.p. that every incoming
task is assigned by the intersection rule.
By Lemma 11, the ratio between the requirements-to-

task quotients of the two partitions at time t0 is at most(
1/2+2ϵ
1/2−2ϵ

)2
, w.h.p. We now proceed to prove that in this

case the greedy assignment process can be coupled with a
Polya urn process with γ > 1, w.h.p., noting that this part
of the proof is similar to the coupling argument in [27].
By Lemma 10, for t ≥ r/ log r steps, at least 2r/3 require-

ments have been observed, w.h.p. Therefore, the probability
that a task with 3 log r/2 requirements does not hit any of

these known requirements is at most 1/r3/2. Hence, in the
following, we can safely assume that every incoming task is
assigned by the intersection rule.
More precisely, when a new task comes in, we check the

intersection with the number of requirements on each server,
and assign it to the partition with which the intersection is
larger. (Or randomly if the intersections are equal.) Given
a task τ observed at time t ≥ r/ log r, let A be the number
of requirements it has in common with machine 1, and B be
the number it has in common with machine 2.
More precisely, fix j ≥ 0 to be the size of the total inter-

section with either machine, and let a and b be the values of
the intersections with machines 1 and 2, respectively, con-
ditioned on the fact that a+ b = j. Let δ be the advantage

in terms of requirements of machine 1 versus machine 2, i.e.
(σ1+κ)/(σ1+σ2+2κ) = 1/2+δ, and (σ2+κ)/(σ1+σ2+2κ) =
1/2− δ, where κ is the number of duplicated requirements.
We now analyze the probability that a > b.

We can see this as a one-dimensional random walk, in
which we start at 0, and take j steps, going right with prob-
ability (1/2 + δ), and left with probability (1/2 − δ). We
wish to know the probability that we have finished to the
right of 0. Iterating over i, the possible value of our drift to
the right, we have that

Pr[a > b] =

j∑
i=[j/2]+1

(
j

i

)(
1

2
+ δ

)i (
1

2
− δ

)j−i

=

(
1

2
+ δ

)[j/2]+1 [j/2]∑
i=0

(
j

i

)(
1

2
+ δ

)[j/2]−i (
1

2
− δ

)i

.

Similarly, we obtain that

Pr[a < b] =

(
1

2
− δ

)[j/2]+1 [j/2]∑
i=0

(
j

i

)(
1

2
+ δ

)i (
1

2
− δ

)[j/2]−i

.

Since δ > 0, we have that the sum on the right-hand-side
of the first equation dominates the term on the right-hand-
side of the second equation. It follows that

Pr[a > b]

Pr[a < b]
>

(
1
2
+ δ
)[j/2]+1(

1
2
− δ
)[j/2]+1

.

Since the two quantities sum up to (almost) 1, we obtain

Pr[a > b] >

(
1
2
+ δ
)[j/2]+1(

1
2
+ δ
)[j/2]+1

+
(
1
2
− δ
)[j/2]+1

.

Let δ′ be the advantage that the first server has over the
second in terms of number of tasks, i.e. 1/2 + δ′ = q1/(q1 +
q2). Using Lemma 11, and setting ϵ to a small constant, we
obtain that δ ≃ δ′. We can therefore express the same lower
bound in terms of δ′.

Pr[a > b] >

(
1
2
+ δ′

)[j/2]+1(
1
2
+ δ′

)[j/2]+1
+
(
1
2
− δ′

)[j/2]+1
.

The lower bound on the right-hand-side is the probability
that the ball goes in urn 1 in a Polya process with γ = [j/2]+
1. Importantly, notice that, in this process, we are assigning
balls (tasks) with probability proportional to the number of
balls (tasks) present in each bin, and have thus eliminated
requirements from the choice. Let βt be the proportion of
singletons at time t, i.e. (σ1+σ2)/r. We can then eliminate
the conditioning on j to obtain that

Pr[A > B] ≥
d∑

j=1

(
d

j

)
(βt/r)

j(1− βt/r)
d−j Pr[a > b|j]. (2)

The only case where greedy is coupled with a Polya urn
process with undesirable exponent γ ≤ 1 is when j ≤ 1.
However, since a task has at least 3 log r/2 distinct require-
ments, w.h.p., and t ≥ t0 = r/ log r, the probability that we
hit j ≤ 1 requirements is negligible. Therefore we can indeed
couple our process to a finite Polya urn process with γ > 1
at time t0 in the case where the singleton ratio at t0 is at

most 1/2+ ϵ, for ϵ a small constant. We can apply the same
argument by induction for all times t ≥ t0, noticing that,
once the load ratio is larger than a fixed constant, it never
falls below that constant, except with low probability.

Lemma 13. Consider a time t ≥ r/ log r with σ1/(σ1 +
σ2) ≥ 1/2+ ϵ, where ϵ > 0 is a constant. Then, after time t,
greedy will assign all tasks to server 1, with high probability.

Proof. We split the proof into the following two claims.
The first is that, at time t0 = r/ log r, there are at least r/2e
singleton requirements in the system, with high probability.
For the proof, notice that, at time t0, there are r (non-

distinct) requirements drawn by the requirements. Since
these requirements are chosen randomly at every step, we
can model their choices as r balls thrown into r bins, chosen

at random. In particular, r/e
r−log r

r ≃ r/e requirements
that have been seen exactly once, i.e., requirements that
are only required by a single task. With high probability,
we have at least r/2e such requirements. Since that task
can only be assigned to one partition, it follows that such
requirements cannot be duplicated. Therefore, we have at
least r/2e singleton requirements in the system, w.h.p.
The second claim completes the argument. We show that,
under the above assumptions, greedy will assign each task
observed after time t0 to server 1, w.h.p.
For the proof, notice that, since there are Θ(r) singleton

requirements in the system at time t0, it follows that there
exist constants c1 and c2 with c2 > c1 such that the first
server has r/c1 singleton requirements, and the second has
r/c2 singleton requirements. Since each task has ≥ 3 log r/2
requirements, we can use Chernoff bounds to obtain that
the probability that a task sees at least as many singleton
requirements from the second (less loaded) server as from the
first (more loaded one) is exponentially low. We conclude
that, with high probability, all future tasks from the cluster
will be assigned to the first server after time t0.

Lemma 14. Given a single cluster instance in Bp(r, ℓ, p, q)
to be split across k partitions by greedy, the algorithm will
eventually concentrate the cluster onto a single partition.

Proof. Let us now fix two bins A and B. Notice that
the argument of Lemma 12 applies, up to the point where
we compute Pr[A > B] in Equation 2. Here, we have to
condition on either A or B having the maximum number
of intersections, i.e., replacing Pr[#intersections = j] =(
d
j

)
(σt/r)

j(1−σt/r)
d−j with Pr[#intersections = j| A or B is max].

Notice that the coupling still works for j ≥ 2. Therefore, it
is sufficient to show that Pr[#intersections ∈ {0, 1}] ≥
Pr[#intersections ∈ {0, 1}| A or B is max].
This holds since the event (A or B is max) implies that the

intersection is less likely to be empty or of size 1. Therefore,
the argument reduces to the two bin case.

Lemma 15. Assume a clustered bipartite graph G with
ℓ ≥ k log k, p ≥ 2 log r/r, and q = 0, to be split onto k
partitions with no balance constraints. Then, w.h.p., greedy
ensures balanced recovery of G. Moreover, the maximum
number of requirements per partition in this case is upper
bounded by (1 + β)rℓ/k, w.h.p., where β < 1 is a constant.

Proof. Notice that, since the clusters are disjoint and
q = 0, the requirements must be disjoint. Also, since there
is no balance constraint, the clusters and their respective

requirements are independent. Fix an arbitrary cluster Ci.
Let ti be the first time in the execution when we have ob-
served 2r/ log r tasks from Ci. By Theorem 3, after time ti
there exists a partition Pj such that all future tasks asso-
ciated to this hidden cluster will be assigned to Pj , w.h.p.
Also, note that, by Lemma 10, the expected number of re-
quirements from this cluster that may have been assigned to
other partitions by time ti is at most r(1− 1/e2), which im-
plies that at most 8m/9 total requirements may have been
assigned to other partitions by this time, w.h.p.

To examine the maximum partition load, we model this
process as a balls-into-bins game in which ℓ = k log k balls
(the clusters) are distributed randomly across k bins (the
partitions). The expected distribution per bin is of ℓ/k clus-
ters, and, by Chernoff bounds, the maximum load per bin
is (1+α)ℓ/k, with high probability in k, where 0 < α < 1 is
a small constant. This means that a partition may receive
number of requirements of (1 + α)rℓ/k from the clusters
assigned to it. To upper bound the extra load due to dupli-
cates, first recall that at most 8m/9 total requirements from
each cluster may be duplicated, w.h.p. In total, since clus-
ters are distinct, we obtain that 8rℓ/9 total requirements will
be duplicated, w.h.p. Since these duplicates are distributed
uniformly at random, a partition may receive an extra load
of (1 + α)8rℓ/9k requirements, w.h.p. Choosing small α,
we get that the maximum load per partition is bounded by
(1 + α)rℓ/k + (1 + α)8rℓ/9k ≤ 1.9rℓ/k. We contrast this to
the factor obtained by random assignment.

Lemma 16. Given q < log r/(rk), then with high proba-
bility the greedy process can be coupled with a greedy process
on the same input with q = 0, where r/ log r requirements
have been observed for each cluster.

Proof. We couple the two processes in the following way.
We consider a hidden cluster graph G built with q = 0, and
a copy of that graph G′ where q = log r/(rk), running the
algorithm in parallel on the two graphs. Notice that we can
view this process on a task-by-task basis, where in the q = 0
copy the algorithm gets presented with a task τ , while in G′

the algorithm gets presented with a variant τ ′ of τ which also
has out-of-cluster requirements, chosen uniformly at random
from an arbitrary set Q of at most r/2 requirements.

The key question is whether the greedy assignments are
the same for tasks τ and τ ′. We prove that this is indeed
the case, with high probability. In particular, we need to
show that, w.h.p., the outside requirements are not enough
to change the decision based on the intersection argmax.

Given a task τ ′ in G′ which belongs to cluster Ci, notice
that, by Lemma 10, it has at least 3 log r/2 distinct require-
ments in Ci, w.h.p. Let ti be the first time when at least
r/ log r tasks from Ci have been observed. After time ti, us-
ing Chernoff bounds and the pigeonhole principle, the size
of the intersection of τ with one of the k clusters must be of
at least (1− α)(1− 1/e)3 log r/2k, w.h.p., where α > 0 is a
constant.

We now bound the number of requirements that τ has
outside Ci. Since q < log r/rk, it follows that τ may have at
most (1 + β) log r/k requirements outside Ci, w.h.p., where
β is a constant. For small α and β, we get that the num-
ber of home cluster requirements of τ exceeds the number
of outside requirements, w.h.p. In turn, this implies that
the two random processes can be coupled for each cluster
starting with ti, as claimed.

Lemma 17. On a hidden cluster input, greedy without ca-
pacity constraints can be coupled with a version of the algo-
rithm with a constant capacity constraint, w.h.p.

Proof. We can model the assignment process as follows:
during the execution, each of the ℓ clusters has its tasks as-
signed randomly (at the beginning of the execution), then
converges to assigning tasks to a single server. If we regard
this from the point of view of each server i at some time
t, there is a contribution Ri of requirements which comes
from tasks in clusters that are still randomly assigned at t,
and a contribution Fi of requirements coming from tasks in
clusters that have converged. Notice that both these contri-
butions are balanced across servers: each partition has the
same probability of getting a random cluster; also, since clus-
ters are assigned independently and ℓ ≥ k log k, the weight
coming from converged clusters is also balanced across par-
titions. Using concentration bounds for each contribution
in turn, it follows that the maximally loaded partition is at
most a constant fraction more loaded then the minimally
loaded one, w.h.p.

