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ABSTRACT Soft symbol estimations (SSE) is the first process in soft interference cancellation minimum
mean squared error (SIC-MMSE) detection for multiple-input multiple-output (MIMO) systems. SSE
requires the sum of exhaustive multiplications of probability that occupies a non-negligible amount of
the entire SIC-MMSE complexity. This paper proposes two approaches to reduce the complexity of SSE.
The first is to find the approximation of SSE by investigating the estimation in the log-domain, which
leads to a simple min-sum operation. The second is to approximate the hyperbolic tangent with low-order
piecewise polynomial functions. These two approaches are then integrated. The simulation results show that
the proposed methods do not degrade the performance in terms of bit error rate (BER), and that they can
greatly reduce the number of multiplications, from O(K2K) to O(K).

INDEX TERMS soft MIMO detection, SIC-MMSE, iterative detection, coded MIMO, soft symbol
estimation

I. INTRODUCTION

TECHNIQUES to improve the error performance via
iterative estimations have gained strong interest since

the discovery of turbo codes [1]. The basic principle of
improving the performance, almost up to the Shannon limit,
lies in the iterative exchange of soft information between
the two constituent decoders. As multiple antenna technolo-
gies have been rapidly developed, the principle of iterative
estimation was extended to coded multiple-input multiple-
output (MIMO) systems [2]. The symbol level detector can
cooperatively work with the decoder in addition to the soft
information exchange inside the decoder, and it has been
termed joint iterative detection and decoding (JIDD).

Many studies focused on JIDD schemes utilizing mini-
mum mean squared error (MMSE) detection because they
have comparatively good performance and complexity trade-
off [3]- [7]. The requirement of the MMSE method in the
JIDD is the capability to handle soft information, which is
attained by estimating the soft symbol values and processing
them during the MMSE filtering process [5]. Therefore, this
method has been termed the soft interference cancellation
MMSE (SIC-MMSE) method. In the earlier stage of the stud-
ies on JIDD with SIC-MMSE schemes, studies were often
focused on compensating for the performance degradation
compared to JIDD with maximum likelihood (ML) detection,

either by utilizing additional a posteriori information or
additional loops [6] [7]. On the other hand, attempts were
also made to reduce the computational complexity [4].

The introduction of a large-scale or massive MIMO system
attracted attention to reducing the complexity of SIC-MMSE-
based JIDD schemes [8]- [11]. Even though the MMSE-
based scheme reduces the computational complexity com-
pared to the ML detection, the complexity remains too high
for practical implementation in massive MIMO systems. The
previous studies mostly attempted to reduce the complexity
of matrix operations by considering the greatly increased
size of the filtering matrix. The matrix inversion process
during the MMSE filtering process was approximated by
either iteration-based or series expansion methods. These
approximation methods, however, are only valid when the
channel hardening is applicable, such as in the massive
MIMO channel.

In addition, proposals were presented to reduce the com-
plexity of the soft symbol estimation (SSE) process during
SIC-MMSE detection. The soft symbol values used in the
SIC-MMSE process are estimated in the form of statistical
average values, and the estimation requires exhaustive prob-
ability multiplications and an averaging process. The compu-
tational burden of SSE occupies a non-negligible amount of
total computational complexity [3] [12]. Therefore, attempts
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were made to reduce the complexity of SSE [3] [4] [7]. In
addition, a compact closed form of SSE for 2K quadrature
amplitude modulation (QAM) and 2K phase shift keying
(PSK) were proposed [12].

On the other hand, it was found that log-domain proba-
bility estimation can reduce the computational complexity of
soft iterative decoding of low density parity check (LDPC)
code [13]–[15]. In the conventional belief propagation (BP)
decoding algorithm, the check-node update computation re-
quires the multiplication of multiple hyperbolic tangent terms
[16]. Log-domain approximation of this computation, which
has been termed min-sum algorithm, requires only simple
binary operations [13]. In addition, the hyperbolic tangent
function was approximated to a piecewise linear function,
and a look-up table was used for sum-product decoding
algorithm of LDPC code [16].

In this paper, we reduce the computational complexity
of SSE by using two different approaches. The first is to
investigate the statistical average values in the log-domain
to eliminate multiplication operations, and we show that the
multiplication can be realized with a simple min(·) operation.
Eventually, the SSE can be made by min-sum operations with
reduced candidate symbols by combining the approach in
[12]. The second approach is to approximate the hyperbolic
tangent function by using simple low-order polynomial func-
tions, and we propose three candidates. Finally, we combine
these two approaches, and present a simple formula for SSE
which can greatly reduce the computational complexity.

The rest of the paper is organized as follows. In section II,
we briefly present the basic principle of JIDD with the SIC-
MMSE method, and then describe the complexity-reduced
SSE for SIC-MMSE presented in [12]. Section III presents
the proposed methods. After presenting our two complexity-
reduced approaches respectively, we combine them. We
present the bit error rate (BER) simulation results of various
SIC-MMSE schemes in Section IV, and demonstrate that the
proposed schemes produce almost the same performance as
the conventional schemes. We also compare the computa-
tional complexities of estimating SSE, and prove the greatly
reduced complexity in the proposed schemes. Finally, this
paper is concluded in Section V.

Notation: Bold lowercase letters represent vectors, while
bold uppercase letters denote matrices. (·)H of a matrix
denotes Hermitian transpose. | · | denotes the absolute value
of a real number, while || · || denotes the norm of a complex
number. · and Var[·] denote a statistical average (or expected
value) and variance operators, respectively.

II. RELATED WORKS
A. JIDD WITH SIC-MMSE

JIDD can be applied to a coded MIMO system equipped with
the soft MIMO detector and channel decoder which inter-
actively exchange soft information with each other [5] [7].
AssumingNt transmit andNr receive antennas, respectively,
the information symbol vector, s consisting ofNt×1 2K-ary

modulation symbols, is transmitted. Afterwards, the Nr × 1
signal vector y is received as follows:

y = Hs + n, (1)

where H denotes an Nr ×Nt channel matrix and n denotes
an Nr × 1 complex additive white Gaussian noise vector
in which each element has 0 mean and variance of σ2. We
assume that the transmit antennas equally share the energy
and that the receiver knows the channel coefficients.

At the receiver, the SIC-MMSE detector estimates the
transmitted symbol by using a soft MMSE filtering process.
The estimated symbol at the ith layer can be represented as
follows:

ŝi = wiŷi, (2)

where wi is a row vector of the soft MMSE filtering matrix
W and ŷi denotes the ith received symbol vector after
interference cancellation.

Soft information is embedded in the form of the variance of
candidate symbols, inside W. Therefore, SSE is performed
to form W. The SIC-MMSE detector first estimates the ex-
pected value, i.e., the statistical average of the ith transmitted
symbol as follows:

si =
∑
a∈O

a

2K

K∏
k=1

(
1 + x̃i,k tanh

(
Lsi,k
2

))
, (3)

where a is a constellation symbol of O, x̃i,k is considered to
be −1 and 1 when the kth bit of a is 0 and 1, respectively,
and

Lsi,k = L(xi,k) + Lda(xi,k), (4)

where L(xi,k) denotes the soft information estimated by
the detector, and Lda(xi,k) is the a priori soft information
from the decoder. L(xi,k) exists only when the soft MMSE
detector has self-iteration and Lda(xi,k) is set to zero at the
initial stage.

The variance of the candidate symbols Var[si] can be
estimated by using the first and second moments of si as
follows:

Var[si] = ||si||2 − ||si||2, (5)

where

||si||2 =
∑
a∈O

||a||2

2K

K∏
k=1

(
1 + x̃i,k tanh

(
Lsi,k
2

))
. (6)

The soft MMSE filtering matrix W can be formed via two
approaches. The first is to utilize a layer dependent matrix
value. The MMSE filter utilized at the ith layer of the soft
detection, wi is estimated as follows [6]:

wi =
(
(HΣiH

H + σ2INr
)−1hi

)H
, (7)

where Σi is a diagonal matrix containing the a priori infor-
mation at the ith layer, and can be found using

Σi = diag{Var[s1], ···,Var[si−1], 1,Var[si+1], ···,Var[sNt
]}.

(8)
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The second approach is to use a layer-independent soft
MMSE filtering matrix in order to reduce the complexity
by utilizing a universal filtering matrix across the layer. The
filtering matrix for this approach was defined as follows [5]:

W =
(
HHHΣ + σ2INt

)−1
HH , (9)

and

Σ = diag{Var[s1],Var[s2], ...,Var[sNt
]}. (10)

It has been reported that the first approach can be replaced
with the second approach without loss in terms of error-
rate performance [5]. Later, it was shown that the layer-
independent method in (9) requires additional power of 0.15
dB compared to the method in (7) at BER of 10−4. Despite
the additional power requirement of 0.15 dB, the layer-
independent soft MMSE filtering matrix required 4 times
lower complexity for matrix inversion [17].

B. COMPLEXITY-REDUCED SSE

In soft MMSE detection, the first and second moments of
si need to be estimated, which usually requires exhaustive
probability multiplication and addition operations as in (3)
and (6). Therefore, our previous research proposed a compact
closed form of equations to reduce the computational com-
plexity of SSE by using symmetric constellations of Gray-
coded QAM and PSK [12]. Exhaustive estimation of SSE
requires complexity of O(K2K), and the compact proposal
reduces the complexity to O(K2) and O((K − 2)2K−2) for
QAM and PSK, respectively. Here, we summarize the result
for QAM in order to apply it to our proposed scheme in
Section III.

Without loss of generality, we can assume that the informa-
tion bits modulated into real and imaginary parts of a symbol
are independent for QAM. Therefore, the real and imaginary
parts of (3) and (6) can be estimated separately with different
sets of bits. In other words, si = <(si) + j=(si). where
j =
√
−1, <(si) and =(si) are the real and imaginary parts

of si. With this decomposition into real and imaginary parts,
the number of candidate symbols are reduced from 2K to
2K/2 for the real and imaginary parts, respectively. Figure
1 shows this concept. It shows that <(si) and =(si) are the
same as the average values estimated for 2K/2 candidates
symbols which are projection of the all 2K candidates sym-
bols on to real and imaginary axes, respectively. Therefore,

<(si) =
∑
a∈O

<(a)
2K

K∏
k=1

(
1 + x̃i,k tanh

(
Lsi,k
2

))
=

∑
<(a)∈OR

<(a)
2K/2

∏
k∈κR

(
1 + x̃i,k tanh

(
Lsi,k
2

))
,

(11)

FIGURE 1. Concept of decomposing si into <(si) and =(si) for 2K -QAM.

where OR = {<(a)|a ∈ O}, and κR represents a set of bit
indices determining the amplitudes of the real axis. Likewise,

=(si) =
∑

=(a)∈OI

=(a)
2K/2

∏
k∈κI

(
1 + x̃i,k tanh

(
Lsi,k
2

))
,

(12)

where OI = {=(a)|a ∈ O}, and κI represent a set of bit
indices determining the amplitudes of the imaginary axis.

Additionally, a Gray coded QAM always has a symmetric
symbol constellation, as represented in Figure 1. Bit mapping
is symmetric with respect to axes, and we can usually find re-
cursive symmetric characteristics. Utilization of the recursive
symmetric bit mapping for a 2K-QAM symbol constellation,
such as in [18] led to the following simplification [12]:

<(si) = A

K
2∑

α=1

(−1)α2K
2 −αρR,iα ,

=(si) = A

K
2∑

α=1

(−1)α2K
2 −αρI,iα , (13)

where A is one half of the minimum distance, and

ρR,iα =
α∏
β=1

tanh

(
Lsi,2β−1

2

)
,

ρI,iα =
α∏
β=1

tanh

(
Lsi,2β
2

)
. (14)

Similar to the decomposition of si, we can also decompose
the estimation of the second moment in to real and imaginary
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parts, i.e., ||si||2 = <(si)2 + =(si)2, and this lead to

<(si)2 =
∑

<(a)∈OR

<(a)2

2K/2

∏
k∈κR

(
1 + x̃i,k tanh

(
Lsi,k
2

))
,

=(si)2 =
∑

=(a)∈OI

=(a)2

2K/2

∏
k∈κI

(
1 + x̃i,k tanh

(
Lsi,k
2

))
,

(15)

If we expand (15) using the symmetric 2K-QAM symbol
constellation, then we have the following simplified estima-
tion [12].

<(si)2 = A2

µ0 +

K
2 −1∑
α=1

K
2 −α∑
β=1

µα,βϕ
R,i
α,β

 ,

=(si)2 = A2

µ0 +

K
2 −1∑
α=1

K
2 −α∑
β=1

µα,βϕ
I,i
α,β

 , (16)

where

µ0 =
(2K − 1)

3
, µα,β = (−1)β2K−β−2α+1,

ϕR,iα,β =

β∏
γ=1

tanh

(
Lsi,2(α+γ)−1

2

)
,

ϕI,iα,β =

β∏
γ=1

tanh

(
Lsi,2(α+γ)

2

)
. (17)

III. PROPOSED COMPLEXITY REDUCTION
Even though the complexity-reduced SSE described in Sec-
tion II-B reduces the number of candidates, in

∏
operations,

it still requires multiplications and hyperbolic tangent opera-
tions. In this section, we present new methods which tackle
the complexity reduction problem with two approaches that
differ from the conventional methods. First, we eliminate

∏
operations by investigating the statistical average values in
the log-domain. Section III-A presents this, and shows that
the product of the hyperbolic tangent terms can be replaced
with a simple minimum operation, and eventually the SSE
can be realized by a min-sum algorithm. Second, we replace
the hyperbolic tangent function with a few piecewise low-
order polynomial functions in Section III-B. Finally, Section
III-C presents the integrated results of these two approaches.

A. APPROACH 1: LOG-DOMAIN INVESTIGATION OF
STATISTICAL AVERAGE VALUES
The critical complexity burden to estimate si and ||si||2 is
in the product operations of hyperbolic tangent terms. In the
first approach, the complexity is reduced by eliminating the
product operations,

∏
, by investigating the product of two

hyperbolic tangents in the log-domain.
We start our derivation by considering the multiplication of

two hyperbolic tangent terms, i.e., tanh(p) tanh(q), where
p and q are real numbers. The hyperbolic tangent function

is a monotonically increasing function passing through the
origin, and thus the signs of tanh(p) and tanh(q) are the
same as those of p and q, respectively, i.e., sgn(tanh(p)) =
sgn(p) and | tanh(p)| = tanh(|p|). With these properties,
the multiplication of two hyperbolic tangent terms can be
expanded as follows:

tanh(p) tanh(q) = sgn(p)sgn(q)| tanh(p)|| tanh(q)|
= sgn(p)sgn(q) tanh(|p|) tanh(|q|).

(18)

We re-express | tanh(p)|| tanh(q)| to derive its approxima-
tion, as follows:

| tanh(p)|| tanh(q)|
= tanh

[
tanh−1 (tanh(|p|) tanh(|q|))

]
. (19)

Because tanh−1(x) = 1/2 log((1+x)/(1−x)), (19) can be
expanded as follows:

| tanh(p)|| tanh(q)|

= tanh

[
1

2
log

(
1 + tanh(|p|) tanh(|q|)
1− tanh(|p|) tanh(|q|)

)]
. (20)

By inserting tanh(x) = (e2x − 1)/(e2x +1), into the above,
we have the following derivation

| tanh(p)|| tanh(q)| = tanh(|p|) tanh(|q|)

= tanh

1
2
log

1 + e2|p|−1
e2|p|+1

× e2|q|−1
e2|q|+1

1− e2|p|−1
e2|p|+1

× e2|q|−1
e2|q|+1


= tanh

1
2
log

1 + e2(|p|+|q|)−e2|p|−e2|q|+1
e2(|p|+|q|)+e2|p|+e2|q|+1

1− e2(|p|+|q|)−e2|p|−e2|q|+1
e2(|p|+|q|)+e2|p|+e2|q|+1


= tanh

[
1

2
log

(
e2(|p|+|q|) + 1

e2|p| + e2|q|

)]
= tanh

[
1

2
log
(
e2(|p|+|q|) + e0

)
− 1

2
log
(
e2|p| + e2|q|

)]
.

(21)

Next, we apply a popular approximation, log(
∑
i e
xi) ≈

maxi(xi), then

| tanh(p)|| tanh(q)|

≈ tanh

[
1

2
max(2(|p|+ |q|), 0)− 1

2
max(2|p|, 2|q|))

]
= tanh[max(|p|+ |q|, 0)−max(|p|, |q|)]
= tanh[|p|+ |q| −max(|p|, |q|)]
= tanh[min(|p|, |q|)]. (22)

Finally, by reversing back the property of tanh(·) used in
(18), we have

| tanh(p)|| tanh(q)| ≈ min (tanh(|p|), tanh(|q|))
= min (| tanh(p)|, | tanh(q)|) . (23)
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If we expand the above results to a product of multiple
hyperbolic tangent terms, i.e.,

∏N
i=1 tanh(xi), then we have

the following approximation result.

N∏
i=1

tanh(xi) =

(
N∏
i=1

sgn(xi)

)(
N∏
i=1

|tanh(xi)|

)

≈

(
N∏
i=1

sgn(xi)

)(
N
min
i=1
|tanh(xi)|

)
. (24)

Recalling that the product of sign can be implemented with
a simple binary exclusive-or operation, then we find that the
complexity of estimating

∏N
i=1 tanh(xi) is now reduced to

a simple minimum operation. Therefore, inserting (24) into
(13)-(17) will lead to min-sum operations for SSE.

B. APPROACH 2: APPROXIMATION OF HYPERBOLIC
TANGENT FUNCTION
Exact estimation of tanh(·) value requires computational
complexity, at least one exponential value estimation and
multiple additions and a division. In this section, we approx-
imate its value by using three simple piecewise functions.
Even though there have been attempts to apply piecewise
functions to implementations of exponential values, our pro-
posal here is to find the optimum fit to the tanh(·) especially
for soft MMSE detection. Therefore, the results provided in
this section can play an important role when implementing
soft MMSE detection for coded MIMO system. We apply
first-, second-, and third-order piecewise polynomial func-
tions, f (1)(x), f (2)(x), and f (3)(x), respectively.

For the linear function, f (1)(x), we divide the positive
and negative parts into three sections, respectively, On the
other hand, we divide the positive and negative parts into two
sections, for f (2)(x) and f (3)(x).

Our purpose is to approximate tanh(Lsi,k/2) used for SSE.
For this, we define f (1)(x) to f (3)(x) as follows:

tanh
(x
2

)
≈f (1)(x)

,


sgn(x), |x| ≥ T (1)

2 ,

c
(1)
2 x+ sgn(x)c

(1)
0 , T

(1)
1 < |x| < T

(1)
2 ,

c
(1)
1 x, else,

(25)

where

T
(1)
1 =

c
(1)
0

c
(1)
1 − c

(1)
2

, T
(1)
2 =

1− c(1)0

c
(1)
2

. (26)

In addition,

tanh
(x
2

)
≈ f (2)(x)

,

{
sgn(x), |x| ≥ T (2),

sgn(x)
(
c
(2)
2 x2 + c

(2)
1 |x|+ c

(2)
0

)
, else,

(27)

where T (2) is the threshold value to divide the piecewise
regions and it is set for the second order polynomial value
to be 1, that is,

T (2) = min(|x|) s.t. c(2)2 x2 + c
(2)
1 |x|+ c

(2)
0 = 1. (28)

tanh
(x
2

)
≈ f (3)(x)

,

{
sgn(x), |x| ≥ T (3),

sgn(x)
(
c
(3)
3 |x|3 + c

(3)
2 x2 + c

(3)
1 |x|+ c

(3)
0

)
, else,

(29)

where T (3) is set to be as follows:

T (3) = min(|x|) s.t. c(3)3 |x|3 + c
(3)
2 x2 + c

(3)
1 |x|+ c

(3)
0 = 1.

(30)
The optimum values of coefficients, c(l)j for each f (l)(x)

can be found by minimizing the errors when estimating
operations in (14) and (17), which are used for soft MMSE
detection. Even though all piecewise functions, f (l)(x)s are
eventually functions of x, the arguments of the following
minimizing problem will be c(l)j . For each f (l)(x), we find a
set of the optimum coefficients, C(l) satisfying the following.

C(l) = argmin
c
(l)
j ∈C(l)

(
1

n

n∑
p=1

[(
f (l) (xp)

)K
2 −

(
tanh

(xp
2

))K
2

]2)
,

(31)
where n is the number of sampled values of x, xps used in
(31). To find the optimum solution of the above least mean
squared (LMS) problem, we set the range of x in (31) to
|x| < xmax. Because tanh(±∞) = ±1, we set xmax for
efficiency of running the optimization program in (31) as well
as for minimizing the mean squared error (MSE). After we
found that tanh(x/2) = 1 − ε, where ε ≤ 5 × 10−3 for
x ≥ 6, xmax was set to 6. It was confirmed that utilization
of xmax greater than 6 did not alter the solution of (31), i.e.,
the coefficients found in Table 1. In addition, the increment
of x, in (31), i.e., xp−xp−1 was set to 0.1. In our simulation,
an increment value less than 0.1 does not alter the solution.
Because the above optimization is a function of K and
therefore the optimum values of c(l)j s are dependent on K.

Table 1 lists the optimum values found for f (l) (x) with
3-digit precision. In addition, ε(l) denotes the MSE found
by using the optimum coefficient values. Our results of the
optimization process in (31) revealed that c(l)j s for f (1)(x)
and f (2)(x) are different across K values from 6 to 12, and
further that the threshold values to fix f (l)(x) = sgn(x)
are increased with increment of K for f (1)(x) and f (2)(x)
because the error produced near the threshold value regions
becomes more important as K increases. Unlike f (1)(x) and
f (2)(x), coefficients with 3-digit precision for f (3)(x) remain
constant. This is confirmed by the fact that ε(3) is much
smaller than ε(1) and ε(2). Figure 2 compares the estimation
results of tanh(x/2), x ≥ 0, using various methods. In the
legend, “precise estimation” indicates the estimation result
using a computer built-in function, tanh.
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TABLE 1. Optimum values of coefficients for f(l)(x) and mean squared error.

K 6 8 10 12

c
(1)
0 0.680 0.720 0.720 0.740

c
(1)
1 0.400 0.38 0.370 0.360

c
(1)
2 0.070 0.060 0.060 0.055

T
(1)
1 2.061 2.250 2.323 2.426

T
(1)
2 4.571 4.667 4.667 4.727

ε(1)
(
×103

)
0.603 0.744 0.851 0.934

c
(2)
0 0.036 0.037 0.033 0.042

c
(2)
1 0.448 0.439 0.431 0.420

c
(2)
2 −0.052 −0.050 −0.048 −0.046

T (2) 4.441 4.500 4.592 4.688

ε(2)
(
×103

)
1.173 1.644 2.124 2.504

c
(3)
0 −0.017

c
(3)
1 0.590

c
(3)
2 −0.118

c
(3)
3 0.008

T (3) 5.917

ε(3)
(
×103

)
0.025 0.041 0.058 0.074

FIGURE 2. Approximation of tanh(x/2) with piecewise functions, x ≥ 0.

By using the approximated functions to the tanh(·), (14)

can be approximated as follows:

ρR,iα ≈
α∏
β=1

f (l)
(
Lsi,2β−1

)
,

ρI,iα ≈
α∏
β=1

f (l)
(
Lsi,2β

)
. (32)

Likewise, (17) can be also approximated as follows:

ϕR,iα,β ≈
β∏
γ=1

f (l)
(
Lsi,2(α+γ)−1

)
,

ϕI,iα,β ≈
β∏
γ=1

f (l)
(
Lsi,2(α+γ)

)
. (33)

C. INTEGRATION OF APPROACHES 1 AND 2
In this section, we combine approach 1 for log-domain es-
timation and approach 2 with f (l)(x) for approximation of
the hyperbolic tangent function for SSE. Hence, (14) can be
approximated as follows:

ρR,iα ≈

 α∏
β=1

sgn
(
Lsi,2β−1

)( α
min
β=1

∣∣∣f (l) (Lsi,2β−1)∣∣∣) ,
ρI,iα ≈

 α∏
β=1

sgn
(
Lsi,2β

)( α
min
β=1

∣∣∣f (l) (Lsi,2β)∣∣∣) . (34)

Correspondingly, (17) can also be approximated as follows:

ϕR,iα,β ≈

(
β∏
γ=1

sgn
(
Lsi,2(α+γ)−1

))( β

min
γ=1

∣∣∣f (l) (Lsi,2(α+γ)−1)∣∣∣) ,
ϕI,iα,β ≈

(
β∏
γ=1

sgn
(
Lsi,2(α+γ)

))( β

min
γ=1

∣∣∣f (l) (Lsi,2(α+γ))∣∣∣) .
(35)

IV. COMPLEXITY AND PERFORMANCE COMPARISON
The purpose of the proposed schemes is to reduce the com-
plexity of SSE, which is a function of the modulation order,
K. Therefore, we first compare the BER performances of the
proposed methods according to K by using a MIMO scheme
with comparatively small number of antennas. The BER
performance of the proposed methods for JIDD are compared
with those of the conventional schemes by using 4×4 MIMO
systems with 64, 256 and 1024-QAM over a frequency-flat
Rayleigh fading channel. Figure 3 shows the BER perfor-
mances of the various SIC-MMSE-based JIDD schemes. For
the SIC-MMSE, we utilized a layer-independent soft MMSE
filtering matrix in (9). A low-density parity check (LDPC)
code with a length of 16200 bits and a code rate of 1/2 was
used as a forward error correction scheme. In the decoder,
we implement the offset min-sum decoding algorithm [15].
During the JIDD, the maximum numbers of iterations inside
the decoder, between the decoder and detector, and inside the
detector were set to 10, 5, and 2, respectively.
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FIGURE 3. BER simulation results for a 4× 4 MIMO system.

In Fig. 3, C1 and C2 are used to denote conventional
methods, where C1 denotes the conventional exhaustive
method for SSE by using (3) and (6), and C2 denotes the
conventional reduced complexity method for SSE by using
(13) and (16) [12]. On the other hand, P1, P2(x), P2(x2),
P2(x3) and P are used to denote the proposed methods, where
P1 represents the proposed methods for SSE with approach
1, P2(x), P2(x2) and P2(x3) represent SSE with approach
2 using f (1)(x), f (2)(x) and f (3)(x), respectively, and P
represents the integration of P1 and P2(x) descried in III-C.

The BER simulation results shown in Fig. 3, exhibited the
following facts. First, the proposed schemes produce almost
the same BER performance as the conventional schemes,
regardless of the modulation order. Second, the proposed
schemes with f (l)(x)s exhibited almost no performance dif-
ferences. Third, we could apply a common set of coeffi-
cients independent of K, even though the coefficients of the
polynomials found in Table 1 are dependent on K. In other
words, coefficients found for the highest order modulation
scheme can be universally applied to all the other lower order
modulation schemes, without performance degradation. By
noting the above observation, we only consider P2(x) for
approach 2 when comparing the computational complexity
of the proposed schemes.

In order to further confirm that the proposed schemes work
efficiently for MIMO systems with lager number of antennas,
we present BER performance for MIMO systems with vari-
ous number of antennas. Figure 4 presents BER performance
of 16 × 128 and 8 × 64 MIMO systems using 64 and 256-
QAM, respectively. The proposed methods produce almost
the same BER performance as the conventional methods as
in the 4× 4 system.

We compare the computational complexity of various SSE
schemes utilized in the SIC-MMSE, in terms of the number
of multiplications nm per symbol, and thus they are repre-

FIGURE 4. BER simulation results for 64 and 256-QAM with various number
of antennas.

TABLE 2. Comparison of computational complexities of SSE

Methods nm for si nm for ||si||2 Others

C1 (K + 2)2K (K + 1)2K tanh(·)

C2 K2−2K+8
4

K3−6K2+8K+24
24

tanh(·)

P1 2 1 tanh(·), | · |, min(·)

P2(x) K2+2K+8
4

K3−6K2+8K+24
24

-

P K + 2 1 | · |, min(·)

sented as a function of K. Table 2 presents nm required
to estimate si and ||si||2. In addition, we also represent a
few additional operations other than the multiplications. The
estimation of nm is mainly counted for the multiplication of
tanh(·) in (14) and (17). We do not include the multiplication
with coefficients of (−1)α2K

2 −α in (13) and µα,β in (16)
because they have an integer power of 2, and thus can be
simply implemented by shifting operations.

The results in Table 2 demonstrate that the complexities
of P1 are reduced to O(1) from the exponentially increasing
complexities of the conventional methods, except tanh(·).
Even though P2(x) still requires a complexity of O(K3), it
does not require any tanh(·) operations. By integrating P1
with P2(x), the proposed method P achieves the complex-
ity of O(K) without any tanh(·) operations. However, the
proposed methods need additional binary operations to re-
place the product operation, and this will additionally require
exclusive-or operations of the sign bits and operations for
finding the minimum.

Figure 5 compares the computational complexity of the
various schemes, in terms of nm, according to the number
of bits in a symbol, K. In the figure, tanh(·) was assumed
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FIGURE 5. Complexity comparison of SSE.

to be estimated by using a third-order polynomial equation
for the conventional scheme. It was used to estimate si and
||si||2, and thus the complexity in terms of nm for tanh(·)
was estimated as 5K. The complexity reduction effect of
P2(x) is greater than that of P1 when K is less than 10.
The complexity reduction effect was maximized with P. For
example, when K = 8, P1 needs only 0.88% and 68.25%
of the complexity required by C1 and C2, respectively, and
P2(x) needs only 0.63% and 49.21%, respectively. On the
other hand, P with integration of both needs only 0.22%
and 17.46% of nm required by C1 and C2, respectively.
The complexity reduction effect of the proposed methods
becomes more evident as K increases.

V. CONCLUSION
The paper has presented efficient methods to reduce the
complexity of SSE. The complexity reduction problem was
tackled with two different approaches: the first reduces the
complexity to O(K) from O(K2K), and the second replaces
the hyperbolic tangent estimation with a simple piecewise
linear equation. We found no noticeable performance degra-
dation of the proposed schemes compared to the conventional
schemes. The proposed schemes are applicable to all SIC-
MMSE-based MIMO detection schemes and can signifi-
cantly reduce the complexity.

ACKNOWLEDGMENT
We thank the anonymous reviewer of our previous letter [12],
who kindly recommended the idea to estimate SSE in the log-
domain which leads to these valuable results.

REFERENCES
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo-codes,” in Proc. IEEE Int. Conf.
Commun., May 23-26, 1993, Geneva, Switzerland, pp. 1064–1070.

[2] B. M. Hockwald and S. Ten Brink, “Achieving near-capacity on a multiple-
antenna channel," IEEE Trans. on Commun., vol. 51, no. 3, pp. 389-399,
Mar. 2003.

[3] M. Tuchler, A.C. Singer, and R. Koetter, “Minimum mean squared error
equalization using a priori information,” IEEE Trans. on Signal Pro., vol.
50, no. 3, pp. 673-683, Mar. 2002.

[4] A. Tomasoni, M. Ferrari, D. Gatti, F. Osnato, and S. Bellini, “A Low
Complexity Turbo MMSE Receiver for W-LAN MIMO Systems,” Proc.
IEEE Int. Conf. Commun. (ICC), vol. 9, pp. 4119-4124, Jun. 2006.

[5] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of soft-input
soft-output MIMO detection using MMSE parallel interference cancella-
tion,” IEEE J. of Solid-State Circuits, vol. 46, no. 7, pp. 1754-1765, Jul.
2011.

[6] S. Ahmed and S. Kim, “Efficient SIC-MMSE MIMO detection with three
iterative loops," AEU - Int. J. of Electronics and Commun., vol. 72, pp.
65-71, Feb. 2017.

[7] M. Zhang, S. Ahmed, and S. Kim, “Iterative MMSE-based soft MIMO
detection with parallel interference cancellation,” IET Commun., vol. 11,
no. 11, pp. 1775-1781, Sep. 2017.

[8] L. Dai, X. Gao, X. Su, S. Han, C. I, and Z. Wang, “Low-complexity soft-
output signal detection based on Gauss-Seidel method for uplink multiuser
large-scale MIMO system,” IEEE Trans. on Vehicular Tech., vol. 64, no.
10, pp. 4839-4845, Oct. 2015.

[9] X. Qin, Z. Yan, and G. He, “A near-optimal detection schemes based
on joint steepest descent and Jacobi method for uplink massive MIMO
systems,” IEEE Commun. Letters, vol. 20, no. 2, pp. 276-279, Feb. 2016.

[10] F. Jin, Q. Liu, H. Liu, and P. Wu, “A low complexity signal detection
scheme based on improved Newton iteration for massive MIMO systems,”
IEEE Commun. Letters, vol.23, no. 4, pp. 748-751, Apr. 2019.

[11] M. Zhang and S. Kim, “Evaluation of MMSE based iterative soft detection
schemes for coded massive MIMO system,” IEEE Access, vol. 7, no. 1, pp.
10166-10175, Dec. 2019.

[12] S. Chan, M. Zhang, and S. Kim, “A Compact Soft Symbol Estimation for
Iterative MIMO Detection,” IEEE Wireless Commun. Letters, vol. 9, no.
10, pp. 1790-1794, Oct. 2020.

[13] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. on Com-
mun., vol. 53, no. 8, pp. 1288-1299, Aug. 2005.

[14] S. Myung, S. Park, K. Kim, J. Lee, S. Kwon, and J. Kim, “Offset and
Normalized Min-Sum Algorithms for ATSC 3.0 LDPC Decoder,” IEEE
Trans. on Broadcasting, vol. 63, no. 4, pp. 734-739, Dec. 2017.

[15] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation of
min-sum algorithm and its modifications for decoding low-density Parity-
check (LDPC) codes,” IEEE Trans. on Commun., vol. 53, no. 4, pp. 549-
554, Apr. 2019.

[16] S. Papaharalabos et al., “Modified sum-product algorithms for decoding
low-density parity-check codes,” IET Commun., vol. 1, no. 3, pp. 294-300,
Jun. 2007.

[17] S. Ahmed, F. Iqbal, M. Zhang, and S. Kim, “Complexity reduced MIMO
detection with three iterative loops,” in 2017 International Conference on
Information and Communication Technology Convergence (ICTC), Oct.
18-20, 2017, Jeju, South Korea, pp. 213-216.

[18] M. Zhang and S. Kim., “Universal soft demodulation schemes for M-ary
phase shift keying and quadrature amplitude modulation,” IET Commun.,
vol. 10, no. 3, pp. 316-326, Mar. 2016.

SATYA CHAN was born in Cambodia in 1992. He
received the BTech degree in electronic engineer-
ing from NPIC, Cambodia, in 2014. Right after
he graduated, he worked as a voluntary staff in an
NGO from 2014 to 2017, and worked as a reporter
in AE company for 7 months. He received the ME
degree from Jeonbuk National University, Korea,
in 2019, and now, he is pursuing his PhD degree at
the same university. His research interests include
soft detection for coded MIMO system and rate-

less codes for satellite communication systems.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3045984, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SOOYOUNG KIM was born in Korea in 1967.
She received the B.S degree in electrical and
electronics engineering from KAIST, Korea, in
1990. After having worked Satellite Communi-
cation Technology Division, ETRI, Korea from
February 1990 to September 1991, she received
the M.Sc and the Ph.D degree in electrical and
electronics engineering from University of Surrey,
U.K in 1992 and 1995 respectively. She became
became a Member (M) of IEEE in 1998 and a

Senior Member (SM) in 2018.
From November 1994 to June 1996 she was employed as a research fellow

at the Centre for Satellite Engineering Research, University of Surrey, U.K.
In 1996 she re-joined the Satellite Communication Technology Division,
ETRI, Korea, and worked as a team leader until February 2004 to develop ef-
ficient transmission techniques for digital satellite communication systems.
She is now a professor in Jeonbuk National University. Her research interests
include coded MIMO schemes and iterative soft detection and decoding for
wireless communication systems. She is an editor of International Journal of
Satellite Communications and Networking. She has been working on ITU-R
since 2000, and has contributed to make radio interface standard of satellite
component in the IMT system. Now, she is actively working on Working
Party 4B of ITU-R, and she was appointed as an international standardization
expert in Korea.

VOLUME 4, 2016 9


