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Abstract. In this paper we study configuration spaces of hard spheres in a

bounded region. We develop a general Morse-theoretic framework and show
that mechanically balanced configurations play the role of critical points. As

an application, we find the precise threshold radius for a configuration space

to be homotopy equivalent to the configuration space of points.

1. Introduction

Configuration spaces of n points in Rd are well studied [4]. In this article we are
interested in a natural generalization, configuration spaces of non-overlapping balls
in a bounded region in Rd.

Besides their intrinsic mathematical interest, the study of these spaces is mo-
tivated by physical considerations. For example, in statistical mechanics “hard
spheres” (or in two dimensions “hard disks”) are among the most well-studied
models of matter. Computer simulations suggest a solid-liquid phase transition for
hard spheres [17], but this is not well understood mathematically.

A number of papers in statistical mechanics have explored the hypothesis that
underpinning phase transitions are changes in the topology of the underlying con-
figuration space or equipotential submanifolds [24, 16, 1, 9]. Franzosi, Pettini, and
Spinelli show that under fairly general conditions (smooth, finite-range, confining
potentials), the Helmholtz free energy cannot pass through a phase transition unless
there is a change in the topology of the underlying configuration space [11, 10]. This
theorem unfortunately does not apply to configuration spaces of hard spheres, since
the potential function is not smooth — but the Morse-theoretic methods developed
here may be a step in the direction of extending it to include hard spheres.

Several other papers have investigated configuration spaces as models of motion
planning for robots [8, 13]. For example, Farber’s “topological complexity” can be
thought of as measuring the difficulty of designing an algorithm for navigating the
space. As Deeley recently pointed out when he studied “thick particles” on metric
graphs, the assumption that robots are points is not physically realistic, and giving
the points thickness wildly complicates the topology of the underlying configuration
space [6].

Let B be a bounded region in Rd. Define Conf(n, r) to be the configuration space
of n non-overlapping balls of radius r in B. We are especially interested here in
understanding when the topology changes if n is fixed and r is varying . First we
consider the extreme cases. For r sufficiently small, one expects that Conf(n, r) is
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homotopy equivalent to the configuration space Conf(n) of n distinct points in B
— for a survey of configuration spaces of points see Cohen [4]. On the other hand
for r sufficiently large, Conf(n, r) is empty. Indeed finding the smallest such r is
the sphere packing problem in a bounded region — see for example Graham et al.
[15, 2, 18, 19] and Melissen [22, 21].

In this note we develop a Morse-theoretic framework which provides a necessary
condition for the topology to change — mechanical balanced configurations play
the role of critical points (and submanifolds). As an illustration of the method, we
find the precise threshold radius below which Conf(n, r) is homotopy equivalent to
Conf(n).

2. Tautological Morse function

Fix n, and define Conf(n) to be the set of ordered n-tuples of distinct points in
a bounded domain B ⊂ Rd:

Conf(n) = {~x = (x1, . . . , xn) | xi ∈ B, xi 6= xj for i 6= j}.

As an open subset of Rdn, Conf(n) has the structure of a smooth manifold. Let
τ : Conf(n)→ R be defined by

(1) τ(~x) := min

(
1

2
min
i 6=j

d(xi, xj),min
i

min
p∈∂B

d(xi, p)

)
,

where ∂B denotes the boundary of B. We call τ the tautological function. Then
by definition the configuration space of n balls of radius r in B is given by

Conf(n, r) = τ−1[r,∞).

This observation suggests using a “Morse”-type theory of τ to study the topology
of Conf(n, r) and especially how the topology changes as r varies. One obvious
trouble on that route is the fact that τ typically is not smooth, so that we need a
general framework which allows us to work with non-smooth functions.

In the next section we will discuss the properties of min-type functions, that is
functions on a manifold M given as the minimum of a parametric family of real
valued functions

τ(x) := min
p
f(p, x), x ∈M,p ∈ P,

where P is a compact parameter space, and f is continuously differentiable in x
for every fixed p ∈ P . We note that the function given by (1) falls within this
category, if one considers as P the disjoint union of the discrete set corresponding
to pairs (i, j), 1 ≤ i < j ≤ n and of n copies of the boundary, formed by the pairs
(i, p), 1 ≤ i ≤ n, p ∈ ∂B.

It should be remarked that the Morse-type theory of the min (or even min-max)
type functions has appeared in the literature (compare [20, 3, 12]), but in a much
more restrictive context (with essentially finite parameter space).

3. Min-type Morse theory

Let us start with some notation and definitions.
For a manifold M and function f : M → R, let M c denote the superlevel set at

c, i.e. M c = f−1[c,∞).
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We say that a function h : (s, t) → R, is increasing with speed at least v > 0 if
h(t′) − h(s′) ≥ v(t′ − s′) for any s′ < t′ in the interval (s, t). We note that such a
function does not have to be even continuous.

We record for later use the following (immediate) result:

Lemma 3.1. Let f : M × R → R be a continuous proper function, (strictly)
increasing along each fiber {x} × R. Then the fiber-wise inverse φ : (x, c) 7→ inf(t :
f(x, t) = c) is continuous on M × [c1, c2] for any interval [c1, c2] which belongs to
the ranges of all the functions fx(·) := f(x, ·).

Proof. As f is proper, then the t-projection of the preimage of a compact interval
[c1, c2] is compact as well. Further, if a sequence (xi, ci) converges to (x∗, c∗), yet
ti := φ(xi, ci) fails to converge to t∗ := φ(x∗, c∗), we can, using the boundedness
of the sequence (ti), choose a subsequence such that along it tj → t 6= t∗. By
continuity, lim f(xj , tj) = f(x∗, t) (as xj converge to x∗). The fact that f(xj , tj) =
cj implies that f(x∗, t) equals c∗, which by the continuity of f also equals f(x∗, t∗).
This contradicts the assumption that f increases fiber-wise. �

For a smooth vector field V on M we will denote the time t shift along the
trajectories of V as SVt . We will say that the function f increases along the tra-
jectories of V with non-zero speed, if for some common v > 0, and for all x ∈ M ,
hx : t 7→ f(SVt x) increases with speed at least v.

Lemma 3.2. Let M be a smooth manifold and f : M → R a continuous function,
such that Ma is compact. Suppose that M admits a smooth vector field V non-
vanishing on f−1[a, b], and such that f is increasing along the trajectories of V on
the set f−1[a, b] with non-zero speed. Then M b is a deformation retract of Ma.

Lemma 3.2 can be seen as a generalization of Theorem 3.1 in [23] for non-smooth
functions f . We remark here that one can drop here the non-zero speed condition,
requiring only that f is increasing along the trajectories of V , but we do not need
this strengthened form in this paper.

Proof. For x ∈Ma set a partially defined function on Ma×R by g(x, t) := f(SVt x).
The non-zero speed condition implies that [a, b] is in the range of g(x, ·) for any
x ∈ f−1([a, b]), and together with the compactness of Ma implies that g is proper.

Hence, by Lemma 3.1, φ̃(x, c) = inf(t : f(SVt x) ≥ c) is well defined and continuous,

as well as φ(x, c) = max(φ̃(x, c), 0). As for any c ≤ f(x), φ(x, c) = 0, φ vanishes on
M b × [a, b].

Now define the homotopy

H : Ma × [0, 1]→Ma

as
H : (x, τ) 7→ SVφ(x,(1−τ)a+τb)x.

Continuity of φ implies continuity ofH; the facts thatH(x, 0) = idMa , H(x, τ)|Mb =
idMb for 0 ≤ τ ≤ 1 and H(x, 1) ∈M b are immediate. �

3.1. Regular values of min-type functions. Next we will use the fact that the
tautological function τ is the minimum of a compact family of smooth functions.
We want to establish conditions when a value c is topologically regular, that is for
which there exists some ε > 0 such that M c+ε is a deformation retract of M c−ε.

We give a general condition for topological regularity, as follows.
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Let P be a compact metric space, M a compact smooth manifold with boundary
and

f : P ×M → R
a continuous function such that the x-derivative of f (that is, the gradient of fp,
where fp(x) = f(p, x)) is continuous on P ×M . We will be talking of P as the
parameter space.

We denote by τ := minp∈P fp the min-function of the family f . The set N ⊂
P ×M defined by

N := {(p, x) : f(p, x) = τ(x)}
is compact, and the slices

Nx := {p ∈ P : (p, x) ∈ N}
are upper semi-continuous: for any x ∈M and any open neighborhood UNx ⊃ Nx
there exists an open neighborhood Ux 3 x such that for x′ ∈ Ux, Nx′ ⊂ UNx.

Next we show that if one can perturb each x to increase τ then we can do so
globally with a minimum speed.

Lemma 3.3. Assume that for any x ∈M , there exists a tangent vector Vx ∈ TxM
such that LVx

fp > 0 for all p ∈ Nx. Then

• for some positive v there exists smooth vector field V on M such that
LV fp ≥ v > 0 in some open vicinity of N , and
• along the trajectories of V , the min-function τ increases with speed at least
v.

Proof. For any x ∈ M , we can extend the vector Vx ∈ TxM to a smooth vector
field on M (which we still denote as Vx), such that LVx

f > 0 in some open vicinity
UNx × Ux of Nx × {x}. By compactness, there exists a finite collection of points
{xi} in M such that the open sets Ui := UNxi

×Uxi cover N (and the open sets Uxi
cover M), and v > 0 such that LVifp ≥ v on Ui (here Vi := Vxi). Using a partition
of unity we arrive at the first conclusion. The second conclusion is immediate. �

For x ∈M consider the intersection of the open half-spaces

Hx(p) := {v ∈ TxM : 〈dfp|x, v〉 > 0}
over all p ∈ Nx. This is an open convex cone

Cox :=
⋂
p∈Nx

Hx(p)

in TxM .
Upper semicontinuity of Nx implies lower semicontinuity of Cox; for any x ∈ M

and any open set V ⊂ TM intersecting Cox, there exists an open neighborhood
Ux 3 x such that for x′ ∈ Ux, Cox′ intersects V . In particular, if Cox is non-empty,
it remains such in a vicinity of x.

Combining Lemmata 3.2 and 3.3 we obtain the following

Corollary 3.4. If the cones Cox are non-empty over the level set τ−1(c), then c is
topologically regular.

For general min-type functions this is essentially the best possible condition
for the regularity of the critical values. If the functions fp are quasi-convex, i.e.
have convex lower excursion sets {fp ≤ c}, then Corollary 3.4 can be considerable
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strengthened. Thus, one can show (we will do it in a follow-up paper) that a critical
value is topologically regular, if for all points at the level set, the intersection of
the closed half-spaces is a cone over a contractible base. This observation relies on
stratified Morse theory due to Goresky and MacPherson[14], but is in a nutshell
close to the elementary result used by Connelly in his work on the existence of
continuous “unlocking” deformations of hard ball configurations, see [5].

Corollary 3.4 implies that unless the level set of the tautological function τ−1(r)
contains a point x with Cox = ∅, the homotopy type of Conf(n, r) is locally constant
at r.

By Farkas’ lemma, the emptiness of the cone Cox implies that there exists a finite
collection of points pi ∈ Nx, i = 1, . . . , I ≤ dimM + 1, and positive weights wi > 0
such that

(2)
∑
i

widfpi |x = 0.

4. Critical points and stress graphs

In our hard spheres setting, the vanishing of the convex combination (2) has a
clear geometric interpretation.

For ~x ∈ Conf(n, r), define a stress graph of ~x to be a graph embedded in Rd whose
vertices are the points x1, . . . , xn and boundary points y ∈ ∂B where d(xi, y) = r
for some i. The edges are the pairs {xi, xj} where d(xi, xj) = 2r and {xi, y} where
d(xi, y) = r. Each edge k is assigned a positive weight wk. The points xi are
referred to as internal points and the points y are referred to as boundary points.
We interpret this graph as a system of mechanical stresses, with (repulsive) forces
acting on the endpoints of a segment k equal to wk times the unit vector in the
direction of k. Call the mechanical stresses acting on boundary points boundary
mechanical stresses. Call a connected component trivial if it consists of a single
point. Call ~x trivial if Γ(~x) has no edges.

A stress graph is said to be balanced if it satisfies the following condition.

• The mechanical stresses at each internal point sum to zero.1

• The boundary mechanical stresses on each connected component sum to
zero.

Say that the configuration is ~x is balanced if it has a balanced stress graph.
Call an internal point isolated if it is not in the boundary of any edges. For

each point xi call the intersection of the stress graph with the points on the sphere
d(xi, x) = r kissing points of xi. Call a kissing point that is also a boundary point
a boundary kissing point.

Lemma 4.1. Assume that ~x ∈ Conf(n, r) is balanced. Then

(1) each non-isolated internal point is in the convex hull of its kissing points,
and

(2) each non-trivial connected component is contained in the convex hull of its
boundary kissing points.

Now consider ~x ∈ Conf(n) that is a critical point of τ with critical value r.
In (2), the parameters pi correspond either to the pairs of touching hard spheres,
d(xai , xbi) = 2r, or to the hard sphere xci touching the boundary, d(xci , yi) = r,

1This result is similar to the necessary conditions for “locking”, see e.g. [5].
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at a point yi ∈ ∂B. Let Γ(~x) be the corresponding stress graph for ~x with weights
given by the coefficients wi in (2).

Theorem 4.2. If ~x ∈ Conf(n) is a critical point of τ with critical value r, then ~x
is balanced and nontrivial as a point in Conf(n, r).

Proof. Consider ~x ∈ Conf(n, r) and consider Γ(~x). From (2) it follows that the
mechanical stresses at each internal point sum to zero.

The sum of mechanical stresses in each connected component equals the sum of
mechanical stresses on internal points and the sum of external mechanical stresses.
From (2) and the first observation it follows that the boundary mechanical stresses
on each connected component sum to zero.

Finally, since the sum in (2) is nontrivial, ~x is nontrivial. �

5. Hard spheres in a box

Consider now in more detail the case of hard spheres in a rectangular box with
sides L := L1 ≤ . . . ≤ Ld, given, for definitiveness sake, by

B = {0 ≤ fm ≤ Lm,m = 1, . . . , d}.
(Here {fm} is the orthonormal coordinate system on Rd.)

5.1. Initial interval. We show that Theorem 4.2 implies a lower bound on the
length of the initial interval of values of r, where the homotopy type of Conf(n, r)
remains constant.

Theorem 5.1. For the rectangular box B, there are no critical values of τ in
(0, L/2n), and therefore,

Conf(n, r) ' Conf(n)

for r < L/2n.

Proof. Assume that ~x ∈ Conf(n) is a critical value for τ with critical value r. Then
by Theorem 4.2, ~x is balanced and nontrivial. A connected component of Γ(~x)
contains at most n internal points and thus has diameter at most 2nr. Since ~x is
nontrivial, it has at least one nontrivial connected component. It is contained in
the convex hull of its boundary points, so it contains at least one boundary point.
Since the boundary mechanical stresses of this connected component sum to zero,
it must contain a pair of boundary points from opposing faces. Thus the diameter
of this connected component is at least L. Therefore r ≥ L/2n. �

We remark that the balanced stress graph of minimal diameter is not necessarily
a segment, for non-rectangular boxes. For example, for the “concave triangle”, it
is a cone over three points, see Figure 1.

5.2. First perestroika. A natural question is now to ask, whether there is a topol-
ogy change as nr goes above the minimal length of the stress graph. We concentrate
in the rest of the note on the case of the rectangular box with the shortest side of
length L, and will investigate, whether

i : Conf(n, r′)→ Conf(n, r), r′ = L/2n+ ε, r = L/2n− ε
is a homotopy equivalence, for small enough ε.

We argue that it is not, by presenting explicit nontrivial (dn − n − d)-cycles in
ker(Hi) ⊂ Hdn−n−d(Conf(n, r′),Z).
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Figure 1. Minimal length stress graph

Indeed, let 0 < ε < L/2n(n − 1) (so that (n − 1) disks of radius r′ would fit
within the box when arranged in a vertical column, and n would not), and consider
the set Sε of n-point configurations in B given by the conditions

• x1 fixed is at distance r′ from the center of the face {f1 = 0},
• |xi+1 − xi| = 2r′ for i = 1, . . . n− 1, and
• xn is at distance r′ from the face {f1 = L1}.

In other words, we consider the configurations for which the n disks touch each
other and the opposite horizontal faces, forming a chain, see Figure 2.

Figure 2. A configuration in Sε.

An immediate computation shows that Sε is diffeomorphic to a (nd − n − d)-
dimensional sphere. Orient it in some way, obtaining a class s ∈ Hnd−n−d(Conf(n, r′)).

Next we show that s is nontrivial by constructing a cohomology class with which
it has a nontrivial pairing.

Consider now the set Σ of configurations in Bn given by

• all points x1, . . . , xn have the same coordinates f3, . . . , fd;
• all points x2, . . . , xn have the same coordinates f2, . . . , fd;
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• the f1 coordinates of x2, . . . , xn satisfy

f1(x1) ≥ r; f1(xi+1)− f1(xi) ≥ 2r, for i = 2, . . . , n− 1; f1(xn) ≤ L− r,
and
• f2(x1) ≤ f2(x2).

In other words, the configuration consists of n − 1 vertically aligned nonover-
lapping r-disks constrained to have the same (f1, f2)-plane (with the same f3, . . .d
coordinates as the disk x1), see Figure 3.

f1

2f

Figure 3. A configuration in Σ.

The conditions above are given by a finite collection of linear equalities and
inequalities, and therefore define a convex polyhedron of dimension d + n. The
boundary of this polyhedron is in Bn − Conf(n, r′), whence, upon orientation it
defines a relative class σ ∈ Hn+d(Bn,Bn − Conf(n, r′)).

We notice that the space Bn of n-tuples of points in B can be embedded into
the nd-dimensional sphere Snd (consider a large ball containing Bn and contract
its boundary to a point). By excision and the long exact sequence for a pair,
Hn+d(Bn,Bn − Conf(n, r′)) ∼= Hn+d(S

nd, Snd − Conf(n, r′)) ∼= Hn+d−1(Snd −
Conf(n, r′)). By Alexander duality the class σ can be identified with a class (which
we still denote by σ) in Hnd−n−d(Conf(n, r′)).

Lemma 5.2. The pairing between the classes s and σ is non-trivial: s · σ = ±1.

Proof. Indeed, the manifolds Sε and Σ intersect transversally at a single point. �

As one can observe, there exists a retraction of Sε to a point staying within
Conf(n, r), implying that the class s is in the kernel of Hi. Indeed, we first can
reduce all the distances between by shrinking the differences between the adjacent
chain centers so that

xi+1 − xi 7→
tr − (1− t)r′

r′
(xi+1 − xi), t = [0, 1]; i = 1, . . . , n− 1

and x1 remains fixed (clearly, this homotopy keeps the configuration in Conf(n, r)).
Then one can pull all the vectors (xi+1−xi) so that they point vertically upwards2

(as not one was initially pointing downwards).

2We think of f1 as height.
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For each permutation π of indices 1, . . . , n one obtains different classes sπ, and
one can easily see that the pairing with the corresponding n! classes σπ is non-
degenerate (because corresponding Sε and Σ’s are all geometrically distinct). Hence,
the rank of the kernel of Hi is at least n!.

We notice that the sphericity of the set Sε does not depend on the fact that the
stress graph is a chain. For the configuration on Figure 1, the corresponding set is
diffeomorphic to a sphere as well: it is just the corollary of the first critical value
coming from a topologically Morse critical point, compare [20].

5.3. Betti numbers. We can also compute how the Betti numbers change across
the first threshold. Set r∗ = L/2n, and note that as the tautological function is
semi-algebraic for semi-algebraic regions, its critical values are isolated. As the
only balanced stress graphs in the case of a rectangular domain are the chains
spanning the shortest dimension, for some small ε there are no other critical values
in (r∗ − ε, r∗ + ε).

It is well known [4] that the configuration space Conf(n) of n (labeled) points in
Rd has Poincaré polynomial

P (t) :=
∑
i≥0

βit
i

=

n−1∏
i=1

(
1 + itd−1

)
= 1 + · · ·+ (n− 1)!Hn−1t

(n−2)(d−1) + (n− 1)!t(n−1)(d−1),

where

Hn−1 =

n−1∑
i=1

1/i.

This tells us the Betti numbers of Conf(n, r∗ − ε), since we have already shown
that Conf(n, r∗ − ε) is homotopy equivalent to Conf(n). We wish to compute the
Betti numbers of Conf(n, r∗ + ε).

Let N = (n−1)(d−1). As we shrink the disks across the critical value r∗ = L/2n,
to the configuration space we attach k n! cells of dimension N , where k is the
largest number such that Lk = L, whose boundaries are representatives for the
homology classes s defined in Section 5.2. Each of these cells either increments βN
or decrements βN−1.

The first observation is that

βi[Conf(n, r∗ + ε)] = βi[Conf(n, r∗ − ε)]
for i ≤ N − 2. As (the proof to appear in a follow-up paper) one can show that
βi(Conf(n, r)) = 0 for i ≥ N and r > r∗, so in particular

βi[Conf(n, r∗ + ε)] = 0

for i ≥ N . Thus (n − 1)! of the N -cells increase βN . This leaves only βN−1 to
compute.

Every N -cell that does not contribute to βN decreases βN−1. Since we know
that kn! cells are added, (n− 1)! of them contributing to βN , we have

βN−1[Conf(n, r∗ + ε)] = βN−1[Conf(n, r∗ − ε)] + k n!− (n− 1)! ,
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and since

βN−1[Conf(n, r∗ − ε)] =

{
(n− 1)!Hn−1 : d = 2
0 : d ≥ 3,

we have

βN−1[Conf(n, r∗ + ε)] =

{
(Hn−1 + kn− 1)(n− 1)! : d = 2
(kn− 1)(n− 1)! : d ≥ 3.

6. Concluding remarks

In a future article we will discuss non-degeneracy of critical points, which is
closely related to the question of making our necessary condition for a change in
the topology sufficient. We also discuss defining and computing the index of critical
points, and especially investigate more of the asymptotic properties of Conf(n, r)
as n→∞. In particular we obtain bounds on the rate of growth of Betti numbers.

An important special case for which little seems known is: What is the threshold
radius r = r(n) for connectivity of Conf(n, r)? This is an important question phys-
ically, since for example ergodicity of any Markov process hinges on connectivity
of the state space. Diaconis, Lebeau, and Michel noted that r ≤ c/n is sufficient
to guarantee connectivity of Conf(n, r) [7] and this is best possible for certain re-
gions. It would be interesting to know if connectivity of the configuration space
ever extends into the thermodynamic limit, i.e. are there any bounding regions so
that Conf(n, r) is connected for r ≤ Cn−1/d and some constant C > 0?
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