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Abstract 

 

Analyzing functional magnetic resonance imaging (fMRI) pattern similarity is 
becoming increasingly popular because it allows one to relate distributed 
patterns of voxel activity to continuous perceptual and cognitive states of the 
human brain. Here we show that fMRI pattern similarity estimates are 
severely affected by temporal pattern drifts in fMRI data – even after voxel-
wise detrending. For this particular dataset, the drift effect obscures 
orientation information as measured by fMRI pattern dissimilarities. We 
demonstrate that orientation information can be recovered using three 
different methods: 1. Regressing out the drift component through linear 
modeling; 2. Computing representational distances between conditions 
measured in independent imaging runs; 3. Crossvalidation of pattern distance 
estimates. One possible source of temporal pattern drift could be random walk 
like fluctuations — physiological or scanner related — occurring within single 
voxel timecourses. This explanation is consistent with voxel-wise detrending 
not alleviating pattern drift effects. In addition, this would explain why cross-
validated pattern distances are robust to temporal drift because a random 
walk process is expected to give rise to non-replicable drift directions. Given 
these findings, we recommend that future fMRI studies take pattern drift into 
account when analyzing pattern similarity as this can greatly enhance the 
sensitivity to experimental effects of interest. 

Keywords: fMRI, multi-voxel pattern analysis, representational similarity 
analysis, crossvalidation  
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1. Introduction 

 

Multivariate analysis of functional magnetic resonance imaging (fMRI) data 

allows one to relate distributed patterns of activity to perceptual and cognitive 

states of the human brain. As pattern-information techniques are gaining 

popularity, it is important to identify stimulus-unrelated factors influencing fMRI 

patterns in order to reduce nuisance variation, avoid confounds, and make 

results interpretable. In this study we investigate the effect of stimulus 

unrelated temporal drifts, which has recently been shown to profoundly alter 

fMRI patterns evoked by a diverse set of visual images (Henriksson et al., 

2015; Kay et al., 2008). In particular, we investigate the consequences of 

pattern drift on fMRI pattern dissimilarity analysis (Kriegeskorte et al., 2007; 

Kriegeskorte et al., 2008; Kriegeskorte & Kieviet, 2013). 

 

In the present study, we show that temporal pattern drift also affects well-

documented fMRI patterns evoked in V1 by visual orientation (Kamitani & 

Tong, 2005; Haynes & Rees, 2005). Specifically, we find that the size of 

orientation effects on fMRI patterns in V1 is dwarfed by the effect of temporal 

pattern drift. This effect occurs regardless of high-pass filtering and detrending 

of single voxel timecourses, which suggest that conventional univariate 

temporal preprocessing steps (Tanabe et al., 2002) do not remedy the 

observed pattern drift. We then demonstrate that the drift confound can be 

alleviated using three different methods: 1. Regressing out the drift 

component through linear modeling; 2. Computing representational distances 

between conditions measured in independent imaging runs; 3. 

Crossvalidation of pattern distance estimates.  

 

2. Material and methods 

We analyzed fMRI response patterns elicited by visual orientation stimuli in 

early visual areas. The data have previously been analyzed in Alink et al. 

(2013), where a more detailed description of the stimuli and design can be 

found. 
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2.1 Experimental design and task 

 

2.1.1 Experimental design 

The experimental paradigm in Alink et al. (2013) was devised so as to classify 

different orientations of low-level visual stimuli. Four stimulus types were 

presented, each comprising two orthogonally oriented stimuli (see Appendix 

Fig. A1). Stimulus types were gratings, spirals, and versions of both in which 

the image had been divided into a log-polar checkerboard array of patches 

and half the patched had been swapped between the stimuli.  

 

 

 

 

Figure 1: Experimental design and its relation to the chronologically 

ordered representational dissimilarity matrix. Left the four stimulus types 

and their orientations presented during the experiment. Right the 

chronologically ordered representational dissimilarity matrix (RDM) and its 

relation to the temporal structure of stimulus presentation. Mind that the RDM 

shown is the average RDM across all four stimulus types and subjects. 
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Figure 1 illustrates the temporal sequence of the stimulus presentation. 

Stimuli were presented in a single fMRI session with eight scanner runs, each 

of which lasted eight minutes. In each run, both orientations of one stimulus 

type were shown (e.g. gratings orientation one and orientation two). For each 

stimulus type, two runs were recorded. Each run consisted of  four equally 

long subruns comprising six stimulus trials: three trials for each orientation 

and alternating orientations across trials, with the leading orientation 

alternating across subruns. Trial duration was 14 s. Each trial contained 

phase-randomized versions of a single orientation. During a stimulus block, 

28 phase-randomized versions of the orientation were presented at a 

frequency of 2 Hz. The stimulus duration was 250 ms, followed by an 

interstimulus interval (ISI) of 250 ms. The 28 stimuli had random spatial 

phases, uniformly distributed between 0 and 2π. Stimulus blocks were 

separated by 2-s fixation periods and subruns by 24-s fixation periods. A 

small task-related ring around the fixation dot was visible throughout the entire 

run. 

2.1.2 Subjects and task 

18 healthy participants (13 female) with normal or corrected-to-normal vision 

underwent scanning. During both the main experiment and retinotopic 

mapping a dot was presented at the center of the screen (diameter: 0.06° 

visual angle) which the participants were instructed to fixate continuously. The 

fixation dot was surrounded by a black ring (diameter: 0.20°, line width: 0.03°) 

with a small gap (0.03°) that randomly alternated between the left and the 

right side — on average once per three seconds and the minimum time 

between a side-switch was one second. The participants were instructed to 

continuously indicate whether the gap was left or right by holding down the left 

button with the right index finger or the right button with the right middle finger, 

respectively. The purpose of this task was to enforce fixation and to draw 

attention away from the stimuli. 
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2.2. MRI measurement and analysis 

 

2.2.1 MRI measurements 

MRI images were acquired on a 3T Siemens Trio using a 32-channel head 

coil. During the main experiment, each functional run acquired 252 volumes 

containing 31 slices using an EPI sequence (TR=2000 ms, TE=30 ms, flip 

angle=77°, voxel size: 2.0 mm isotropic, field of view: 205 mm; interleaved 

acquisition, GRAPPA acceleration factor: 2). During the retinotopic mapping, 

we acquired 360 volumes using the same EPI sequence. Additionally, high-

resolution (1 mm isotropic) T1-weighted anatomical image were obtained for 

each subject using a Siemens MPRAGE sequence. 

 

2.2.2 Pre-processing 

Functional and anatomical MRI data were preprocessed using the 

Brainvoyager QX software package (Brain Innovation, v2.4). We discarded 

the first two EPI images for each run to prevent T1 saturation effects in the 

estimation of the response pattern baseline. Pre-processing comprised slice-

scan-time correction, 3D head-motion correction and temporal high-pass 

filtering removing frequencies below 2 cycles per run (frequencies lower than 

.004Hz). The functional images for all subjects were then aligned with the 

individual high-resolution anatomical image and transformed into Talairach 

space (Talairach & Tournoux, 1988) as a step toward cortex-based analysis in 

BrainVoyager. After automatic correction for spatial inhomogeneities of the 

anatomical image, we created an inflated cortex reconstruction for each 

subject. All ROIs for V1 were defined in each individual subject’s cortex 

reconstruction and projected back into voxel space.  

 

2.2.3 Delineation of V1 through retinotopic mapping 

In order to define V1, we presented dynamic grating stimuli designed to 

optimally drive early visual cortex. These stimuli were based on a log-polar 

array, but without the grout lines and with 20 patches per ring. Each patch 

contained rectangular gratings with a spatial period of one third of the patch’s 

radial width. Grating orientation and phase was assigned randomly to each 

patch. Over time, the phase of the gratings increased continuously (1 cycle 
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per second) resulting in continuous motion in each patch (in different 

directions). In addition, the orientation of the grating increased in steps of π/6, 

once each second resulting in motion direction changes within patches over 

time. We used five such stimuli, driving different parts of the retinotopic maps 

in early visual cortex: (1) a horizontal double-wedge stimulus, spanning a 

polar-angle range of +/-15° around the horizontal meridian, (2) a vertical 

double-wedge stimulus of the same kind, (3) a stimulus that covered the 

region driven by the main-experimental stimulus (1.50°-7.04° eccentricity), (4) 

a 0.5°-wide ring peripherally surrounding the main-experimental stimulus 

annulus (7.04°-7.54° eccentricity), and (5) a 0.5°-wide ring inside the annulus 

(1.00°-1.50° eccentricity). Stimuli were presented in 6-s blocks. This block 

length was chosen to balance temporal concentration (which increases design 

efficiency for long blocks due to hemodynamic buildup) and stimulus 

adaptation (which reduces design efficiency for long blocks due to reduced 

neuronal responses). The five dynamic stimuli and 6-s fixation periods were 

all presented 20 times each in a random sequence over a single run lasting 

12 min. 

 

An ordinary least squares general linear model (GLM) was fitted to the 

retinotopic mapping data, with five predictors for the five dynamic grating 

stimuli based on convolving boxcar functions with the hemodynamic response 

function as described by Boynton et al. (1996). Activation t-maps for each 

stimulus type were projected onto polygon-mesh reconstructions of individual 

subjects’ cortices. We determined the borders of V1 based on cortical t-maps 

for responses to vertical and horizontal double-wedge stimuli (Sereno et al., 

1995). We defined ROIs for V1 as the portion of V1 that was more active 

when presenting the dynamic grating stimulus covering the main-experimental 

annulus as compared to central and peripheral stimulation (average numbers 

of voxels for V1: 1126, 1242 and 1031, respectively, with left and right 

hemispheres combined).  

 

2.2.4 Estimation of fMRI response to oriented stimuli 

Pre-processed fMRI timecourses and subject-specific V1 coordinates were 

imported into Matlab (The Mathworks, Natick, MA, USA) using Neuroelf v0.9c 
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(http://neuroelf.net). For each 14-s block, a response pattern was estimated 

with a GLM using ordinary least squares. Before univariate modeling, the 

timecourse data were converted to percent signal change. An individual GLM 

was estimated for each stimulus type, containing 48 stimulus predictors (2 

runs x 4 subruns x 6 blocks). The predictor time courses were computed 

using a linear model of the hemodynamic response (Boynton et al.,1996). In 

addition to the stimulus predictors, for each run the model contained six 3D 

head motion predictors and one run intercept. For each voxel, we then 

performed a GLM fit to obtain a response-amplitude for each of the 48 blocks. 

Beta response estimates were then multivariately normalized by an estimate 

of the voxel variance-covariance matrix (Walther et al., under revision). We 

used a covariance estimator with optimal shrinkage (Ledoit and Wolf, 2004) 

toward a diagonal covariance matrix. These noise-normalized beta weights 

were then used for subsequent analyses. 

 

2.2.5 Classification of stimulus identity 

In the original study (Alink et al., 2013), we estimated responses based on 

one predictor for each stimulus type and orientation per subrun — in contrast 

to the single block estimates used here. To test if this approach leads to 

similar decoding accuracies as the original study we replicated the results 

from our previous study on orientation effects in V1 using the same classifier, 

a linear support vector machine (SVM). To keep results consistent with the 

results in this manuscript, decoding was performed on multivariately 

normalized beta coefficients (whereas in the original study classification was 

done on t values). Like in our previous study, SVM was trained on seven 

subruns and crossvalidated on the remaining held-out subrun, resulting in 

eight classification folds. Classification accuracies were then averaged across 

folds and subjects. Results were in overall agreement with those published 

previously (Figure A1).  

 

2.3 Representational similarity analysis of time-ordered response 

patterns 

In the introduction, we pointed out that fMRI patterns contain contributions 

from temporally correlated nuisance factors. In order to assess the 
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relationship between the temporal proximity of two given conditions and their 

pattern similarity, we ordered the 48 patterns of each run by the sequence in 

which they had been presented to the subject in the scanner. On those 

patterns, we computed a 48 x 48 representational dissimilarity matrix (RDM) 

using Pearson correlation distance. The RDMs shown in figures 1 to 4 always 

depict the average across stimulus types and subjects. To estimate a two-

dimensional representation of the RDM, we employed non-classical 

multidimensional scaling (MDS) with optimization criterion metric stress 

(Kruskal, 1964). 

 

2.4 Estimation of the orientation information index δ  

To quantify if there was significant orientation information in the similarity 

structure in V1, we computed the mean of all dissimilarities between stimuli 

with identical orientations 
 
d

within  and the mean of all dissimilarities between 

stimuli with different orientations 
 
d

between
 and computed an orientation 

information index δ  as the difference between them: 

 

 Eq. 1     
 
δ = d

between
− d

within
 

   

If δ is significantly greater than 0, this means that the dissimilarity between 

patterns elicited by different orientations is greater than the dissimilarity 

between identical orientations, indicating orientation information. A δ  that is 

significantly smaller than 0 indicates that patterns evoked by identical stimuli 

are more similar than those evoked by stimuli with different orientations. 

Therefore, the finding of δ  being significantly smaller than 0 is uninterpretable. 

δ  was computed for each RDM of each subject and stimulus type. For each 

stimulus type, we then tested if δ was significantly above or below zero by a t 

test (p<0.05) across participants. 

 

2.5 Recovering orientation information from fMRI pattern drift 

We already alluded to the confounding influence of drifts between temporally 

adjacent pattern estimates. Here, we introduce three methods to control for 
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pattern drift distortions in the similarity structure: 1. Regressing out the drift 

component through linear modeling; 2. Computing representational distances 

between conditions measured in independent imaging runs; 3. Computing 

crossvalidated distance estimates (Nili et al., 2014; Walther et al., under 

revision).  

 

2.5.1 Linear modeling of pattern drift 

A simple way of allaying temporal distortions in the similarity structure is to 

estimate their contribution to the overall dissimilarity variance and to take out 

this variance component. We can determine the weight of this contribution by 

applying a general linear model to the dissimilarity matrix by which we model 

the temporal drift. By default, this model contains an intercept with weight 
 
β

0
 

(meaning the regressor has the same value for all dissimilarities and therefore 

models the overall dissimilarity score) and a drift regressor drk with weight 
 
β

k

. The drift regressor predicts any given dissimilarity value in the measured 

RDM as a function of the time elapsed between its two associated conditions 

in the fMRI experiment. Since drift distortions are predominantly time-

dependent, this regressor will by proxy measure the drift dissimilarity variance 

component visited onto the RDM.  

 To determine the best fitting drift function describing the measured 

RDM, we defined 24 polynomial drift models with increasing degrees n, where 

the 1st degree polynomial only contains a linear drift predictor while the 24th 

degree model has 24 drift-related weights: 

 

 Eq. 2    

 

where  are the model residuals. To model the contribution of pattern drift to 

the dissimilarity structure, we estimated the fit for each of the 24 models to the 

RDM. Model fits were performed using ordinary least squares. 
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 To determine the best-fitting drift model, we computed a drift-velocity 

estimate. We defined the drift-velocity estimate as the average difference 

between dissimilarity residuals of the same kind (same or different orientation) 

of each subrun. Hence, the index measures the consistency of the 

dissimilarity over time in the subruns. If the fMRI patterns are drift-stable (i.e. 

consistently reinstated in independent blocks), the index will be close to zero. 

If the fMRI patterns are drift-perturbed, the index will be either larger or 

smaller than zero, depending on the direction of the effect. For each subject, 

we computed the drift velocity estimate for each drift model. δ  was then 

computed on  of the lowest-degree model with a drift velocity estimate that 

was not significantly different from zero. 

 

2.5.2 Computing the between-run correlation distance 

Another method to recover dissimilarity values from pattern drift is to compute 

the distance measure between fMRI patterns from two independent 

repetitions of the same stimulus set. In fMRI, such independent data are 

provided by functional imaging runs in between which scanning is stopped. 

For two given conditions a and b, the Pearson correlation can be computed as 

the cosine of the angle between the mean-centered estimated activity pattern 

of condition a of run one, 
   
û

a

(1)
, and condition b of run two, û

b

(2)
   

 

Eq. 3     

 

And 1-r is the correlation distance between a and b.  

 The estimated fMRI patterns can be assumed to be composed of two 

additive pattern components: a true condition-specific pattern, e.g. u
a
, and a 

run-specific noise pattern, e.g. , which includes stimulus-unrelated pattern 

drift. For two conditions belonging to their respective run one and two, the 

fMRI pattern estimates of a and b obtain as 
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Eq. 4      

 

While the truly condition-related pattern component will be stably reinstated in 

repeated measurements, noise patterns can be assumed independent 

between different functional runs, since these runs are independent 

measurements themselves, hence are random fluctuations between them. 

Note that this does not rule out the possibility that the generating noise 

processes may be very similar in individual runs, which may give rise to 

temporally correlated fMRI noise within each imaging run, accounting for 

noise drifts between temporally adjacent conditions. 

 Substituting the estimated activity patterns in Eq. 3 for their 

components in Eq. 4 obtains as 

 

 

Eq. 5    

 

As alluded to (Eq. 4), each noise pattern is independent to any other activity 

pattern belonging to a different run. Therefore, the expected value of 
  
r a,b( )  

is 

 

Eq. 6      

 

Therefore, the expected value of the correlation between a and b will reflect 

the true covariance between a and b, if a and b come from independent runs.  

Note that in the denominator, the variance of a and b are still noise-biased 
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because they are confined to their respective runs, hence the error terms are 

retained. 

 For each condition pair, this procedure yielded two between-run 

correlation distance estimates (note that 
  
r̂ a,b( ) ≠ r̂ b,a( )  because the 

variances are different in run 1 and 2), which were subsequently averaged. 

For each subject and stimulus type, all pairwise between-run dissimilarities 

were then assembled in a RDM on which the orientation information index δ  

was computed. 

 

2.5.3 Crossvalidated Mahalanobis distance estimate 

A third way of computing a drift-corrected dissimilarity measure is by 

crossvalidating the distance in independent data. Like between-run 

dissimilarities (see section 2.5.2), crossvalidated distance estimates (Walther 

et al, under revision; Nili et al, 2014) are not affected by artificially blown-up 

pattern covariances. In addition to that, they are bound to an interpretable 

zero point, meaning they are ratio-scale. Moreover, while between-run 

dissimilarities only restore the noise-unbiased between-condition covariance 

(see Eq. 5), crossvalidated distance estimates also preserve the true pattern 

variances in the expected value (see 7.1 in the appendix) 

 Unlike the conventional Pearson correlation coefficient, a 

crossvalidated correlation estimate is not bounded between -1 and 1 

anymore: as the voxel patterns of condition a and b belong to different runs, 

they may vary substantially in voxel variance. Therefore, although the 

resulting crossvalidated correlation estimate will come from a distribution 

around the true correlation value, the estimate need not conform to the 

boundaries of the Cauchy-Schwarz inequality and can exceed the range of 

the Pearson correlation. This makes the value harder to interpret and does 

not comply with the definition of the correlation distance, which is one minus r. 

 Instead, we computed the crossvalidated squared Mahalanobis 

distance estimate between all possible condition pairs (Walther et al., under 

revision): 
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Eq. 7    
   
d̂ a,b( ) = û

b
− û

a( )
(1)

û
b

− û
a( )

(2)T

 

 

Before calculating the dissimilarity measure, we applied voxel mean 

subtraction and voxel variance normalization to the fMRI patterns. This is 

sensible because both normalizations are also implicitly carried out by the 

correlation distance, and make the squared Euclidean distance proportional to 

the correlation distance (Nili et al., 2014). 

 We computed crossvalidated squared Mahalanobis distance estimate 

RDMs of all pairs of conditions for each subject and stimulus type, from which 

δ  was then obtained. 

 

3. Results   

 

3.1 Temporal drift severely distorts fMRI pattern geometry  

Two visual features of the temporally ordered RDM (see figure 2a) clearly 

stand out: a prominent dark blue band centered about the diagonal and the 

yellow-red colored squares for dissimilarities across runs. The dark blue band 

along the diagonal indicates that fMRI patterns in close temporal proximity are 

more similar to each other than any other fMRI patterns. In order to 

quantitatively determine the prominence of this effect we computed Kendall’s 

 
τ

a
 (Nili et al., 2014) between fMRI pattern correlation distances and temporal 

proximity of the stimuli in the experimental sequence — constrained to within 

run pattern dissimilarities (figure 2c). We observed an average 
 
τ

a
 of 0.41 

(t17=30.08, p<0.001), indicating a prominent linear temporal drift component to 

the dissimilarity structure. The fact that 
 
τ

a
 between orientation differences (1 

for different orientation and 0 for same orientation) and pattern dissimilarities 

was -0.005 (t17=-12.55, p<0.001, section 3.3 explains why this correlation is 

negative) highlights that temporal drift has a much greater impact on fMRI 

pattern similarity than the experimental effects of interest. The prominence of 

the drift is also illustrated by the two-dimensional representation of the RDM 

obtained by multidimensional scaling (MDS) (figure 2b), where temporally 
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adjacent patterns are linked by a gray line, revealing that response patterns 

measured  

 

Figure 2: Impact of temporal drift on fMRI pattern similarity. a. same 

chronologically ordered RDM as shown in figure 1 b. 2D multidimensional 

scaling plot illustrating the relative impact of orientation, temporal proximity 

and run effects on pattern similarity c. results of a correlation analysis 

investigating the extent to which pattern dissimilarity is affected by orientation, 

temporal drift and adaptation d. line plot indicating that pattern dissimilarity 

increases as a function of inter-pattern time difference. The solid line depicts 

the drift after temporally high-pass filtering at .004Hz – which corresponds to 
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the data used in all other analyses. The other lines depict how additional 

univariate linear and square detrending affect temporal pattern drift. 

 

in temporal proximity are much more similar than response patterns elicited 

by the same stimulus. 

 

The second feature — the yellow-red colored squares for dissimilarities 

across runs — indicates that fMRI patterns tend to be very different when 

measured during different runs. The average between-run correlation distance 

was 0.96, whereas the average within-run correlation distance was 0.71. 

Because runs are on average 29.77 minutes apart (standard deviation 13.86 

minutes), it is likely that this effect relates to a temporal drift effect. An 

additional factor, however, is the fact that the scanner is switched off and on 

between runs which might also contribute to greater between than within run 

pattern dissimilarities. In addition, confound means were estimated separately 

for each run which should further increase pattern correlation distances 

between runs. 

 

In the above mentioned RDM correlation analysis, we modeled the temporal 

drift as proportional to the temporal separation of the two blocks whose 

response patterns are being compared. Plotting fMRI pattern correlation 

distances as a function of temporal proximity, however, indicates that the drift 

effect on pattern dissimilarity saturates with larger temporal separations 

(figure 2d, solid line). The dissimilarity between fMRI patterns is most strongly 

affected by temporal drift when fMRI patterns are in close temporal proximity. 

This temporal profile was found to be highly consistent across participants 

(see shaded standard error ranges in figure 2d around the solid line). 

 

3.2 Temporal pattern drift is not remedied by voxelwise detrending 

One possible source of pattern drift could be low frequency changes in single 

voxel time-courses. This, however, is unlikely given that we have high-passed 

filtered our data at .004Hz. In addition to high-pass filtering we have also 

included voxelwise linear and combined linear and square detrending as 

preprocessing steps. Both types of detrending led to an overall reduction of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2015. ; https://doi.org/10.1101/032391doi: bioRxiv preprint 

https://doi.org/10.1101/032391
http://creativecommons.org/licenses/by-nc-nd/4.0/


pattern dissimilarities (figure 2d). The slope of the drift, however, was found to 

be unaffected by voxelwise detrending.   

 

3.3 Impact of repetition suppression on fMRI pattern geometry 

Another more subtle visual feature of the chronologically ordered RDM are the 

faint dark blue lines overlapping with rows and columns corresponding to the 

first stimulus presentations within subruns (figure 2a). These lines indicate 

that fMRI patterns evoked by first stimuli in subruns are more similar to all 

other fMRI patterns than those evoked by later stimulus presentations within a 

subrun. The
 
τ

a
 correlation between the RDM and the corresponding predictor 

RDM was 0.03 (t17=7.28, p<.001, figure 2b). We attribute this effect to first 

stimuli within each subrun being least affected by repetition suppression (Grill-

Spector et al., 2006). This gives rise to larger responses for the first stimulus 

in a subrun which should increase these patterns’ signal to noise ratios (SNR) 

relative to the other patterns. This would explain the enhanced pattern 

similarities between these patterns and all other patterns.  

 

3.4 Drift-uncorrected analysis of orientation pattern similarity leads to 

uninterpretable results 

One troubling finding — touched upon in 3.1 — is that there is a significant 

negative correlation between pattern dissimilarity and orientation difference (

 
τ

a
=0.41, t17=30.08, p<0.001, figure 2c). This indicates that patterns evoked 

by a stimulus with a different orientation are consistently more similar to each 

other than patterns evoked by the same stimulus. We know, however, that the 

patterns do carry information with regard to orientation based on the results of 

our previous study (see Fig. A1 in the Appendix and Alink et al., 2013). The 

main reason for this discrepancy is the fact that temporal proximity and 

stimulus orientation were confounded in the experimental design: due to the 

alternating fashion of presentation, temporally adjacent blocks always had 

opposite orientations within each subrun. Because temporal proximity strongly 

reduces pattern dissimilarity (figure 2d), this confound leads to the observed 

lower average distance for patterns with different orientations.  
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This shows that simply comparing within- and between-orientation pattern 

dissimilarities can lead to uninterpretable results if stimulus sequence is not 

randomized. In the next two sections, we will describe analysis methods that 

remove the effects of temporal drift and recover fMRI pattern information 

about stimulus orientation. 

 

3.5 Orientation information can be recovered by regressing out drift 

effects from pattern dissimilarities 

We have seen that temporal pattern drift can render a naive comparison of 

average within- and between-condition pattern dissimilarities unintepretable. 

Here we describe how one can alleviate this problem by regressing out 

temporal-drift-related pattern variance. To this end, we performed polynomial 

regression using 24 different drift models with 1 to 24 degrees (figure 3a, see 

section 2.5.1 for details). For each model, we obtained the RDM residuals . 

In order to test whether  was unaffected by the effect of temporal drift we 

computed the drift velocity estimate of each model (figure 3b, see section 

2.5.1 for details). A polynomial drift model with five degrees was found to be 

the most parsimonious model that removed temporal drift (figure 3b). 

 
When computing orientation information (δ ) based on this model’s residual 

RDM we found that δ  was significantly greater than zero (averageδ across 

subjects and stimuli was 0.0074; p<0.0001), suggesting the presence of 

pattern orientation information. In addition, δ  across stimulus types (figure 3c) 

was found to be qualitatively similar to that obtained in our previous study 

using SVM classification (Alink et al., 2013 and Fig A1). Therefore, it appears 

that temporal drift effects can be regressed out at the RDM level and that this 

increases sensitivity to fMRI pattern effects of interest. 
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Figure 3: Removing drift effects by linear modeling of pattern 

dissimilarities as a function of stimulus time difference. a. exemplary 

illustration of the polynomial models used with degrees ranging from 1 to 24 b. 

line plot showing the drift velocity index - the average difference between 

dissimilarity residuals of the same kind (same or different orientation) within 

each subrun - as a function of model degree  c. bar graph depicting recovered 

orientation information for each stimulus type.  
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Figure 4: Crossvalidated distance estimates are unbiased by pattern 

drift. From left to right: a chronologically ordered RDM with all pairwise 

dissimilarities in a run, a multidimensional scaling plot and a bar graph 

depicting orientation information for each stimulus type. These are plotted 

based on: a. within-run pattern dissimilarities, b. between-run pattern 

dissimilarities and c. crossvalidated pattern dissimilarities.  
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3.6 Crossvalidation of fMRI pattern similarity estimates eliminates drift 

effects 

One possible source of temporal pattern drift could be random walk like MRI 

signal fluctuations - physiological or scanner related - occurring within single 

voxel timecourses. Such fluctuations would lead to increased pattern 

dissimilarities for temporally distant patterns. This type of non-stationarity 

cannot be expected to be removed by voxelwise detrending or temporal high-

pass filtering because the trajectory of a random walk process is non-linear 

and has a high temporal frequency component. In addition, the direction of 

drifts evoked by a random walk process should be random. Therefore, if 

pattern drift is evoked by a random walk process then the drift effects should 

not replicate across independent observations (e.g. across runs). To test if 

this is the case, we determined whether fMRI pattern dissimilarities are robust 

to temporal drift if they are computed between independent data (see 

methods 2.5.2) or crossvalidated (see 2.5.3).  

 

First, we constrained our analysis of pattern dissimilarities to between-run 

dissimilarities. This is similar to computing a crossvalidated distance estimate 

because the expected value of the estimates covariance between two fMRI 

patterns equals the true pattern covariance. This is because the correlation 

distance is computed between two independently measured fMRI patterns 

(i.e. coming from either run one or two). Therefore, error-components of fMRI 

patterns are expected to cancel out between them (for a complete explanation 

see section 2.5.2). Using between-run dissimilarities recovered fMRI pattern 

orientation information (average δ across subjects and stimuli was 0.0042; 

p<0.0001). Moreover relative orientation information across stimulus types 

(figure 4b-right) was found to be qualitatively similar to that obtained in our 

previous study using SVM classification (see Alink at al. 2013 and Fig 1A). 

This shows that computing dissimilarity estimates between independent fMRI 

runs is sufficient to restore orientation information. 

 

Second, we computed crossvalidated squared Mahalanobis distance 

estimates (Walther et al, under revision) using leave-one-run-out 

crossvalidation for all within run pattern pairs (figure 4c, left). We chose 
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Mahalanobis distance over correlation distance because crossvalidation may 

result in correlations outside the conventional [-1 1] boundaries (see section 

2.5.3 and 7.1 in the appendix). Unlike the between-run distance, the 

crossvalidated Mahalanobis distance is an estimate of the true distance 

between orientation patterns and is truly ratio-scale with an interpretable zero 

point (Walther et al, under revision). Squared Mahalanobis distance estimates 

were found to be greater for between than within orientation pairs (averageδ

across subjects and stimuli was 8.12; p<0.0001) and relative orientation 

information across stimulus types (figure 4c-right) was found to be 

qualitatively similar to that obtained in our previous study using SVM 

classification (see Alink at al. 2013 and Fig 1A). This shows that 

crossvalidated distance estimates are unbiased by pattern drift. 

4. Discussion 

 
The main finding of this fMRI study is that response patterns are severely 

affected by temporal drift — pattern dissimilarity is shown to significantly 

increase as a function of temporal proximity of patterns. This effect occurs 

regardless of high-pass filtering and detrending of single voxel timecourses. 

For this particular dataset drift effects were confounded with stimulus 

orientation. As a consequence, orientation information could not be detected 

by comparing within-orientation pattern dissimilarities to between-orientation 

pattern dissimilarities. This exemplifies that temporal drift effects can obscure 

pattern effects of interest when pattern dissimilarity analysis is oblivious to 

drift-related pattern variance. Therefore, we propose that future studies 

analyzing fMRI pattern dissimilarities should account for such drift effects to 

increase the interpretability of results and the sensitivity to fMRI pattern 

effects of interest. We show here that this can be achieved both by drift 

modeling at the level of the representational dissimilarities and by means of 

crossvalidated distance measures.  

 

Temporal drift was found to affect pattern dissimilarity in a consistent and 

predictable manner. Therefore, we were able to model the drift component in 

the pattern similarity structure and showed that the residual values contained 
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significant orientation information. Our results suggest that this approach is 

effective in recovering drift-distorted effect. For our data a 5th degree 

polynomial was required to model the drift precisely enough on the pattern 

dissimilarities. Whether this generalizes to other studies with different 

experimental designs and scanner parameters, however, remains to be 

shown. 

 

Our data suggest that response-pattern dissimilarity estimates tend to 

increase with the temporal separation between the two stimuli. A possible 

cause for this effect could be random walk like fluctuations occurring within 

single voxel timecourses. These fluctuations cannot be expected to be 

removed by voxelwise detrending or temporal high-pass filtering because the 

trajectory of a random walk process is non-linear and has a high temporal 

frequency component. If a random walk process  causes pattern drift than one 

should be able to eliminate drift effects by crossvalidating fMRI distance 

measures (Walther et al., under revision; also see sections 2.5.2 and A7.1) 

because the direction of a random walk process should not replicate across 

independent observations. Consistent with this prediction, our results indicate 

that crossvalidated fMRI distance estimates are drift-robust.  

 

In sum, our results suggest that pattern drift effects can be successfully 

alleviated both by means of regressing these effects out and by using cross-

validated distance estimates. We recommend using crossvalidating over the 

drift modeling approach because crossvalidation produces fully interpretable 

distance estimates that are unbiased by random noise in the fMRI patterns 

and have a meaningful zero point. Drift modelling, on the other hand, is an ad-

hoc solution to drift effects and produces distance residuals that cannot be 

readily interpreted as dissimilarities anymore.  However, the regressing out 

approach can be useful if one’s dataset does not allow for crossvalidation, 

e.g. if multiple imaging runs were not acquired or if conditions are not 

balanced across runs. 

 

The fact that crossvalidation eliminates drift distortions in the RDMs suggest 

that random walk like fluctuations within single voxel time-courses might 
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cause pattern drift. However, based on the current dataset we cannot tell 

whether these fluctuations represent time-continuous changes of brain states 

(Henriksson et al., 2015) or whether they can be attributed to scanner 

measurement artifacts. Future studies could clarify this issue by investigating 

the relationship between the temporal dynamics of pattern drift and fMRI 

scanning parameters. For example, one could test if pattern drift is 

accelerated when using fMRI sequences that cause greater heating of MRI 

gradient coils. 

 

In this study differently oriented stimuli were presented in alternating fashion 

which led to a confound between stimulus orientation and drift effects. This 

confound could have been reduced by randomizing stimulus order. In general, 

we expect stimulus order randomization to significantly reduce the impact of 

drift effects on the outcome of pattern dissimilarity analyses and to remove 

drift effects as a systematic confound. However, given the magnitude of the 

drift effects, they may still significantly reduce the sensitivity of pattern 

dissimilarity analysis. Therefore, we recommend that future studies analyzing 

fMRI pattern dissimilarities both use a randomized stimulus sequence and 

account for drift effects during the analysis.  

 

In summary, we have demonstrated that temporal drift has a prominent effect 

on fMRI patterns and that this effect can obscure pattern information about 

visual stimulus orientation. Pattern information, however, can be recovered by 

regressing out drift effects from pattern dissimilarities or by computing 

crossvalidated dissimilarity estimates. We recommend that future fMRI 

studies take pattern drift into account when analyzing pattern dissimilarities as 

this can greatly enhance the sensitivity to pattern effects of interest. 
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7. Appendix 

 

7.1 Crossvalidated Pearson correlation estimate 

Consider two mean-centered fMRI activity pattern of condition a of run one, 

   
û

a
, and condition b of run two, 

   
û

b
. Assume we are given two independent 

repetitions of each of a and b (e.g. from two functional fMRI runs),  
   
û

a

(1)

,   
û

a

(2)

and    
û

b

(1)
   û

b

(2)

, respectively. The fully crossvalidated Pearson correlation 

between a and b is then:
 

 

 

  

Eq. A1     

 

Note that unlike in the between-run correlation (Eq. 6), the variances of a and 

b are now computed using patterns from different runs. Again, we assume 

that each pattern estimate has a true underlying stimulus component and a 

noise pattern that is independent between runs (Eq. 4). Plugging the 

decomposed estimates into Eq. A1 then obtains as 

 

Eq. A2  

  

 

Since error terms from different runs are independent, the expected value of 

the fully crossvalidated 
  
r a,b( ) is 
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Eq. A3     

   

E r a,b( )( ) =
u

a

(1)u
b

(2)T

u
a

(1)u
a

(2)T( ) u
b

(1)u
b

(2)T( )
T

 

 

This value may exceed the [-1 1] range because the pattern variances in run 1 

and 2 can be very different in scale and hence r may not meet the Cauchy-

Schwarz inequality, i.e. 
   
û

a
û

b

T

≤ û
a
û

a

T( ) û
b
û

b

T( ) . 
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Figure A1: Stimulus identity is robustly decodable with linear support 

vector machine for all stimulus types. Average classification accuracies of 

the four stimulus types used in Alink et al. (2013): grating, spiral, and patch-

swapped versions of both. Decoding was performed using a linear support 

vector machine (leave-one-subrun-out crossvalidation) for on multivariately 

noise-normalized V1 fMRI patterns. Error bars indicate standard error of the 

mean across 18 subjects. Asterisks on bars indicate above-chance 

classification accuracy (p < 0.01). Asterisks on horizontal brackets indicate 

significant difference (p < 0.01) between classification accuracies.   
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