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ABSTRACT: Despite an increasing recognition that human activity is currently the dominant force modifying landscapes, and 
that this activity has been increasing through the Holocene, there has been little integrative work to evaluate human interactions 
with geomorphic processes. We argue that agent-based models (ABMs) are a useful tool for overcoming the limitations of existing, 
highly empirical approaches. In particular, they allow the integration of decision-making into process-based models and provide 
a heuristic way of evaluating the compatibility of knowledge gained from a wide range of sources, both within and outwith the 
discipline of geomorphology. The application of ABMs to geomorphology is demonstrated from two different perspectives. The 
SPASIMv1 (Special Protection Area SIMulator version 1) model is used to evaluate the potential impacts of land-use change – 
particularly in relation to wildfi re and subsequent soil conditions, runoff and erosion – over a decadal timescale from the present 
day to the mid-twenty-fi rst century. It focuses on the representation of farmers with traditional versus commercial perspectives in 
central Spain, and highlights the importance of land-tenure structure and historical contingencies of individuals’ decision-making. 
CYBEROSION, however, considers changes in erosion and deposition over the scale of at least centuries. It represents both wild and 
domesticated animals and humans as model agents, and investigates the interactions of them in the context of early agriculturalists 
in southern France in a prehistoric context. We evaluate the advantages and disadvantages of the ABM approach, and consider 
some of the major challenges. These challenges include potential process-scale mismatches, differences in perspective between 
investigators from different disciplines, and issues regarding model evaluation, analysis and interpretation. If the challenges can 
be overcome, this fully integrated approach will provide geomorphology a means to conceptualize soundly the study of human–
landscape interactions by bridging the gap between social and physical approaches. Copyright © 2010 John Wiley & Sons, Ltd.
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Introduction

There has been increasing recognition over the past decade 
of the importance of human activity in modifying landscapes 
at the global scale, whether by agriculture or by more direct 
earth-moving operations (e.g. Hooke, 2000; Wilkinson, 2005; 
Wilkinson and McElroy, 2007; Montgomery, 2007). Although 
the absolute rates of these modifi cations are likely to be over-
estimated (Parsons et al., 2004; Parsons et al., 2006a, 2006b; 
Wainwright et al., 2003), it is clear that human activity has 
long been an important factor in changing rates of geomorphic 
processes, both by direct impacts on land cover (e.g. 
Wainwright and Thornes, 2003) and by indirect feedbacks 
such as by modifi cations to the climate (e.g. Ruddiman, 2003). 
Furthermore, at the global scale, the rate of human modifi ca-
tion of process rates has been interpreted as increasing expo-
nentially (Hooke, 2000; Wilkinson, 2005) in parallel with 
rapidly increasing populations. This interpretation is certainly 
oversimplistic (e.g. McNeill, 1991; Wainwright and Thornes, 
2003) and thus methods need to be developed to evaluate and 
understand the linkage more clearly. The critical point is that 
geomorphic process rates in general are more sensitive to 

human action that they are to climatic variability (Wainwright, 
2008).

Gregory (2000) highlighted the general lack of work by 
geomorphologists on human impacts until (with notable 
exceptions) the 1970s. Although this work expanded, espe-
cially within an applied geomorphology perspective from the 
1980s onwards, there are two principal problems with the 
approaches taken. First, the methodology has largely been one 
of producing case studies, without consideration of how these 
separate case studies might build into a coherent body of 
understanding. One reason for the case-study-centred 
approach to the infl uence of human activity on the landscape 
has been the small spatial scale of studies that has been an 
inevitable consequence of the process-based approach to geo-
morphology (e.g. Wainwright et al., 2000). However, a 
number of methodological developments have led to the (re-)
evolution of a number of larger scale perspectives to the dis-
cipline (e.g. Bishop, 2007; Summerfi eld, 2005). There is there-
fore a need to address the ways in which human activity can 
be integrated with the renewed interest in landscape-scale 
approaches. Secondly, the approach of applied geomorphol-
ogy has largely been one of environmental management and 
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integration into engineering views of the landscape (e.g. 
Fookes et al., 2003) with commensurate problems (e.g. 
Bracken and Wainwright, 2006). Gregory’s call for a ‘cultural 
physical geography’ has received little attention in a way that 
would address these issues.

At the same time, there has been a signifi cant body of work 
on the effects of decision-making on land-use change (e.g. 
Lambin, 2003; Lambin et al., 2003). Little of the work on 
land-use and land-cover change (LUCC) and the consequences 
of LUCC, has specifi cally focused on processes of runoff pro-
duction, erosion and resulting patterns of landscape evolution, 
although again with some notable exceptions (e.g. Schoorl 
and Veldkamp, 2001; Bithell and Brasington, 2009; Buis, 
2008). Furthermore, given the themes of the IGBP-IHDP 
Global Land Project are ‘Dynamics of Land Systems’, 
‘Consequences of Land System Change’ and ‘Integrating 
Analysis and Modelling for Land Sustainability’ (GLP, 2005), 
it should be clear that geomorphology as a discipline has a 
signifi cant part to play in an integrated Earth-system Science 
framework (Wainwright, 2009) if these separate strands can 
be combined coherently. We suggest that geomorphology is 
most likely to succeed in this and other challenges in produc-
ing a cultural physical geography if it can utilize and integrate 
concepts and approaches from other disciplines that consider 
land system dynamics, especially those that consider human 
activity. Thus, from this standpoint, the aim of this paper is to 
evaluate the role of work on decision-making and LUCC and 
its applicability with respect to understanding and modelling 
landscape evolution, with a specifi c focus on agent-based 
models (ABMs).

Understanding Decision-making and its 
Impact on the Landscape

If human activity is a signifi cant control on landscape evolu-
tion, then evaluating the conscious and unconscious actions 
that lead to different activities is a critical step in a complete 
geomorphological methodology. The decisions that cause 
these different activities to occur at different times and in dif-
ferent combinations produce complex outcomes and thus 
landscapes that are typifi ed by complex response and path 
dependency or contingency. Traditional geomorphological 
methodologies have struggled to extract meaning from geo-
morphic data in these contexts, not least because of problems 
of equifi nality. Another reason for the lack of work in model-
ling decision-making has been the perceived complexity of 
the problem and the lack of a cross-over from disciplines 
where such work has occurred for the last 50 years (see 
Wainwright and Mulligan, 2003). Paradoxically, the potential 
strength of a geographically based geomorphology has pro-
vided something of a negative heuristic in the development of 
an integrated approach to studies of decision-making in a 
geomorphological context, given the social and cultural geog-
raphies that have developed in the anglophone world (but cf. 
Parker et al., 2003). Here, the development of theory and 
practice in modelling decision-making is reviewed in order to 
demonstrate that the basis for an integrated approach exists 
outside the present discipline.

Modelling from the top-down versus from 
the bottom-up

Past attempts to model landscape change as a result of human 
activity have taken a diverse range of approaches and meth-

odologies that can be classifi ed in many different ways (Parker 
et al., 2003; Verburg et al., 2006). However, one clear meth-
odological distinction arises from two opposing modelling 
perspectives: on the one hand, an approach that addresses 
broad-scale, regional patterns of change resulting from the 
unknown decisions of actors within the region of interest; and 
on the other hand, an approach that considers the decision-
making process of individual actors (Kellerman, 1989). The 
former approach assumes that general models of landscape 
change can be developed ‘from the top-down’ according to 
knowledge about the state, and changes in that state, of an 
entire region. The latter perspective considers it necessary to 
represent individual decision-makers’ actions ‘from the 
bottom-up’ because global patterns emerge from their 
interactions.

The top-down and bottom-up perspectives result in different 
concepts of systems and the methods used to examine them 
[cf. the ‘dynamic’ and ‘organizational’ approaches, respec-
tively, defi ned in the individual-based model (IBM) literature 
in ecology by Villa (1992)]. The top-down view conceives 
system dynamics as the result of variability in the components 
of an unchanging system structure. Equation-based models, 
systems approaches and statistical techniques are used to 
model changes in aggregated system state variables, usually 
at a single, fi xed, level. In contrast, the bottom-up view 
emphasizes organizational change and structural complexity 
[or aggregated complexity as Manson (2001) has termed it]. 
From this view, understanding complex systems demands the 
consideration of the (changing) relationships of components, 
emphasizes the importance of the history of these relation-
ships for future change, and expects the emergence of system 
properties that cannot be explained by decomposing the 
system into its component parts. In these circumstances, top-
down, system-level equations of system dynamics and behav-
iour are unlikely to be achievable, especially when simulating 
social entities. A bottom-up approach provides the opportu-
nity to use knowledge of lower-level system components to 
identify structures that are necessary or contingent (i.e. neither 
necessary nor impossible) for the observed system-level 
dynamics. Furthermore, the bottom-up approach allows the 
representation of the interaction of heterogeneous system 
components, and does not presuppose uniform or homoge-
nous system components and interactions as the top-down 
approach often requires. These characteristics mean that bot-
tom-up approaches are predominantly simulation-based (rep-
resenting the behaviour and interactions of discrete, and 
potentially heterogeneous, entities) rather than analytically 
based as many previous top-down approaches have been 
(even if they are subsequently developed numerically).

Discrete-element, IBMs and ABMs exemplify the bottom-up 
approach. These modelling frameworks are increasingly rec-
ognized as a means to work across scientifi c disciplines to 
examine Earth systems and aid their management (Bithell et 
al., 2008; Bousquet and Le Page, 2004). The naming conven-
tions between these approaches highlight the differences 
between the characteristics of disciplines utilizing them and 
the systems they study. Discrete-element models are used to 
represent physical systems such as avalanches and débris-fl ow 
events (with a high number of interacting elements), IBMs to 
represent ecological systems such as forest communities (with 
fewer interacting organisms), and ABMs to represent social 
systems such as urban populations (with interacting individu-
als that possess agency). Here, we focus on the use of ABMs 
to represent human decision-making.

In the social sciences, formal models of human decision-
making and behaviour have predominantly been developed 
by economists. Such models have conventionally been based 
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on the (fi ctional) perfectly economically rational human 
Homo economicus, who acts to optimize their wealth above 
all else (Janssen and Jager, 2000). However, Simon (1957) 
recognized that rarely do actors in the real world optimize 
their behaviour, and instead merely try to do ‘well enough’ to 
satisfy their goal(s). Simon (1957) termed this non-optimal, 
cost-benefi t assessment, behaviour ‘satisfi cing’, and laid the 
basis for much of the theory of bounded rationality since. In 
situations where information, memory or computing resources 
are not complete (as is often the case in the real world) the 
principle of bounded rationality is possibly a more pertinent 
approach (Goodrich et al., 2000). Furthermore, goals of satis-
fi cing (or optimized behaviour) need not be economic and 
might also include social justice (Homo politicus – Nyborg, 
2000) or environmental sustainability (Homo sustinens – 
Siebenhuner, 2000). An agent-based approach provides a 
means to represent these imperfect, heterogeneous actors in a 
way that traditional, analytical methods cannot; as agents who 
determine their interactions on the basis of internal social 
norms, behavioural rules and data acquired from their own 
individual experiences and histories (Tesfatsion, 2002). A 
variety of interacting social norms and behaviours (e.g. preda-
tory, cooperative, error-prone, destructive, altruistic, imitative) 
can be simulated to ‘grow’ economies and societies in silico 
for analysis in real-time (Epstein and Axtell, 1996).

Generally, agent-based modelling approaches are com-
posed of a (virtual) environment in which agents are linked 
via relationships that allow them to perform operations to 
perceive, produce, transform and manipulate objects accord-
ing to set rules (Ferber, 1999) (Figure 1). Agents that adapt 
their behaviour according to experience are also possible via 
evolutionary computation methods such as genetic program-
ming, which allows agents to evaluate and select solutions 
from a suite of options through time (Edmonds, 1999). In 
landscape models, a cellular model is most frequently used to 
represent the agents’ environment. Interdependencies and 
feedbacks are specifi ed between agents and their environment 
to produce an integrated landscape model (Parker et al., 2003, 
Matthews et al., 2007). Agents in these models may represent 
organizational structures including individual humans or 
animals, collections of individuals (e.g. households or herds) 
and other social, political or economics institutions and enti-
ties. By explicitly representing actor behaviour, bottom-up 
ABMs are inherently more process-based and deductive when 
compared with top-down statistical and mathematical models 

which take an inductive approach to fi t parameters and curves 
to empirical observations (e.g. Brown et al., 2004), often 
undermining the process basis of a model (Wainwright et al., 
2009). However, if ABMs are to be developed to improve our 
understanding or to support analysis of potential future land-
scape states (e.g. scenario and policy analysis), credible rep-
resentations of the agents must be produced (Robinson et al., 
2007). When developing rules of relationships and response, 
three key issues must be addressed (Bousquet and Le Page, 
2004):

(1) Decision-making: what mechanisms do agents use to 
make decisions? How are agents’ perceptions, actions and 
responses linked?

(2) Control: how are agents related and synchronized?
(3) Communication: what information may be passed from on 

agent to another? How is it passed?

Empirical approaches for informing the production of cred-
ible agent behaviours and interactions include sample surveys 
and interviews with the actors being represented, participant 
observation, and fi eld and laboratory experiments (Robinson 
et al., 2007). Participatory modelling approaches involve 
stakeholders throughout the modelling process, often allowing 
those actors who are being represented in an ABM to com-
municate with modellers and contribute to the development 
of agent behaviours by participating in role-playing games 
(e.g. Castella et al., 2005) or by interacting with simulation 
agents themselves (e.g. Nguyen-Duc and Drogoul, 2007). In 
past settings, these credible agent behaviours must also be 
developed with reference to ethnographic and anthropologi-
cal sources and evaluated against patterns in the archaeologi-
cal record.

Dynamic agent-environment interactions

As important as determining appropriate rules for agent inter-
action and behaviour are, the potential strength of this class 
of models is the dynamic linkage between human activity and 
environmental response. Parker et al. (2008a) describe three 
approaches for linking human-environment models. A fully 
integrated model will represent the dynamic interactions and 
key feedbacks between coupled human and natural systems 
across both space and time. This integrated approach can thus 
represent the reciprocal impacts of human activity on natural 

Figure 1. Structure of a multi-agent system with agents interacting with each other and their environment (after Ferber, 1999; Wooldridge, 2002; 
Bousquet and Le Page, 2004).
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systems and differs from models that use single linkages (a 
social science model as input to a natural science system or 
vice versa), or multiple unidirectional linkages (e.g. a natural–
social–natural linkage in a one-way chain). Specifi cally, mul-
tiple unidirectional models illustrate a trajectory of 
consequential change, and do not link directly back to the 
original system. Wainwright (2008) highlights the problem 
that these ‘scenario’ approaches provide static representations 
of complex interrelationships with the danger, in the worst 
case, of leading to the simulation of totally unrealistic condi-
tions (e.g. the continuation of farming once the total soil 
thickness has been lost from an area).

Good examples of agent-based models that have achieved 
reciprocal linkages between humans and their environment, 
overcoming the dangers highlighted by Wainwright (2008), 
are Manson (2005) and An et al. (2005). Manson (2005) places 
emphasis on environmental interactions with actors in his 
actor-institution-environment modelling framework to con-
sider the southern Yucatán Peninsula of Mexico. The model 
considers soil fertility, elevation, slope, aspect and precipita-
tion as factors infl uencing land-use decisions. Specifi cally, soil 
fertility is modelled as being dependent upon the type of and 
duration of land use and therefore subject to actors’ decisions. 
Reciprocally, these decisions are assumed to be dependent 
upon soil fertility. Manson (2005) also demonstrates another 
potential of ABM approaches to LUCC by considering the 
interaction of agents at two organizational levels – smallholder 
households and institutions (administration units, fi nancial 
markets and conservation organizations). An et al. (2005) also 
consider human-environment interactions more explicitly 
than many models by tracking the life-histories of individual 
actors in their model to explore the impacts of household 
dynamics on panda habitat in China. The interaction between 
forest growth and harvest is represented in a spatially explicit 
manner based upon household locations and sizes. The 
authors found several non-linear and counterintuitive land-
scape responses to the conservation scenarios considered with 
potential policy implications.

These examples highlight several of the benefi ts of the 
agent-based approach and demonstrate the strides that have 
been made in integrating human activity into models of envi-
ronmental change. Decision-making agents may take the form 
of several different organizational entities, and path depen-
dencies within the system are represented. Furthermore, with 
appropriate structures, reciprocal feedbacks between physical 
environment and human activity are made explicit. Such a 
‘generative’ approach to representing the infl uence of human 
decisions on the earth system allows the development and 
encoding of potential explanations of landscape-evolution 
that combine multiple scales, provides opportunities to iden-
tify and structure needs for empirical investigation, and brings 
the possibility of highlighting when prediction may not be a 
reasonable goal (Brown et al., 2006, Epstein, 2007).

ABMs therefore allow the investigation of human–
landscape interactions and dynamics and thus potentially 
overcome the problems noted in the introduction. 
Geomorphological applications of the approach are used in 
the next section to demonstrate how this might be done practi-
cally. Alongside their benefi ts, such applications also raise a 
number of challenges however. These challenges are addressed 
in the discussion.

Case Studies

Two case studies are presented here that allow the evaluation 
of different approaches of modelling decision-making at dif-

ferent spatial and temporal scales. In the fi rst, modern and 
future (to 2026) land-use changes are simulated for an area of 
c. 830 km2, with decision-making aggregated at the level of 
the household and larger socio-economic institutions. The 
second example models prehistoric decision-making at an 
individual level over periods of several centuries for an area 
of c. 120 km2.

Special Protection Area SIMulator version 1 
(SPASIMv1)

The Special Protection Area SIMulator version 1 (SPASIMv1) 
is an integrated socio-ecological landscape-simulation model, 
developed to examine relationships between changing human 
land use and the frequency and location of fi res in a landscape 
typical of the Mediterranean Basin. Various scenarios are used 
to evaluate the impacts of exogenous social and economic 
decisions resulting from potential political policies over the 
next few decades. Given that fi re régimes may modify surface 
runoff and associated sediment transport by enhancing or 
reducing soil hydrophobicity (Doerr et al., 2000; Bowman and 
Boggs 2006), this model has potential to examine the conse-
quences of changes in human activity on linked ecological, 
hydrological and geomorphological systems at the landscape 
scale. The model was developed using data for Special 
Protection Area number 56 (SPA 56) ‘Encinares del río Alberche 
y Cofi o’ in the autonomous community of Madrid, central 
Spain. SPA 56 is an area of c. 830 km2 that contains a frag-
mented mosaic of multiple land uses and covers including 
pine and oak woodlands, monoculture farmland, multifunc-
tional farmland, urban and recreational areas, and increasing 
extents of abandoned farmland. Further details about SPA 56 
and recent LUCC in the area can be found in Romero-
Calcerrada and Perry (2004) and Millington et al. (2007). 
SPASIMv1 is composed of a Landscape Fire Succession Model 
(LFSM – described in more detail by Millington et al., 2009), 
and an ABM of agricultural land-use decision-making 
(described in more detail by Millington et al., 2008) 
(Figure 2).

LFSMs are spatially explicit models that simulate the 
dynamic interaction of fi re, vegetation, and often climate 
(Keane et al., 2004). The LFSM developed for SPASIMv1 uses 
a state-and-transition approach to represent dynamics of 
several broad land-cover classes on a grid (of 30 m × 30 m 
pixels). These land-cover classes represent two dominant veg-
etation types with distinct life history traits and reproductive 
strategies (pine and oak), three mixed vegetation types (transi-
tion forest, deciduous and shrubland), two agricultural land-
use classes (crops and pasture), and two non-vegetation land 
covers (water/quarry and burnt land). The vegetation classes 
are based on plant-functional types to account for the impor-
tance of key environmental resource constraints (water and 
light availability) and disturbance (fi re and agriculture). The 
availability of solar radiation for vegetation growth is mod-
elled as a function of the aspect of a pixel. Soil moisture and 
surface runoff are calculated using the Soil Conservation 
Service (SCS) curve number method (SCS, 1985). Surface 
runoff is routed spatially through the landscape as a function 
of topography (Jenson and Domingue, 1988). SPASIMv1 con-
siders the impacts of varying intensities and frequencies 
of disturbance by representing two succession pathways 
(‘secondary’ or ‘regeneration’) between vegetation classes. 
Locations of seed sources are tracked to represent spatially 
variable seed availability and dispersal.

The representation of wildfi re disturbance is separated into 
ignition and spread stages. Ignition frequency is controlled in 
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the model by climatic and anthropic factors, allowing it to 
represent the infl uence of changing climate, human popula-
tion demographics and land use on wildfi re ignition. Wildfi re 
ignition location can be represented in the model as a random 
process, as the result of lightning strike or as the result of 
accidental human ignition. Lightning fi res are assumed only 
to occur above an elevation of 1000 m in mountainous areas 
(Vazquez and Moreno, 1998). Locations of human ignition are 
modelled by considering the distance to recreational areas 
(e.g. picnic site), roads, tracks and recently burnt areas. These 
ignition mechanisms are not explicitly linked to the ABM 
(described later) but are infl uenced by land-cover composition 
and confi guration which are a consequence of agents’ actions. 
Intentional burning for agricultural purposes and arson is fre-
quent in the Iberian Peninsula but is not currently represented 
in the model. The former may be added to the ABM model in 
future versions but the latter may be diffi cult to represent from 
an agent perspective given the paucity of data available (iden-
tifying individual arsonists has been found to be diffi cult and 
few arrests have been made by the Spanish authorities – Seijo, 
2005). Wildfi re spread is modelled using a cellular automata 
approach (see Millington et al., 2006). Once a fi re has been 
ignited in a given pixel it may then spread into any of the 
neighbouring eight pixels. In SPASIMv1, fi re is assumed to 
completely burn all vegetation in a pixel, but future revisions 
to the model will include representation of variation in fi re 
intensity. The probability of spread between pixels is modelled 
as a function of the fl ammability of each land-cover class 
(including biomass amount), slope (wildfi re preferentially 
spreads upslope), local climate conditions (controlling fuel-
moisture content), wind direction and strength, and the pres-
ence of wildfi re mitigation efforts (e.g. fi re breaks).

The ABM represents agricultural land-use decision-making 
of individual small-scale farmers, albeit aggregated at the level 
of the household. The model classifi es land-use decision-
making agents into two differing perspectives; ‘commercial’ 
agents who are perfectly economically rational, and ‘tradi-
tional’ agents who represent part-time farmers or those who 
manage their land because of its cultural, rather than eco-
nomic, value. Agents may switch between these types depend-

ing upon individual agent profi tability, landscape-wide 
profi tability and agent age. These two agent types use different 
approaches to decide whether a pixel will be in one of three 
possible land uses: crops (vineyards, orchards), pasture (goats 
and sheep) or non-agricultural land. Pixels with orthogonal 
neighbours either in the same land state or owned by the same 
agent are considered to be individual fi elds. The status of each 
agent (age, wealth, perspective, pixels owned) is monitored at 
each time-step.

Commercial agents’ land-use decisions are based on several 
factors related to profi tability: market conditions, land-tenure 
fragmentation, transport costs and land productivity. At each 
time-step, commercial agents estimate profi t in the next time 
step – if the land-use confi guration of the land they currently 
own can be modifi ed to improve profi t, land-use conversions 
are made. Commercial agents may also buy and convert 
neighbouring abandoned pixels if it is likely to increase profi t. 
Alternatively, if costs outweigh the value gained from a pixel 
in a specifi c land use, the pixel will be abandoned to become 
non-agricultural. Non-agricultural pixels rapidly transition to 
shrubland in the vegetation state-and-transition model of the 
LFSM. Traditional agents follow similar rules to commercial 
agents but (i) do not consider any profi t-making activities, and 
(ii) do not seek to buy land from neighbours. Interviews with 
local stakeholders highlighted the importance many locals 
hold of continuing traditional agricultural practices in spite of 
economic conditions (see Millington et al., 2008, §3.2–3.3). 
These behaviours therefore represent the many part-time or 
‘hobby’ farmers (frequently retired) that continue farming 
practices with other sources of income.

At each time step, SPASIMv1 fi rst uses the ABM to establish 
which pixels of the landscape grid will be in a crop, pasture 
or non-agricultural land use. All non-agricultural pixels are 
subject to change via the state-and-transition component of 
the LFSM. At each time-step, all pixels in the landscape may 
be subject to burning. With this model structure, SPASIMv1 
may be used to examine scenarios of land-use change, land-
tenure change, and climate change and their consequences 
and interactions with the wildfi re regime. For example, 
Millington et al. (2008) used the model to investigate how the 

Figure 2. Flowchart showing the basic structure of SPASIMv1 and interactions of model components.
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spatial confi guration of land-tenure confi guration infl uences 
trajectories of land-use change, and the consequent effects on 
wildfi re risk. The agent-based approach was useful in this 
situation as it allowed the explicit representation of the 
consequences of individual decision-makers and their 
decision-making on spatial variation in land tenure and land 
cover. Millington et al. (2008) found that changes in wildfi re 
risk were not spatially uniform and varied according to land-
use composition and spatial confi guration, highlighting the 
importance of considering these changes in a spatially explicit 
manner as the result of individual agents’ actions.

Agricultural land abandonment has been ongoing in SPA 
56 with commensurate shifts in land cover to shrub and forest 
land (Romero-Calcerrada and Perry, 2004). Similar dynamics 
have been observed across the Mediterranean Basin more 
widely (Wainwright and Thornes, 2003; Mazzoleni et al., 
2004) and the implications of such land-cover change for are 
unclear due to multiple interactions. Although increasing veg-
etation cover in Mediterranean landscapes might reduce soil 
erosion by reducing effective rainfall intensity at the ground 
surface (Kosmas et al., 1997; Wainwright and Thornes, 2003), 
it also brings the potential for changes in the frequency and 
magnitude of wildfi re events. In semi-arid environments, 
thresholds of fi re temperature and soil moisture are believed 
to shift soil hydrophobicity between water repellent and non-
repellent states (Doerr et al., 2006; Garcia-Corona et al., 
2004). Furthermore, soil-water repellence has been found to 
be more spatially uniform following more intense fi res (Ferreira 
et al., 2005). Thus, changes in wildfi re régimes due to human 
land-use change will have spatially varying consequences for 
soil conditions and resulting rates of runoff and soil erosion 
(e.g. Vafeidis et al., 2007). In turn, these wildfi re/soil-erosion 
dynamics will likely have consequences for future human 
land-use decision-making. For example, if a fi eld previously 
abandoned from agricultural use is burned at a severity great 
enough to reduce water repellency (due to its increased fuel 
load), potential crop yields in that area may increase. The 
feasibility (or desire) for an individual farmer to recultivate that 
fi eld (whether in place of, or in addition to, their other fi elds) 
will depend on the particular economic, social and land-

tenure-confi guration contexts of that farmer (Figure 3), as the 
results from Millington et al. (2008) illustrate. The cumulative 
effects of multiple decisions like this across a landscape are 
diffi cult to estimate analytically, but may be investigated via 
agent-based simulation. SPASIMv1 is in the initial stages of 
development, but the agent-based structure of the model 
means future versions of the model will be able to incorporate 
representation of the feedbacks from changing soil and wild-
fi re conditions on individual agricultural actors explicitly.

CYBEROSION

CYBEROSION is a modelling framework developed by Wainwright 
(2008) principally for the evaluation of human–environment 
interactions in a geoarchaeological context, although it is 
designed to be fl exible for a range of applications. The envi-
ronment is simulated using a grid-based cellular model. Each 
cell within the model has a set of characteristics which can 
vary through time. These characteristics are the vegetation 
type and biomass, soil thickness, soil texture, soil nutrient 
content, soil moisture and infi ltration rate (Figure 4). Vegetation 
is modelled using functional types characteristic of long-term 
vegetation change in the Mediterranean region, with logistic 
growth models whose parameters are functions of climate and 
interactions with other vegetation and local conditions. 
Locally, rates of diffuse (splash, creep) erosion are calculated, 
as are physical and chemical weathering. These processes are 
all a function of climate, which can itself vary, but there is no 
current feedback in the model from surface change back to 
climate variability. At the local neighbourhood scale, simula-
tion of concentrated (rill, gully or channel) erosion is simu-
lated following a D8 steepest-descent fl ow-routing algorithm. 
Sediment is transported following the direction given by the 
fl ow-routing algorithm and implementing a simplifi ed version 
of the travel-distance approach of the MAHLERAN model of 
Wainwright et al. (2008a, 2008b, 2008c).

Agents in CYBEROSION represent animals, which can be any 
of a number of types. At present, parameterizations have been 
developed for cattle, pig, sheep, goat, deer and humans. Each 

Figure 3. The importance of individual farmer context for agricultural land-use decision-making as derived from an example SPASIMv1 simula-
tion. (a) An example landscape extract made up of 8 × 8 pixels contains land holdings of four farmers with heterogeneous land ownership and 
socio-economic circumstances. (b) Fire preferentially burns more densely vegetated pixels (e.g. abandoned land). (c) Following a fi re event, sub-
sequent use of burned pixels for crops varies between farmers dependent on their individual circumstances and the location of burned pixels as 
well as their assumptions, such as that burning acts to improve potential crop yields. For example, to increase income whilst minimizing costs of 
farm fragmentation, Farmer 3 converts six conterminous burned pixels (at coordinates 3,3 to 4,5) to crops, but not individual pixels (at coordinates 
5,2 and 7,1). Already with much land under cultivation (in conterminous pixels), Farmers 1 and 2 do not convert their pairs of burned pixels (at 
coordinates 5,5, 6,5 and 5,4, 6,4, respectively) as the added production does not outweigh the costs of their fragmentation from the remainder 
of the farm (but if all four of the conterminous abandoned pixels owned by Farmer 2 had burned it may have been worthwhile converting all 
four to crops), while Farmer 4 fi nds the fi re makes coterminous pixels of formerly abandoned land profi table for cultivation, and so expands from 
their existing cultivated area.
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agent has an energy requirement which is a function of its 
body weight and point in life cycle. This energy requirement 
must be met by consuming food from the environment, and 
animals can move through the environment in order to fi nd 
food sources, but in so doing, they undergo an energy cost 
which must be balanced by the consumption of more food. A 
simple assumption of ‘perfect’ perception of the (local) envi-
ronment is presently built into the model, so that animals will 
move into an adjacent cell once it contains more food to 
consume than the presently occupied cell, and will scan the 
local Moore’s neighbourhood to evaluate which is the optimal 
cell to move into. Clearly this approach does not build other 
more complicated behaviours into the model, but it does 
avoid having a stochastic approach to movement through the 
landscape (the only stochastic element is where two adjacent 
cells have equal resource levels). In addition, the human 
agents follow a set of behaviours that allow them to hunt 
animal agents, or to carry out other activities (at present, 
simple agriculture or leisure). All agents have realistic simula-
tions of reproductive cycles. Each agent represents an indi-
vidual, although there is a simple representation of the 
development of herds.

Interaction between agents and the environment is specifi -
cally carried out through the vegetation component, with 
feedbacks to other processes mediated through the vegetation 
cover. All agents consume vegetation for food. In addition, 
human agents will deliberately clear arboreal vegetation from 
certain areas in order to grow cereals. The present version of 
the model incorporates no direct decision-making in terms of 
which might be better areas for cultivation, although there is 
a feedback in the sense that if cultivated areas produce insuf-
fi cient returns (e.g. through erosion-induced water or nutrient 
limitations), a decision to move to other areas for hunting or 
further cultivation will be required.

Application of the model so far has been limited to evaluat-
ing the settlement and environment of the prehistoric site of 
Roucadour, Lot, France (Gascó et al., 2004; Wainwright et al., 
2006). Roucadour provides an interesting case study because 

it represents an early site where agriculture was practiced 
regionally (Niederlender et al., 1966), but where recent re-
evaluations have demonstrated the continuation of hunting 
over a signifi cant period as an important economic activity 
(Gascó et al., 2004; Lesur et al., 2001). Furthermore, local 
erosion rates can be seen to have been highly variable in both 
space and time, in a way that suggests human infl uence is the 
dominant controlling factor. Wainwright (2008) concluded 
that the model was able to demonstrate emergent behaviour 
in relation to spatial and temporal patterns of erosion (Figure 
5). Landscape evolution in this sense is the result of complex 
responses that cannot be simply predicted from the initial 
conditions and estimates of population from the archaeologi-
cal data (Figure 6). Indeed, an important rôle for the model 
may be in testing different scenarios based on uncertainties in 
the palaeoenvironmental reconstruction and archaeological 
interpretations. One signifi cant result of the modelling so far 
is the inherent instability of small populations (Figure 7) in 
relatively small landscape areas [but larger than what has 
traditionally been considered to be the area of a ‘site catch-
ment’ (Jarman et al., 1982; Vita Finzi, 1978)], suggesting the 
importance of human population mobility in periods of initial 
agriculture.

Discussion

These two case studies demonstrate the advantages of agent-
based approaches over other methods for evaluating human–
landscape interactions. Both are based on representations of 
the system that are consistent with a process-based modelling 
approach – SPASIMv1 based on markets and CYBEROSION on 
energetics – which enables a focus on developing a rich 
understanding of the interactions. By representing heterogene-
ity in individual actors’ actions, they can represent dynamic 
feedbacks in the interactions in a way that is otherwise diffi cult 
or impossible (although it could be argued that a number of 
important feedbacks are still missing from both models). 

Figure 4. Structure of the CYBEROSION modelling framework (Wainwright, 2008).



 J. WAINWRIGHT AND J. D. A. MILLINGTON 

Copyright © 2010 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms (2010)

Figure 5. Results of the CYBEROSION model as applied to the landscape around the prehistoric site of Roucadour (Lot, southwest France). The 
upper fi gures show maps of simulated vegetation cover (starting from a uniform cover) and simulated net erosion after 50 simulated years with 
1000 initial animal agents and 10 initial human agents (run 4 of Wainwright, 2008), with a pixel size of 90 m. The lower fi gure shows the evolu-
tion of the net erosion rate and human population through time.

Figure 6. Modelled relationship between mean landscape biomass and mean net erosion rate as a function of different initial numbers of animal 
and human agents in CYBEROSION. Results show effects of path dependence and non-linear relationship between biomass and erosion rate. Biomass 
is used as the independent variable as climate is constant through the simulations, and the effect of agents on landscape evolution is mediated 
through vegetation cover in the model. The arrows show the direction of initial evolution of the simulation in each case.

However, the role of modelling in evaluating which are 
important feedbacks may come to the fore here. These models 
highlight the importance of complex landscape response, 
thresholds and path-dependencies. For example, in SPASIMv1 
agricultural land-use area decreases dramatically when a criti-

cal threshold in the fragmentation of land tenure (i.e. owner-
ship) is crossed (see fi gure 4 in Millington et al., 2008). The 
importance of previous land-use decisions on later decisions 
because of chance events (e.g. a fi re) was also demonstrated 
(Figure 3). In CYBEROSION, areas of focussed human activity 
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were noted as emerging within the landscape without any 
specifi c incorporation of this activity in the model or the rules 
base. The relative timing of initial conditions in relation to 
different populations also signifi cantly changed predicted 
amounts and patterns of erosion (Wainwright, 2008). As rates 
of modelled erosion vary signifi cantly as a function of initial 
conditions and path dependency (Figures 5–7), landscape 
evolution can be seen to be dependent on understanding 
past human occupation and decision-making and their 
variability.

Models of this sort also have a signifi cant part in the syn-
thesis and communication of understanding both between 
modellers and non-modellers and between scientifi c disci-
plines. In this way, models of this type can also assist inter-
disciplinary and multidisciplinary research. For example, 
‘companion modelling’, exemplifi ed by the work of the 
CORMAS research group (Barreteau, 2003), uses high levels 
of participation by non-modellers in the construction and use 
of its ABMs of land-used change. Methods such as role-play-
ing games are used during model development and analysis 
(e.g. Castella et al., 2005; Castella, 2009). The CORMAS 
approach has been advocated as an ideal way to develop 
‘realistically descriptive specifi cations of individual behaviour 
and social interaction’, promote learning and understanding, 
and aid negotiation processes (Moss, 2008, abstract). Souchère 
et al. (in press) recently used the companion approach to 
examine the management of erosive runoff due to agricultural 
land use in France. As an extension of this approach, computer-
mediated role-playing games allow stakeholders to take 
control of agents within an ABM for teaching and education, 
to foster collective learning and identify group behaviour to 
solve common problems, or for researchers to observe the 
behaviours of participants (Nguyen-Duc and Drogoul, 2007; 

Guyot and Honiden, 2006). With regard to interdisciplinary 
and multidisciplinary research, the object-orientated program-
ming framework an ABM approach demands simultaneously 
provides modularity and fl exibility to explore multiple model 
structures and linkages with other models and model types, 
potentially from other scientifi c disciplines. For example, the 
People and Landscape Model (PALM) uses routines from pre-
vious models to represent organic matter decomposition 
(CENTURY) and water and nitrogen (DSSAT) with household 
agents to examine interactions between biophysical and 
socio-economic components of a landscape (Matthews, 
2006). Yadav et al. (2008) also discuss different ways in which 
the CENTURY model can be used within an agent-based 
framework in both online and offl ine modes in order to evalu-
ate the ecological impacts of LUCC decision-making.

Agent-based approaches may also highlight future research 
needs – especially in areas that cross-cut traditional disciplin-
ary boundaries and may not otherwise be picked up. For 
example, upon completion of the initial version of the model, 
we returned to the study area with maps produced by 
SPASIMv1 to discuss them with local farmers and other inter-
ested parties. From these meetings we were able to learn about 
potential shortcomings in the model and ways to improve 
representation of the decision-making component, notably the 
locals’ desire to see some representation of potential future 
urban change. Such a method is clearly not possible with the 
CYBEROSION application presented here, but discussion of its 
results with archaeologists and palaeoenvironmentalists has 
allowed initial theories to be addressed and refi ned, with cor-
responding developments to be suggested for the modelling. 
The development of CYBEROSION has required the integration of 
concepts and empirical data from a range of disciplines 
including agronomy, ecology, anthropology, archaeology, 

Figure 7. Sensitivity of results of the CYBEROSION model to initial numbers of agents as applied to the same landscape as Figure 5. Model runs 
with base parameters as defi ned in Wainwright (2008). The lack of movement of human populations seems to produce an extreme sensitivity in 
the landscape producing population collapse after 268–330 years.
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economics, computation and psychology as well as geomor-
phology. As such, it enables the integration of theory and the 
development of new models by addressing the tensions 
between information from disciplines, and from the emer-
gence of commonalities between them. The use of a bottom-
up approach also adds to the sense of place (e.g. Beven, 2000) 
and emphasizes the signifi cance of local variability over (or 
in combination with) global drivers. In this way, they enable 
a rich interpretation of landscapes and their history.

Although modelling approaches such as those described 
here provide benefi ts for interdisciplinary and multi-scale 
investigation, the integration of data and perspectives from 
different disciplines may not always be as straightforward as 
at fi rst might be hoped. For example, in discussing the poten-
tial of integrating ecological and economic models, Drechsler 
et al. (2007) suggest that ecologists will need to be aware that 
analytical tractability is valued more highly in economics than 
is predominantly the case in ecology, but that economists will 
need to prepare themselves for greater model complexity than 
that to which they are accustomed (see also Anon., 2009). 
Differences in perception and understanding of the systems 
under consideration are likely to arise as geomorphologists 
engage in collaborations with scientists and modellers from 
other disciplines including economic and the social sciences. 
Furthermore, the differences are equally likely to be as much 
about the objectives and potentials of the models being devel-
oped. Whereas geomorphologists may be happy examining 
landscape evolution over durations of centuries, economists 
and social scientists will be more comfortable over decadal 
extents. Models that have examined the interactions of past 
civilizations with their environments have tended to examine 
longer time periods [e.g. Axtell et al. (2002) and CYBEROSION 
(Wainwright, 2008) ran their models for 550 and 500 years, 
respectively] than models considering contemporary human 
populations [e.g. An et al. (2005) and SPASIMv1 (Millington 
et al., 2008) here considered 19- and 28-year extents, 
respectively].

There are also a number of disadvantages or limitations of 
the ABM approach. It tends to be computationally intensive, 
notwithstanding the technological developments mentioned 
earlier. The application to larger areas or populations may be 
limited unless signifi cant amounts of computer power are 
available, or aggregation of agents is carried out (see later). It 
has been noted that individual behaviour does not (always) 
represent or allow emergence of social behaviour (O’Sullivan 
and Haklay, 2000). In more complicated models, there is thus 
a danger of building in too many rules of behaviour in an 
attempt to overcome this limitation, and at the same time too 
much complexity reduces the heuristic value of this modelling 
approach. A key area for further research is thus how to over-
come this limitation. Rule-based models are also limited in 
their fl exibility and ability for agents to ‘learn’ behaviours, an 
issue that has been at the heart of the artifi cial intelligence 
literature for several decades, despite advances in evolution-
ary computation (Edmonds, 1999). It may be very diffi cult to 
build in suffi cient complexity to represent an appropriate 
range and detail of factors that affect the decision-making 
process in current and future LUCC (Parker et al., 2008a). For 
example, what human incentives might we need now and in 
the future to ensure sustainability of different aspects of the 
environment, such as landscape change and aesthetics, and 
ecosystem services? Furthermore, as the differentiation of 
indifferent and interactive kinds highlights (e.g. Hacking, 
1999), actors that are cognisant of their representation in a 
simulation model may modify their behaviour upon interpret-
ing model results, invalidating the original assumptions upon 
which the model was built! One should certainly avoid the 

trap of trying to build ‘models of everything’ (Wainwright and 
Mulligan, 2003), and remember that a model should be pro-
duced for a specifi c purpose (which is not necessarily a fore-
cast). An important part of the process of modelling is the 
conceptualization of what are considered to be the most sig-
nifi cant aspects of the system to capture its real-world behav-
iour. There is also the potential for overinterpretation of results 
of ‘emergence’ (e.g. Sawyer, 2001) and self organization (e.g. 
Frigg, 2003).

A number of major challenges present themselves if ABMs 
are to be a useful tool in the development of an integrated 
cultural geomorphology. In the introduction, it was noted that 
one of the major limitations of current approaches is their 
overdependence of case studies, yet we have chosen to illus-
trate our points with two very different case studies in this 
paper. We would argue that the difference lies, though, in the 
conceptual (process-based) underpinning of the case studies 
and in the maturity of the development of different methods. 
ABMs as applied to geomorphological questions are very 
novel, and ABMs in a broader sense are only a recent meth-
odological development. At one level, the utility of this meth-
odology will only be accepted once its explanatory power has 
been demonstrated in a number of specifi c examples, and 
only when this has been achieved will it be possible to develop 
a general theory. Moss and Edmonds (2005a, 2005b) suggest 
that this sequence will be the case for ABMs of social systems 
in general. In the meantime, it is important that issues relating 
to the communication of model algorithms, structure and 
results are addressed [as noted by Grimm and Railsback 
(2005) for IBMs in ecology and Grimm et al. (2006) for IBMs 
and ABMs in general, and the production of model ‘ontolo-
gies’ as discussed in the computer-science literature (e.g. 
Parker et al., 2008b)]. For example, Liverman and Roman 
Cuesta (2008) note that different methodologies in LUCC 
studies in general have made it diffi cult for comparisons to be 
made and theoretical or conceptual generalizations to be 
drawn. In the short term, the most valuable contribution of 
agent-based approaches to geomorphologists may be in the 
‘companion’ mode (as outlined earlier) as a means to investi-
gate decision processes and coordination among actors in 
geomorphological processes. Once such approaches are 
taken, it will be possible for geomorphologists to reconceptu-
alize and address medium- to long-term implications of 
human activities on the landscape, and thereby produce a 
coherent ‘cultural physical geography’, as called for by 
Gregory (2000).

Many of the challenges posed relate to issues of scale and 
scaling. The applications demonstrated in this paper still 
operate over relatively small spatial (few hundreds of kilome-
tres squared) and temporal (decades-centuries) scales. These 
models run comfortably on a reasonably powerful personal 
computer, albeit with run times requiring several days. These 
run times currently limit replications of model runs, but there 
is no reason why parallelized versions of the models should 
not run signifi cantly faster with present technology. In terms 
of timescales, current applications are appropriate for the 
assessment of decadal policy implications, or the medium-
term impacts of land-use change; they are most appropriate 
for evaluating knowledge of the system and problem-framing 
(e.g. Anon., 2009) than for direct prediction. Faster models 
would also more easily be applied to larger spatial studies, 
although the increase in number of agents produces a highly 
non-linear increase in computing resource required because 
of the large overheads required in agent–agent interaction. 
Conceptualizations are thus required that allow the approach 
to be applied over larger areas by using agents that represent 
larger entities than just the individuals or households as used 
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here. Agents may be used to represent entire settlements (e.g. 
Sanders et al., 1997), or national and international organiza-
tions (e.g. Manson, 2005). However, there is an unresolved 
question in that it is unclear when these larger scale agents 
just become spatially distributed econometric or game-theory 
models, although Axelrod (1997) has demonstrated that this 
limitation does not always occur.

Parker et al. (2008a) have highlighted the major problems 
relating to spatial mismatches between processes. While the 
compound actions of individuals at the local scale may have 
signifi cant effects at the global scale – most obviously with 
the case of enhanced greenhouse-gas climatic changes – it 
is unfeasible other than with signifi cant aggregation to simu-
late the global-scale feedbacks using an ABM, although 
developments in parallel computation may mean that this 
limitation will be overcome in the near future (and indeed 
already have in simulations of disease spread: Epstein, 2009). 
Whether this approach is better than the reconceptualization 
associated with aggregation is moot. The modeller must 
therefore in this case impose boundary conditions on local 
simulations that will have a signifi cant impact on the behav-
iour of the model. Again, there are major issues of whether 
any ‘emergent’ patterns thus observed are a response of the 
system or of the imposition of more-or-less artifi cial boundary 
conditions. Scale mismatches will also occur temporally, and 
O’Sullivan and Haklay (2000) have noted a similar problem 
in specifying the initial conditions of the behaviours of 
agents, inasmuch as they will be highly constrained by past 
contingencies and path evolution. Projecting behaviour of 
individuals within modern societies over long time extents is 
likely to be diffi cult in the context of rapid changes in tech-
nological developments and national and international poli-
cies on climate change and energy use. However, perspectives 
that the effects of globalization on individuals’ behaviour are 
only a modern phenomenon may be overstated (e.g. 
Champion, 1989; Peregrine, 1996). As noted earlier, geomor-
phological applications of ABMs sit in what might be an 
uncomfortable disjuncture between the comfort zones of 
modellers happy to work at century to millennial scale (or 
even longer), such as ecologists and Earth scientists, and 
those happier considering decades or less, such as econo-
mists. It may therefore be necessary to distinguish between 
more heuristic and theoretically based models (e.g. more at 
the CYBEROSION end of the spectrum), which would aim to 
simulate landscape evolution over centuries, whilst empiri-
cally based models that explore policy options (e.g. akin to 
SPASIMv1) might be more appropriate for considering change 
over decadal timescales.

The use of generative, bottom-up models to represent feed-
backs between heterogeneous human actions and geomor-
phic process is likely to throw up questions about how best 
to evaluate ABMs. Issues of ‘validation’ of this sort of model 
have a broader signifi cance, not least because ABMs are 
increasingly frequently used as part of decision-support 
systems (e.g. Zacharias et al., 2008) and other means of defi n-
ing policy, with all the related dangers pointed out by Oreskes 
et al. (1994). Pattern-matching of model output with empirical 
observations at a single scale or level of organization is 
unlikely to provide suffi cient detail about representational 
accuracy. A pattern-orientated approach that compares model 
and empirical data at multiple scales and levels, as advocated 
by Grimm et al. (2005), is more likely to improve confi dence 
about the fi delity of model output. Moss and Edmonds (2005a, 
2005b) have suggested a similar approach for the evaluation 
of sociological ABMs, but here emphasis should remain on 
ensuring appropriate model calibration over precise forecasts 
of future system states (Moss, 2008).

Conclusions

Geomorphology as a discipline must engage with the funda-
mental need for a better understanding of the linkages between 
people and geomorphic processes. This understanding is vital 
for the development of deep understanding of Holocene land-
scape evolution, and especially given the accelerating rates of 
impacts over the last few centuries. As there is no indication 
that this acceleration will change signifi cantly, the discipline 
needs to address the challenge of providing the science that 
can contribute to major questions of global importance. 
Human activity in general and specifi cally LUCC have signifi -
cant impacts on geomorphic processes with corresponding 
implications for the sustainability of ecosystem services (e.g. 
prevention of soil erosion, mitigation of natural hazards such 
as fl ooding) and on global climate change (e.g. albedo feed-
backs following erosion of agricultural land or rangelands in 
drylands). To address these issues of global importance, geo-
morphologists need to develop more conceptually coherent 
and multidisciplinary approaches.

ABMs provide a means by which narrowly empirical 
approaches to human–landscape interactions may be tran-
scended. The examples presented here demonstrate that ABMs 
can be useful both in a policy-related sense, and from a heu-
ristic sense of attempting to develop more conceptually 
informed world views. The agent-based modelling framework 
provides a means of investigating complex landscape 
responses to individual, context-dependent and heteroge-
neous human decision-making, and the potential to incorpo-
rate agents who have geomorphic impacts directly into 
scientifi c research (via participatory approaches). As ways of 
integrating existing knowledge bases and for evaluating poten-
tial contradictions between existing theories, or between 
theory and observation, they are a vital part of bridging a 
signifi cant gap in the current discipline in the evaluation of 
physical and social mechanisms of landscape evolution.
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