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Abstract— We consider the problem of grasp and manipu-
lation planning when the state of the world is only partially
observable. Specifically, we address the task of picking up
unknown objects from a table top. The proposed approach to
object shape prediction aims at closing the knowledge gaps in the
robot’s understanding of the world. A completed state estimate
of the environment can then be provided to a simulator in
which stable grasps and collision-free movements are planned.

The proposed approach is based on the observation that
many objects commonly in use in a service robotic scenario
possess symmetries. We search for the optimal parameters of
these symmetries given visibility constraints. Once found, the
point cloud is completed and a surface mesh reconstructed.

Quantitative experiments show that the predictions are valid
approximations of the real object shape. By demonstrating the
approach on two very different robotic platforms its generality
is emphasized.

I. INTRODUCTION

Many challenging problems addressed by the robotics

community are currently studied in simulation. Examples are

motion planning [1], [2], [3] or grasp planning [4], [5], [6]

in which the knowledge of the complete world model or of

specific objects is assumed to be known. However, on a real

robotic platform this assumption breaks down due to noisy

sensors or occlusions. Consider for example the point cloud

in Fig. 1 that was collected with an active stereo head from

a table top scene with several objects standing on it.

Due to occlusions, no information about the backside of

objects or about the region behind them is available from

pure stereo reconstructed data. There are gaps in the scene

and object representations. Additionally, noise causes the

observed 3D structure of an object or scene to deviate from

its true shape. Although the previously mentioned planners

might be applied on real robotic platforms, a mismatch

between the real world and the world model is usually not

dealt with explicitly.

Exceptions are reactive grasping strategies that adapt their

behavior based on sensor information collected during ex-

ecution time [7], [8]. Other approaches aim at predicting

unknown parts of the world and plan the robot’s course of

action based on this [9].

In this paper, we consider the scenario of picking up

unknown objects from a table top. Therefore, the robot is
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Fig. 1. Example for a point cloud representing a whole scene merged from
different view points. Left: View from the side. Right: View from the top.

confronted with scenes similar to those in Fig. 1. To accom-

plish grasp and motion planning based on this information,

we follow the idea of filling in the gaps in the scene rep-

resentation through predicting the full shape of each object.

We make use of the observation that many, especially man-

made objects, possess one or more symmetries. Given this,

we can provide the simulator with an estimated complete

world model under which it can plan actions or predict sensor

measurements.

The contributions of this paper are (i) a quantitative

evaluation of the shape prediction on real-world data con-

taining a set of objects observed from a number of different

viewpoints. This is different from related work by Thrun

and Wegbreit [10] in which only qualitative results in form

of point clouds are presented rather than quantitative results

on polygonal meshes. (ii) We reduce the search space for the

optimal symmetry parameters through a good initialization.

And (iii), we demonstrate the applicability of the predicted

object meshes in a service robotic scenario by supporting

execution in the real-world with grasp and motion planning

in simulation.

The paper is outlined as follows. In the next section,

we will motivate the use of the symmetry assumption and

explain the method for object shape prediction and polygonal

mesh reconstruction. Thereafter, the two experimental plat-

forms are described. In Section IV the simulating environ-

ment OpenGRASP is presented. In the experimental section,

we show how the proposed prediction mechanism produces

valid complete object models and is advantageous for grasp

planning and execution.

II. PREDICTING OBJECT SHAPE THROUGH SYMMETRY

Estimating the occluded and unknown part of an object

has applications in many fields, e.g. 3D shape acquisition,



3D object recognition or classification. In this paper, we

are looking at this problem from the perspective of service

robotics and are therefore interested in the advantages of

shape completion for collision detection and grasp planning.

Psychological studies suggest that humans are able to

predict the portions of a scene that are not visible to them

through controlled scene continuation [11]. The expected

structure of unobserved object parts are governed by two

classes of knowledge: i) Visual evidence and ii) completion

rules gained through prior visual experience. A very strong

prior that exists in especially man-made objects is symmetry.

In [10] it has been shown that this symmetry can

be detected in partial point clouds and then exploited for

shape completion. The authors developed a taxonomy of

symmetries in which planar reflection symmetry is the most

general one. It is defined as the case in which each surface

point P can be uniquely associated with a second surface

point Q by reflection on the opposite side of a symmetry

plane. Furthermore, in a household environment, objects are

commonly placed such that one of their symmetry planes is

perpendicular to the supporting plane. Exceptions exist such

as grocery bags, dishwashers or drawers.

Given these observations, for our scenario we can make

the assumption that objects commonly possess one or sev-

eral planar symmetries of which one is usually positioned

perpendicular to the table from which we are grasping. By

making these simplifications, we can reduce the search space

for the pose of this symmetry plane significantly. As it will

be shown in the experimental section, our method produces

valid approximations of the true object shape in very different

viewpoints and for varying levels of symmetry.

A. Detecting Planar Symmetry

Since we assume the symmetry plane to be perpendicular

to the table plane, the search for its pose is reduced to a

search for a line in the 2 1/2D projection of the partial

object point cloud. This line has 3 degrees of freedom (DoF):

the 2D position of its center and its orientation. We follow

a generate-and-test scheme in which we create a number

of hypotheses for these three parameters and determine the

plausibility of the resulting mirrored point cloud based on

visibility constraints.

We bootstrap the parameter search by initializing it with

the major or minor eigenvector ea or eb of the projected point

cloud. As shown in Section V, this usually yields a good

first approximation. Further symmetry plane hypotheses are

generated from this starting point by varying the orientation

and position of the eigenvectors as outlined in Fig. 2. In the

following, we will describe the details of this search.

1) Initial Plane Hypothesis: The first hypothesis for the

symmetry axis is either one of the two eigenvectors of the

projected point cloud. Our goal is to predict of the unseen

object part. We therefore make the choice dependent on the

inverse viewing direction v: the eigenvector that is most
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Fig. 2. A set of hypotheses for the position and orientation of the symmetry
plane. ea and eb denote the eigenvectors of the projected point cloud. c is
its center of mass. αi denotes one of the variations of line orientation along
which the best pose of the symmetry plane is searched. The (green) lines
at positions dj to dj+2 are three further candidates with orientation αi.

perpendicular to v is used as the symmetry plane s.

s =

{

ea if ea · v ≤ eb · v

eb if ea · v > eb · v
(1)

where ea and eb denote the major and minor eigenvectors of

the projected point cloud, respectively.

2) Generating a Set of Symmetry Hypothesis: Given this

initial approximation of the symmetry plane s of the con-

sidered point cloud, we sample n line orientations αi in the

range between −20◦ and 20◦ relative to the orientation of

s. The 2D position of these n symmetry planes is varied

based on a shift dj in m discrete steps along the normal

of the symmetry plane. Together this yields a set S =
{s(0,0) · · · s(0,j) · · · s(i,j) · · · s(n,m)} of n×m hypotheses.

3) Mirroring the Point Cloud: Let us denote the original

point cloud as P containing points P . Then given some

symmetry plane parameters s(i,j), the mirrored point cloud

Q(i,j) with points Q is determined as follows:

Q = R−1
αi

(−Rαi
(P + dj − c)) + c (2)

with Rαi
denoting the rotation matrix corresponding to αi.

4) Computing the Visibility Score: The simplest source

of information about visibility constraints are the binary

2D segmentation masks O that separate an object from the

background. The mirroring process aims at adding points Q

to the scene that were unseen from the original viewpoints.

Let us assume a mirrored point cloud Q(i,j) has been

generated, then there are three cases for where a reflected

point Q can be positioned. i) If it coincides with a point in P
(the original point cloud), then it supports the corresponding

symmetry hypothesis. ii) If Q falls into previously occluded

space, it provides information about potential surfaces not

visible from the original viewpoint. And finally iii), if Q is

positioned into the space that has been visible before, then

it contradicts the symmetry hypothesis.

Based on this intuition, the vote v(i,j) consists of two

parts. First, we back project each Q(i,j) into the original

image giving us a set of pixels. For all these pixels q that do

not lie inside the original object segmentation mask O, we

compute the squared distance δ1(q, p) to the nearest pixel p in

the segmentation mask using the distance transform. Second,

for all q that lie within the segmentation mask and have a



smaller depth relative to the camera than the corresponding

(occluded) pixel p, we compute the depth difference δ2(q, p)
between them. Summarizing, the vote v(i,j) is computed

as the sum of the expected values of these two distance

measures:

v(i,j) = E
q/∈O

[δ1(q, p)] + E
q∈O

[δ2(q, p)]. (3)

In case the plane parameters are chosen such that there

is a large overlap between the original point cloud P and

the mirrored cloud Q(i,j), the second part of Eq. 3 will

be relatively large compared to the first part. The bigger

dj , i.e. shift of the symmetry plane as visualized in Fig. 2,

Eq∈O [δ2(q, p)] will increase and Eq/∈O[δ1(q, p)] decrease.

We are searching for the global minimum in the space of all

votes

ŝ(i,j) = argmin
S

v(i,j) (4)

that corresponds to a reflected point cloud Q(i,j) with the

smallest amount of points that contradict the symmetry

hypothesis.

B. Surface Approximation

After the prediction of the backside of an object point

cloud, we create a surface mesh approximation to support

grasp planning and collision detection.

We use Poisson reconstruction proposed by Kazhdan et.

al [12] as a solution to the problem of surface reconstruction

from oriented points. To determine the normals, we use a kd-

tree as proposed in [13]. A local plane fit is estimated for the

k-nearest neighbors of the target point. This plane is assumed

to be a local approximation of the surface at the current

point. More advanced normal estimation techniques have

been proposed which could perhaps increase the performance

of the surface reconstruction at the cost of computation

speed [14], [15]. Following normal estimation, we ensure

that the normals of the mirrored points are consistent with

the mirrored viewing direction reflected across the plane of

symmetry.

Finally the Poisson reconstruction is performed. The single

steps are briefly outlined below. For details, we refer to [12].

1) Inputting the points and normals to an octree.

2) Computing an implicit function over this adaptive grid.

3) Finally using marching cubes to extract an iso-surface

as a watertight triangular mesh.

It should be noted while Poisson surface reconstruction is

robust to some noise, it is sensitive to normal direction. We

therefore filter outliers from the segmented point cloud prior

to the reconstruction step.

III. EXPERIMENTAL PLATFORMS AND GRASP CYCLE

To emphasize the generality of the proposed approach, we

evaluate and demonstrate it on two robotic platforms being

either used at the Royal Institute of Technology (KTH) or at

the Universitat Jaume I (UJI). They differ in both, hardware

and implementation of a grasp cycle.

Fig. 3. Left: KTH robot. Right: UJI robot (Tombatossals)

A. Hardware

1) KTH: The platform (see Fig. 3 left) consists of an Ar-

mar III robotic head [16] equipped with two stereo cameras,

a peripheral (wide-field) and a foveal (narrow-field) one. The

robotic head has 7 DoF. Five of these are used for controlling

the viewing direction while the remaining two mainly vary

the vergence angle between the left and right camera systems,

thereby enabling fixation on objects. As a manipulator, we

use a 6 DoF Kuka arm1 that is equipped with a three-fingered

Schunk Dexterous Hand 2.0 (SDH)2.

2) UJI: The torso system, called Tombatossals has 23

DOF (see Fig. 3 right). It is composed of two 7 DOF

Mitsubishi PA10 arms. The left arm has a 4 DOF Barrett

Hand3 and the right arm has a parallel jaw gripper. Each arm

has a JR3 Force-Torque sensor attached on the wrist between

the arm and the hand. The visual system is composed of a

TO40 4 DOF pan-tilt-verge head with two Imaging Source

DFK 31BF03-Z2 cameras. Attached to the center of the pan-

tilt there is a Videre DCSG-STOC stereo camera. For this

work only the left arm, the pan-tilt head and the Videre stereo

system are used.

B. Grasp Cycle

For the scenario of grasping unknown objects from

a table top, a grasp cycle is outlined in Algorithm 1.

The functions serve as place holders for operations that

are common to both robotic platforms but are imple-

mented differently. Exceptions to this are the function

PredictObjectShape, the simplification of the trian-

gular mesh through ConvexDecomposition and the

grasp and arm trajectory planners named PlanGrasp and

PlanArmTrajectory. They are identical in both systems

and are explained in Section II and Section IV, respectively.

The remaining functions of Algorithm 1 are not the focus

of this paper. Therefore, in the below we will only briefly

outline how they are implemented in each robotic system

and refer to our previous work.

1) KTH: As a step prior to the shape analysis of an object

and the grasping of it, the robot needs to segregate potential

objects from the background. In the KTH system, the func-

tion GetObjectHypotheses to obtain a segmented point

cloud is implemented as explained in detail in our previous

work [17]. Given this point cloud which only represents the

visible part of an object, its backside can be predicted as

described in Section II.

1http://www.kuka-robotics.com
2http://www.schunk.com
3http://www.barrett.com



Algorithm 1: Pseudo Code for a Table Top Scenario

Data: Embodiment, Table Plane
Result: Cleaned Table Top
begin

S = GetObjectHypotheses()
for i = 0; i < |S|; i++ do Grasp Cycle per Object Hypothesis

ŝi = PredictObjectShape(si)
ŝi = ConvexDecomposition(si)
G = GetGraspCandidates(ŝi)
for j = 0; j < |G|; j ++ do

success = PlanGrasp(gj)
if success then Grasp Candidate gives Stable Grasp

t(i,j) = PlanArmTrajectory(gj)
if t(i,j) 6= 0 then Collision-Free Trajectory Exists

T = InsertTrajectory(T , t(i,j), gj)
end

end

end

k = 0
repeat

success = ExecuteGrasp(T, k)
k ++

until success

end

end

With the complete object shape as an input,

GetGraspCandidates implements the technique

presented in [18] to detect two grasping points. These points

are the target positions for the fingers of the SDH. In detail,

we apply a pinch grasp in which the thumb is opposite the

two fingers. Then for applying a grasp to an object, the

vector between the thumb and the two fingers has to be

aligned with the vector between the two grasping points.

These grasp candidates are then simulated on the predicted

object shape and a collision-free path for the arm planned.

Details on this will be given in Section IV. After a suitable

grasp and arm trajectory has been selected through simula-

tion, it is executed by the robot in an open loop procedure.

2) UJI: The vision system on the UJI platform imple-

menting GetObjectHypotheses is quite simple. The

Videre stereo system gathers images and produces an un-

segmented 3D point cloud of the scene. The table and

background are black to simplify the segmentation. The point

cloud is segmented finding its connected components using

a clustering method as implemented in ROS PCL 4.

The complete object shape is predicted as described in

Section II. GetGraspCandidates is implemented such

that the vector between the thumb and two fingers is going

through the object’s centroid (see Section IV for more detail).

Approaching the pre-grasp position is also executed in

open loop following the collision free trajectory obtained

from the simulator. For the grasping action, a reactive sensor

based strategy is used. This algorithm is fully described in

[7], basically it tries to align the hand with the object and

performs a power grasp adapting the hand pose to the object

pose using tactile and force feedback.

IV. OPENGRASP

The simulation platform chosen to perform the experi-

ments is OpenGRASP [19], a simulation toolkit for grasp-

4http://www.ros.org/wiki/pcl

ing and dexterous manipulation. It is based on the Open-

RAVE [20], an open architecture targeting a simple inte-

gration of simulation, visualization, planning, scripting and

control of robot systems. It enables the user to easily extend

its functionality developing their own custom plugins.

The simulator is used to perform the grasp before the

real robot makes an attempt. It allows for testing different

alternatives, choosing the one with the highest probability of

success. This will not only take considerably less time than

performing it with the real hardware but also prevents dam-

aging the robot by avoiding collisions with the environment.

OpenRAVE implements a combined motion and grasp

planner plugin [2]. This BiSpace planner has elements from

the bidirectional RRT and the RRT-JT algorithms [3]. The

use of RRTs [1] is a well known approach to the arm motion

planning problem. It has been the starting point for most

of the current state of the art motion planners. For collision

detection that is necessary for motion planning, the simulator

needs complete object models. When known objects are

used, an accurate model of the objects can be created off-line

using different technologies, like laser scans. In the case of

unknown objects, an approximate model has to be created

on-line. In Section II, an approach to create this model was

presented and it is evaluated in Section V. The experimental

results show that even if the object model is not an exact

representation of reality, it is close enough to enable the

simulator to try different grasp alternatives and select an

appropriate one.

The obtained triangular mesh has thousands of vertices

which makes the collision detection process computationally

expensive. To ameliorate this problem, we pre-process the

mesh by ConvexDecomposition, a library that was

originally created by John Ratcliff [21] and that is imple-

mented in OpenRAVE. It approximates a triangular mesh as

a collection of convex components. This process takes only a

few seconds and drastically speeds up the grasp and motion

planning.

A. Generation of Grasp Candidates

The first step for selecting an appropriate grasp consists

of creating a set of grasp candidates and evaluating them

using OpenRAVE. This set can be stored and used later,

anytime the same robot has to grasp the same object. Each

grasp candidate is simulated moving the end-effector until it

collides with the object; then the fingers will close around it

and finally the contacts are used to test on force closure. In

Algorithm 1, this process is referred to as PlanGrasp.

Each grasp candidate has the following parameters: the

approach vector, the hand pre-shape, the approach distance

and the end-effector roll. The number of different values

that these parameters can take has to be chosen considering

the time-constraints imposed by the on-line execution of

PlanGrasp.

OpenRAVE has a default algorithm to generate a set of

approach vectors. It first creates a bounding box of the object

and samples its surface uniformly. For each sample, a ray is

intersected with the object. At each intersection, an approach



Fig. 4. Example of the approach vectors generated for a spray bottle by
Left) the OpenRAVE grasper plugin, Middle) the UJI proposed algorithm
using the object’s centroid and Right) the KTH proposed algorithm using
the grasp points in blue.

vector is created that is aligned with the normal of the

object’s surface at this point. An example output is shown in

Fig. 4 Left). Dependent on the choice of the other parameters,

the time to simulate all the corresponding grasps can vary

from few minutes to more than an hour. These execution

times are acceptable for objects that are known beforehand

because the set of grasp candidates can be generated off-

line. When the objects are unknown, this process has to be

executed on-line and long waiting times are not desirable.

For this reason, we use two methods to reduce the number

of approach vectors. The first one, applied on the KTH

platform, computes two grasp points as in [18]. To grasp

the object at these points, there are an infinite number

of approach vectors on a circle with the vector between

the two grasping points as its normal. We sample a given

number, typically between 5 and 10 of these between 0◦ and

180◦ degrees. Figure 4 (Right) shows the detected grasping

points along with the generated approach vectors. The second

method, used at UJI, calculates the approach vectors in a

similar way only that the center of the circle is aligned with

the object’s centroid and its major eigenvector ea. Another

circle, perpendicular to the first one, is added in order to

compensate the possible loss of vector quality due to the

lack of grasp points. Figure 4 (Middle) shows an example.

Having the list of approach vectors reduced, the other

parameters were also adjusted for our purposes. As a hand

pre-shape, we defined a pinch grasp for each hand. The

approach distance is varied between 0 to 20 cm. Finally, the

roll is chosen dependent on the two grasping points (such

that the fingers are aligned with them) or on the orientation

of the circle on which the selected approach vector is defined.

Using these parameters, we were able to reduce the amount

of time taken to generate and save the set of grasp candidates

to less than a minute.

B. Grasp Execution Using Motion Planners

The next step PlanArmTrajectory in Algorithm 1,

consists of selecting a stable grasp from the set of grasp

candidates that can be executed with the current robot con-

figuration without colliding with obstacles. For each stable

grasp, it first moves the robot to the appropriate grasp pre-

shape, then uses RRT and Jacobian-based gradient descent

methods to move the hand close to the target object, closes

the fingers, grabs the object, moves it to the destination while

avoiding obstacles and releases it.

If the robot successfully grabs the object and moves it

to the destination, the stable grasp is returned for execution

with the real robot. Otherwise, the next stable grasp from the

set is tried. Fig. 5 shows snapshots of the grasp execution

using the simulator and the real robots.

V. EXPERIMENTS

In this section, we will present quantitative experiments

showing that the completion of incomplete object point

clouds based on symmetry produces valid object models.

Furthermore, we will show how the estimated complete

object model helps when using a simple grasp strategy based

on the center of an object.

A. Evaluation of the Mesh Reconstruction

In this section, we will evaluate how much the recon-

structed mesh differs from the ground truth mesh.

1) Dataset: The database we used for evaluating the point

cloud mirroring method is shown in Figure 6. For each of the

objects in this database, with the exception of the toy tiger

and rubber duck, we have laser scan ground truth5. The test

data was captured with the KTH vision system and contains

12 different household or toy objects. Four of them are used

both, when standing upright or lying on their side. Thereby,

the database contains 16 different data sets. Each set contains

8 stereo images showing the object in one of the following

orientations: 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ or 335◦.

An example for the toy tiger is shown in Figure 7. As an

orientation reference we used the longest object dimension

when projected down to the table. 0◦ then means that this

reference axis is parallel to the image plane of the stereo

camera. This can be observed in Figure 6 in which all objects

are shown in their 0◦ pose. Therefore, the database contains

128 stereo images along with their point clouds.

From all point clouds, we reconstructed the complete

meshes based on the method described in Section II. We

used the two different values of 5 and 7 as the octree depth

parameter of the Poisson surface reconstruction. By limiting

this parameter, we enable mesh reconstruction in near real-

time. With a tree depth of 5, the meshes are more coarse

and blob-like but less sensitive to noise in the point cloud

and normal estimation. With a depth of 7, the reconstructed

surface is closer to the original point set. However, outliers

strongly affect the mesh shape and it is more sensitive to

noise.

To obtain the ground truth pose for each item in the

database, we applied the technique proposed in [22]. It allows

to register the laser scan object meshes to the incomplete

point clouds.

2) Baseline: As a baseline, we reconstructed a mesh

without mirroring. To do this, we applied a Delaunay tri-

angulation6 to the projection of a uniformly sampled subset

of 500 points from the original point cloud. Spurious edges

are filtered based on their length in 2D and 3D. Furthermore,

5The ground truth object models were obtained from http://

i61p109.ira.uka.de/ObjectModelsWebUI/
6http://opencv.willowgarage.com



Fig. 5. Example of the grasp performed by the simulated robot and the real one, using Right) KTH platform and Left) UJI platform.

Fig. 7. One of the Datasets from Figure 6 shown in Orientation 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 335◦.

Fig. 6. The 12 Objects in the Database in varying poses yielding 16 Data
Sets. Objects are shown in their 0◦ position, i.e, with their longest dimension
parallel to the image plane. Ground truth meshes are existing for all objects
except the toy tiger and the rubber duck.

we extract the outer contour edges of this triangulation and

span triangles between them which produces a watertight

mesh. Figure 8 shows the result of this Delaunay based mesh

reconstruction for the toy tiger.

3) Mesh Deviation Metric: To assess the deviation of

the Delaunay meshes and the mirrored meshes from the

ground truth we use MeshDev [23]. As a metric we evaluated

geometric deviation, i.e., the distance between each point

on the reference mesh to the nearest neighbor on the other

mesh. We applied the uniform sampling of the surface of the

reference mesh as proposed in [23] to calculate this deviation.

4) Results: Figure 10 shows the mean and variance of

the mesh deviation between the ground truth mesh and

the reconstructed meshes for all object orientations over all

objects. We can state that the mirrored point clouds are on

average always deviating less from the ground truth than

Fig. 8. Delaunay based Meshes of Toy Tiger in the following Orientations:
0◦, 45◦, 135◦, 225◦. 1-4: Front View. 5-8: Top View.

the Delaunay based meshes. The average deviation for the

mirrored meshes over all orientations amounts to 7mm.

Figure 11 shows the same error measure for each ob-

ject independently averaged over all its orientations. The

deviation measure is not normalized to the overall object

size. Therefore, for bigger objects, like the Brandt box or

the Burti and Spray bottle, the mean geometric deviation

between the Delaunay meshes and the ground truth exceed

20mm. The mirroring yields a significant improvement for

most objects. The green and white cup pose a challenging

problem to the Poisson surface reconstruction because they

are hollow. Modelling the void is difficult due to viewpoint

limitations. On the other hand, holes in the point clouds

due to non-uniform texture are usually closed by the surface

reconstruction.

Since, we do not have the ground truth models available

for the toy tiger and the rubber duck, we show their recon-

structed meshes with tree depth 7 in Figure 9. The overall

shape of the quite irregular toy objects is well reconstructed.

However, because of the complexity of the objects if an

incorrect mirroring plane is chosen, we obtain toy animals

with either two heads or two tails. In such cases, there are

strong violations of the visibility constraints. Thresholding of

the vote in Equation 3 could address this. This is considered

as future work.

B. Deviation of the Object Centroid

A very simple but effective grasping strategy of unknown

objects is to approach the object at its center. However,

estimating the centroid is not a trivial problem when the
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Fig. 11. Evaluation of the Deviation between the Ground Truth Mesh and i) Mesh based on 3D Point Cloud only (Del), ii) Mesh based on mirroring
and Poisson Surface Reconstruction with Tree Depth 5 (Mir5) or iii) with Tree Depth 7 (Mir7). Pose of mirroring plane chosen over a set of different
positions and orientations. Mean and Variance are computed for each object over all eight orientations.

Fig. 9. Meshes based on Mirroring. First Row: Toy Tiger. Second Row:
Rubber Duck.

object is unknown. Reactive grasping strategies are proposed

to cope with the uncertainty in the object information during

the grasp [8], [7]. The method proposed in [7] is applied

for the grasp execution on the UJI platform. The more

accurate the initial estimate of the object centroid, the fewer

unnecessary contacts with the object occur in a reactive

grasping scheme.

In this section, we therefore evaluated the accuracy of

object center estimation as a simple placeholder for grasp

quality. We compared the center of mass of the Delaunay

mesh and of the mirrored mesh with the ground truth center.

To render this comparison independent of the distribution of

vertices (especially for the ground truth meshes), we applied

the same uniform sampling of the mesh surface as in the

previous section [23]. The center of mass is then the average

over all the samples.

Figure 12 shows the error between the estimated and real

centroid of an object per viewing direction and averaged over

all objects. The deviation is normalized with the length of

the diagonal of the oriented object bounding box. We can

observe that the deviation ranges from approximately 5% to

10% of the total object size.

C. Real-World Experiments

We demonstrated the approach proposed in this paper on

the two robotic platforms described in Section III. A video

of the experiment can be found at http://opengrasp.

sourceforge.net/Videos/BohgICRA11.mp4.

Fig. 5 shows snapshots of the grasp execution in simulation

on the predicted objects and with the real robots on the
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Fig. 10. Evaluation of the Deviation between the Ground Truth Mesh and
i) Mesh based on 3D Point Cloud only (Del), ii) Mesh based on mirroring
and Poisson Surface Reconstruction with Tree Depth 5 (Mir5) or iii) with
Tree Depth 7 (Mir7).

real objects. At KTH, several objects were placed on the

table emphasizing the benefit of object shape prediction for

motion planning. Furthermore, it shows that the prediction

mechanism can deal with some occlusions. This is due to the

enforced visibility constraints. One of the main differences

between the runs at UJI and KTH is the resolution of

the point clouds that is due to the use of camera systems

with different focal lengths. While the KTH point clouds

usually consist of 40000 points, UJI point clouds contained

around 3000 points. However, a suitable mesh could still

be generated with the advantage of a lower runtime. When

running the whole generate and test procedure (with n = 6
and m = 5 yielding 35 hypotheses) on a single core of an

I7 CPU with 2.8 GHz, we achieved the following run-times:

16.46 seconds for a point cloud with 39416 points and 0.31
seconds for a point cloud with 2100 points. Please note,

that we have not exploited the possibility to parallelize this
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Fig. 12. Deviation of Estimated Object Centroid from Ground Truth
Centroid.

process yet. These runtimes also show that downsampling

the point clouds before mirroring can speed up the shape

completion without a big loss of precision. To investigate

these optimizations is considered as future work.

VI. CONCLUSIONS

In this paper, a method that estimates complete object

models from partial views is proposed. We have validated

these complete models using laser scan ground truth. The

results show effectiveness of the technique on a variety of

household objects in table top environments. Furthermore,

the proposed technique has been demonstrated on two dif-

ferent robotic platforms, validating the feasibility of the

predicted mesh for grasp and motion planning.

We feel that the proposed technique is a first step towards

bridging the gap between simulation and the real world. In

future, we hope to develop planners that take uncertain shape

information explicitly into account to generate better grasp

hypotheses and motion plans.
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