
Mind the Portability: A Warriors Guide through

Realistic Profiled Side-channel Analysis

Shivam Bhasin

Nanyang Technological University,

Singapore

Email: sbhasin@ntu.edu.sg

Dirmanto Jap

Nanyang Technological University,

Singapore

Email: djap@ntu.edu.sg

Anupam Chattopadhyay

Nanyang Technological University,

Singapore

Email: anupam@ntu.edu.sg

Stjepan Picek

Delft University of Technology,

The Netherlands

Email: s.picek@tudelft.nl

Annelie Heuser

Univ Rennes, Inria, CNRS, IRISA,

France

Email: annelie.heuser@irisa.fr

Ritu Ranjan Shrivastwa

Secure-IC,

France

Email: ranjanbhai.latest@gmail.com

Abstract—Profiled side-channel attacks represent a practical
threat to digital devices, thereby having the potential to disrupt
the foundation of e-commerce, Internet-of-Things (IoT), and
smart cities. In the profiled side-channel attack, adversary gains
knowledge about the target device by getting access to a cloned
device. Though these two devices are different in real-world
scenarios, yet, unfortunately, a large part of research works sim-
plifies the setting by using only a single device for both profiling
and attacking. There, the portability issue is conveniently ignored
in order to ease the experimental procedure. In parallel to the
above developments, machine learning techniques are used in
recent literature demonstrating excellent performance in profiled
side-channel attacks. Again, unfortunately, the portability is
neglected.

In this paper, we consider realistic side-channel scenarios
and commonly used machine learning techniques to evaluate
the influence of portability on the efficacy of an attack. Our
experimental results show that portability plays an important
role and should not be disregarded as it contributes to a
significant overestimate of the attack efficiency, which can easily
be an order of magnitude size. After establishing the importance
of portability, we propose a new model called the Multiple
Device Model (MDM) that formally incorporates the device to
device variation during a profiled side-channel attack. We show
through experimental studies, how machine learning and MDM
significantly enhances the capacity for practical side-channel
attacks. More precisely, we demonstrate how MDM is able to
improve the results by > 10×, completely negating the influence
of portability.

Index Terms—Side-channel attacks, Machine learning, Porta-
bility, Overfitting, Multiple Device Model

I. INTRODUCTION

Modern digital systems, ranging from high-performance

servers to ultra-lightweight microcontrollers, are universally

equipped with cryptographic primitives, which act as the

foundation of security, trust, and privacy protocols. Though

these primitives are proven to be mathematically secure, poor

implementation choices can make them vulnerable to even an

unsophisticated attacker. A range of such vulnerabilities are

commonly known as side-channel leakage [1], which exploits

various sources of information leakage in the device. Such

leakages could be in the form of timing [2], power [3],

electromagnetic emanation [4], speculative executions [5],

remote on-chip monitoring [6] etc. To exploit these physical

leakages, different side-channel attacks (SCAs) have been

proposed over the last two decades. In this work, we focus

on power side-channel attacks targeting secret key recovery

from cryptographic algorithms.

In side-channel attacks, profiling based attacks are consid-

ered as one of the strongest possible attacks [7]. The strength

of profiling based attacks arises from their capability to fully

characterize the device. There, the attacker has full control

over a clone device, which can be used to build its complete

profile. This profile is then used by the attacker to target

other similar devices to recover the secret information. An

illustration of profiled SCA is shown in Figure 1. The most

common profiled SCA is template attack [7], which profiles

model with mean and standard deviation.

In an ideal setting, the device for profiling and testing must

be different. However, most of the works in existing literature,

do not consider multiple devices but profile and test the same

device [8] (see Figure 1 and the difference between reality and

expected cases). Consequently, despite the common perception

about the practicality of SCA, a large body of results come

from unrealistic experimental settings. Indeed, the presence

of process variation or different acquisition methods [9],

[10] may cause a successful “single-device-model” attack to

completely fail. In [11], authors perform a template attack

on AES encryption in a wireless keyboard. They report 28%

success on a different keyboard as compared to 100% when

profiled and tested on the same keyboard. While solutions to

make templates work on different devices were proposed [12],

[11], the method stays empirical and requires case specific

processing. This issue is popularly known as portability, where

we consider all effects due to different devices and keys

between profiling device and device under attack.

Definition 1: Portability denotes all settings where an at-

tacker has no access to traces from the device under attack to

conduct a training but only to traces from a similar or clone

device, with uncontrolled variations.



Device1 

Labels Tracestrain 

Classification 
Algorithm 

Device2 

Traces Labelhypothesis 

Classification 
Algorithm 

Secret 
Key 

Reality 

E
xpected 

Profiled 
Model 

Profiling Phase Attack Phase 

Tracestest 

Fig. 1: Illustration of profiling side-channel attacks highlight-

ing the actual case and the usual practice in the literature.

While template attacks were used as a classification algorithm

in the past, adoption of machine learning has been the recent

trend. Note how the measurements to attack are commonly

obtained from the same device as the measurements to build

the model while disregarding the requirement to use a different

device to attack.

A. Machine Learning-based SCA

Recently, machine learning techniques have soared in pop-

ularity in the side-channel community [13], [14]. There, the

supervised learning paradigm can be considered similar to

profiling based methods used in side-channel attacks. Consid-

ering Figure 1, a machine learning algorithm replaces template

attacks as a classification algorithm.

It has been shown that machine learning techniques

could perform better than classical profiling side-channel at-

tacks [14]. In those classical approaches, side-channel leakages

(traces) need to be manually pre-processed and analyzed

before starting the profiling phase. This is because the targeted

traces are often measured from different settings, setups, etc.,

and hence, additional pre-processing and analysis has to be

done before running the attack. The researchers first started

with simpler machine learning techniques like Random Forest

and support vector machines and targets without counter-

measures [15], [16], [17], [18], [19]. Already these results

suggested machine learning to be very powerful, especially in

settings where the training phase was limited, i.e., the attacker

had a relatively small number of measurements to profile.

More recently, researchers also started using deep learning,

most notably multilayer perceptron and convolutional neural

networks. Such obtained results surpassed simpler machine

learning techniques but also showed remarkable performance

on targets protected with countermeasures [13], [14], [20],

[21], [22], [23]. As an example, Kim et al. used deep learning

(convolutional neural networks) to break a target protected

with the random delay countermeasure with only 3 traces in

the attack phase [24].

B. Related Work on Portability

Exploring portability in the context of profiling side-channel

attacks received only limited attention up to now. Elaabid

and Guilley highlighted certain issues with template attacks,

such as when the setups changed, for example, due to desyn-

chronization or amplitude change [25]. They proposed two

pre-processing methods to handle the templates mismatches:

waveform realignment and acquisition campaigns normaliza-

tion. Choudary and Kuhn analyzed profiled attacks on 4

different Atmel XMEGA 256 A3U 8-bit devices [12]. They

showed that even on similar devices, the differences could be

observed which makes the attack harder and carefully tailored

Template Attacks (TA) could help to mitigate the portability

issue. Device variability was also a consideration in hardware

Trojan detection [9]. There, the authors show that the results

are highly biased by the process variation. The experiments

were conducted on a set of 10 Virtex-5 FPGAs. Kim et al.

demonstrated the portability in the case of wireless keyboard,

by building the template based on the recovered AES key

to attack another keyboard [11]. They highlighted that some

correction has to be performed before directly using the built

template. In 2018, the CHES conference announced side-

channel CTF event for “Deep learning vs. classic profiling’,

which also considers the case of portability. One of the contest

categories was protected AES implementation. The winning

attack was a combination of linear classifier (decision tree

and perceptron) in a combination with SAT solver. The attack

needed 5 traces and 44 hours of SAT solver time to achieve

100% success for different devices, but only one trace was

enough for attacking the same device [26]. In a nutshell,

all previous work applied a target specific pre-processing or

post-processing to fight portability. Recently, Carbone et al.

used deep learning to attack an RSA implementation on a

EAL4+ certified target [27]. There, the authors used several

devices for various stages of a profiling attack (i.e., train-

ing/validation/attack). The classification algorithm (MLP/CNN

in their case) was trained with traces from two devices

and tested on a third device. Interestingly, their observations

agree with our results that deep learning can help overcome

portability when trained with multiple devices. However, their

focus lies in demonstrating the feasibility of the attack (in

presence of portability) while in this work we study the core

problem of portability and propose a methodology to solve it.

From this vantage point, it would appear that machine

learning-enabled SCA can provide a generic solution to tackle

the portability issue in profiled side-channel attacks. However,

this aspect of machine learning-based SCA is not properly

explored. In this paper, we conduct a detailed analysis of

portability issues arising in profiled side-channel attacks. We

start by first establishing a baseline case, which represents the

scenario mostly used in related works where both profiling

and attacking is done on the same device and using the same

secret key. Later, we explore different settings which would

turn up in a realistic profiled SCA, considering scenarios of

separate keys and devices. We are able to show that this case

can be orders of magnitude more difficult than the scenario

where one device is used and thus undermining the security

of the target due to poor assumptions. As shown later with

experimental data, the best attack in the hardest setting with

different devices and keys needs > 20× more samples for



a successful attack, when compared to a similar attack in the

easiest setting of the same device and key, clearly highlighting

the issue of portability. We identify that one of the problems

lies in the validation procedure and overfitting phenomenon.

To remedy that, we propose a new model that we call the

Multiple Device Model. We are able to experimentally show

that this model can help assess and improve the realistic attack

efficiency in practical settings. The proposed MDM applies to

both profiled SCA with and without the usage of machine

learning.

C. Contributions

The main contributions of this work are:

1) We conduct a detailed analysis of portability issues con-

sidering 4 different scenarios and state-of-the-art machine

learning techniques. We show that the realistic setting

with different devices and keys in profiling and attacking

phases is significantly more difficult than the commonly

explored setting where a single device and key is used for

both profiling and attack. To the best of our knowledge,

such analysis has not been done before.

2) We are able to show that a large part of the difficulty when

considering portability scenario comes from the fact that

machine learning algorithms overfit due to a sub-optimal

validation phase.

3) We propose a new model for profiled SCAs called the

Multiple Device Model (MDM). We show this model to

be able to cope with validation problems better and con-

sequently, achieve significantly better attack performance.

Firstly, we use the Normalized Inter-Class Variance

(NICV [28]) metric to characterize the difference in measure-

ments between different devices/keys. There, we see that while

those differences can be very small, the resulting effect on

the attack performance can be substantial. Furthermore, our

results show that longer tuning phases for machine learning

or even having more measurements in the training phase does

not guarantee better performance due to overfitting. At the

same time, having more features seems to be beneficial as it

results in more complex models that require longer executions

and more measurements to trigger overfitting.

The rest of this paper is organized as follows. In Section II,

we briefly discuss the profiled side-channel analysis. After-

ward, we introduce machine learning techniques we use in

this paper and provide a short discussion on validation and

cross-validation techniques. Section III discusses the threat

model, hyper-parameter tuning, experimental setup, and 4

scenarios we investigate. In Section IV, we give results for

our experiments and provide some general observations. In

Section V, we discuss the validation phase and over fitting.

Afterward, we introduce the new model for profiling side-

channel attacks. Finally, in Section VI, we conclude the paper

and provide several possible future research directions.

II. BACKGROUND

In this section, we start by providing information about

profiled side-channel analysis. Then, we discuss 4 machine

learning algorithms we use in our experiments and differences

between validation and cross-validation procedures.

A. Profiled Side-channel Analysis

Side-channel attacks use implementation related leakages to

mount an attack [3]. In the context of cryptography, attacks

target physical leakage from the insecure implementation of

otherwise theoretically secure cryptographic algorithms. These

physical leakages can come from a variety of sources like

power consumption, timing, cache misses, branch prediction,

etc. In this work, we focus on the most basic but still strong

leakage source, i.e., power consumption.

Profiled side-channel attacks are the strongest type of side-

channel attacks as they assume an adversary with access to a

clone device. In the present context, the adversary can control

all the inputs to the clone device and observe corresponding

power consumption. This means that the adversary would ob-

serve various power traces corresponding to random plaintext

and a key to allow detailed characterization. The adversary

collects only a few power traces from the attack device where

the secret key is not known. By comparing the attack traces

with the characterized model, the secret key is revealed. Due

to the divide and conquer approach, where small parts of the

secret key can be recovered independently, the attack becomes

more practical. Ideally, only one trace from the target device

should be enough if the characterization is perfect. However, in

real scenarios, the traces are affected by noise (environmental

or intentionally introduced by countermeasures). Thus, several

traces might be needed to determine the secret key.

Template attack [7] was the first profiled side-channel

attack. It uses mean and standard deviation of the power mea-

surements for building characterized models (or templates).

The attack traces are then compared using the maximum

likelihood principle. Later, machine (or deep) learning (ML

or DL) approaches were proposed as a natural alternative

to templates. In fact, advanced machine learning algorithms

like convolution neural networks (CNN) were also shown to

naturally break few side-channel countermeasures like random

jitter [14]. Template attack is known to be optimal from an

information theoretic perspective if ample profiling traces are

available. However, in realistic scenarios where only limited

measurements with noise are available, ML or DL approaches

outperform templates [20]. In this paper, we focus only on

machine learning algorithms as 1) they proved to be more

powerful than template attack in many realistic settings, and

2) there are no results for portability with machine learning.

Guessing Entropy: To assess the performance of the attacks,

a common option is to use Guessing entropy (GE) [29]. The

guessing entropy metric is the average number of successive

guesses required with an optimal strategy to determine the true

value of a secret key. Here, the optimal strategy is to rank all

possible key values from the least likely one to the most likely

one. More formally, given Ta traces in the attacking phase, an

attack outputs a key guessing vector g = [g1, g2, . . . , g|K|]
in decreasing order of probability where |K| denotes the

size of the keyspace. Then, guessing entropy is the average



position of k∗a in g over a number of experiments (we use 100

experiments).

B. Machine Learning

This subsection recalls some of the commonly used ML al-

gorithms in the context of side-channel analysis and supervised

learning.

1) Supervised Learning: When discussing profiling side-

channel attacks and machine learning, we are usually inter-

ested in the classification task as given with the supervised

machine learning paradigm. There, a computer program is

asked to specify which of c categories (classes) a certain input

belongs to.

More formally, let calligraphic letters (X ) denote distribu-

tions over some sets, capital letters (X) denote sets drawn from

distributions, i.e., X ∈ X , and the corresponding lowercase

letters (x) denote their realizations. We denote the set of N
examples as X = x1, . . . , xN , where xi ∈ X . For each

example x, there is a corresponding labels y, where y ∈ Y .

Typically, we assume that examples are drawn independently

and identically distributed from a common distribution on

X × Y . We denote the measured example as x ∈ X and

consider a vector of D data points (features) for each example

such that x = x1, . . . , xD.

The goal for supervised learning is to learn a mapping f :
R

n → {1, . . . , c}. When y = f(x), the model assigns an input

described by x to a category identied by y. The function f is

an element of the space of all possible functions F .

Supervised learning works in two phases, commonly known

as the training and testing phases. In the training phase, there

are N available pairs (xi, yi) with i = 1, . . . , N which are

used to build the function f . Then, the testing phase uses

additional M examples from X , i.e., x1, . . . , ~xM and function

f to estimate the corresponding classes Y = y1, . . . , yM . In

order to build a strong model f , we need to avoid overfitting

and underfitting. Overfitting happens when our model learned

the training data too well and it cannot generalize to previously

unseen data. Underfitting happens when our model cannot

model the training data or generalize to new data.

C. Validation vs. Cross-validation

When using the validation approach, the data is divided

into 3 parts: training, validation, and test data. One trains

a number of models with different hyper-parameters on the

training set and then test the model with on the validation

set. The hyper-parameters giving the best performance on the

validation set are selected. Then, the model with such selected

hyper-parameters is used to predict on test data.

In cross-validation, the data is divided into 2 parts: a

training set and testing set. The training data is then ran-

domly partitioned into complementary subsets. Then, machine

learning models with different hyper-parameters are trained

against different combinations of those subsets and validated

on the remaining subsets. The hyper-parameters giving the best

results are then used with the whole train data in order to

obtain the model which is then used on test data. The most

common cross-validation setting is the k-fold cross-validation.

There, the training set is randomly divided into k subsets and

different (k − 1) subsets are used for training models with

different hyper-parameters and the remaining one is used for

validation.

Both validation and cross-validation are aimed at preventing

overfitting. The main advantage of cross-validation is that one

does not need to divide the data into 3 parts. On the other

hand, validation is computationally simpler and usually used

with deep learning as there, training can last a long time. We

discuss in the next sections the advantages and drawbacks with

these two techniques when considering portability issues.

D. Classification Algorithms

First, we discuss classical machine learning techniques

where we must conduct a pre-processing phase to select the

most important features. Afterward, we use deep learning

techniques with all the features.

1) Naive Bayes: The Naive Bayes (NB) classifier is a

method based on the Bayesian rule that works under a simpli-

fying assumption that the predictor features (measurements)

are mutually independent among the D features, given the

class value Y . Existence of highly-correlated features in a

dataset can influence the learning process and reduce the

number of successful predictions. Additionally, Naive Bayes

assumes s normal distribution for predictor features. The Naive

Bayes classifier outputs posterior probabilities as a result of

the classification procedure [30].

2) Random Forest: Random Forest (RF) is a well-known

ensemble decision tree learner [31]. Decision trees choose their

splitting attributes from a random subset of k attributes at each

internal node. The best split is taken among these randomly

chosen attributes and the trees are built without pruning.

RF is a stochastic algorithm because of its two sources of

randomness: bootstrap sampling and attribute selection at node

splitting.

3) Multilayer Perceptron: The multilayer perceptron

(MLP) is a feed-forward neural network that maps sets of

inputs onto sets of appropriate outputs. MLP consists of

multiple layers (at least three) of nodes in a directed graph,

where each layer is fully connected to the next one and training

of the network is done with the backpropagation algorithm.

4) Convolutional Neural Network: Convolutional neural

networks (CNNs) are a type of neural networks first designed

for 2-dimensional convolutions as inspired by the biological

processes of animals’ visual cortex [32]. They are primarily

used for image classification but in recent years, they have

proven to be a powerful tool in security applications [33], [34].

From the operational perspective, CNNs are similar to ordinary

neural networks (e.g., multilayer perceptron): they consist of

a number of layers where each layer is made up of neurons.

CNNs use three main types of layers: convolutional layers,

pooling layers, and fully-connected layers. A convolutional

neural network is a sequence of layers, and every layer of

a network transforms one volume of activation functions to

another through a differentiable function. When considering



the CNN architecture, input holds the raw features. Convolu-

tion layer computes the output of neurons that are connected

to local regions in the input, each computing a dot product

between their weights and a small region they are connected

to in the input volume. Pooling performs a down-sampling

operation along the spatial dimensions. The fully-connected

layer computes either the hidden activations or the class scores.

Batch normalization is used to normalize the input layer by

adjusting and scaling the activations after applying standard

scaling using running mean and standard deviation.

III. EXPERIMENTAL SETUP

In this section, we start by discussing 4 scenarios we

investigate in our experiments. Next, we provide details about

hyper-parameter tuning. Finally, we give details about our

measurement setup.

A. Threat Model

The threat model is a typical profiled side-channel setting.

The adversary has access to a clone device running target

cryptographic algorithm (AES-128 in this case). The clone

device can be queried with a known key and then the plaintext

and corresponding power consumption measurement trace is

stored. Ideally, the adversary can have infinite queries and

corresponding database of side-channel power measurements

to characterize a precise model. Next, the adversary queries

the attack device with known plaintext in order to obtain the

unknown key. The corresponding side-channel power measure-

ment is compared to the characterized model to recover the

key. We consider this to be a standard model as a number of

certification laboratories are evaluating hundreds of security

critical products under it on a daily basis.

B. Setup

While profiled side-channel analysis is known since

2002 [7], very few studies are done in realistic settings. By

realistic we mean that the adversary profiles a clone device

and finally mounts the attack on a separate target device.

Most studies, if not all, profile and attack the same device.

Further, some studies draw profiling and testing sets from the

same measurement pool, which generally is least affected by

environmental variations. Such biases in the adversary model

can lead to highly inaccurate conclusions on the power of the

attack.

To perform a realistic study about profiled side-channel

analysis, which is actually performed on separate devices, we

needed multiple copies of the same device. The target device is

an 8-bit AVR microcontroller mounted on a custom designed

PCB. The PCB is adapted for side-channel measurement.

Precisely, a low-noise resistor (39 Ω) is inserted between the

VCC (voltage input) of the microcontroller and the actual

VCC from the power supply. Measuring the voltage drop

across the resistor allows side-channel measurement in terms

of power consumption. The PCB is designed to have special

measurement points for accessing this voltage drop easily.

Fig. 2: Illustration of the measurement setup.

The choice of microcontroller, i.e., AVR Atmega328p 8-

bit microcontroller is motivated by the underlying technology

node. Since the chip is manufactured in 350nm technology,

the impact of process variation is low. Therefore the obtained

results will reflect the best case scenario. Also, side-channel

countermeasures are considered out of scope to reflect the best

case scenario. A choice of a newer manufacturing node or

countermeasures would make it difficult to carefully quan-

tify the impact of portability alone, independent of process

variation or impact of protections. Moreover, this device is

often used for benchmarking side-channel attacks allowing fair

comparison in different research works.

The overall measurement setup is depicted in Figure 2.

The microcontroller is clocked at 16MHz and runs AES-

128 algorithm in software. The board is connected to a two-

channel Tektronix TDS2012 oscilloscope with a sampling rate

of 2GS/s (Giga-samples per second). The power traces are

captured corresponding to AES-128 execution, synchronized

with a board generated trigger. A computer is used to pilot

the whole setup. It generates random 128-bit plaintext and, via

UART, transmits it to the board and awaits acknowledgment

of the ciphertext. Upon receiving ciphertext, the software then

retrieves the waveform samples from an oscilloscope and

saves it to hard-drive indexed with corresponding plaintext

and ciphertext. To minimize the storage overhead, the trace

comprised of 600 sample points captures only the execution

of the first SubBytes call, i.e., the target of the following

attacks (the output of the first AES S-box in the SubBytes

layer). AES S-box is an 8-bit input to an 8-bit output,

which computes multiplicative inverse followed by an affine

transformation on polynomials over GF(2). For performance

reasons, it is implemented as a precomputed look-up table.

The table is indexed with p[0] ⊕ k[0], where (p[0], k[0]) are

the first bytes of plaintext and key, respectively. The output of

the S-box is stored in the internal registers or memory of the

microcontroller and is the main side-channel leakage that we

target. The labeling of data is done on the output byte of the

S-box. Due to the nonlinearity of the S-box, it is much easier

to statistically distinguish correct key from wrong keys at the

output of the S-box, which is why we choose to attack here.

Figure 3 shows an example measurement trace for the full

amount of 600 features on the top. Below is the correlation



Fig. 3: Measurement trace and corresponding correlation (se-

lected 50 features in red).

between the measurement set and the activity corresponding

to S-box look-up with the first byte of plaintext. We highlight

the 50 features with the highest absolute Pearson correlation

in red. One can see that these 50 features cover nearly all

leaking points.

Finally, in order to investigate the influence of the number of

training examples, we consider settings with 10 000 and 40 000

measurements in the training phase. In total, we conducted

more than 150 experiments in order to provide a detailed

analysis of the subject.

C. Parallel Measurement

We use 4 copies of the target device to conduct our study.

Four experiments were set up in parallel (two parallel setups

shown in Figure 4a). Parallel setups allowed us to collect the

experimental data faster as well as to minimize the effect of

change in environmental conditions. To be able to test different

scenarios, we measured 50 000 side-channel corresponding for

50 000 random plaintext on different boards (B1, B2, B3, B4)

with three randomly chosen secret keys. In the following, each

dataset is denoted in the format Bx Ky, where x denoted

board ID and y denotes the key ID. For example, B1 K1,

denotes the dataset corresponding to K1 measured on board

B1. The four boards and keys used for collecting various

datasets are shown in Figure 4b. In this case, B4 K1 is

repeated. This is to provide a benchmark comparison in the

scenario where both the device and the keys are the same,

although not measured at the same time.

Although the measurement setups are identical, executing

exactly the same code and measuring exactly the same opera-

tions, there will be still some difference due to process and en-

vironmental factors. To highlight the difference of the leakages

from different devices, we calculate Normalized Inter-Class

Variance (NICV [28]). NICV can be used to detect relevant

leakage points in side-channel traces as well as compare the

quality of side-channel measurements. It is computed as:

NICV =
V{E{T |X}}

V{T}
, (1)

where T denotes a side-channel trace and X is the public

parameter (plaintext/ciphertext), used to partition the traces.

(a) Two sets of equipment recording data in parallel.

(b) SCA Boards labelled with different keys.

Fig. 4: Parallel Equipment Setup

E{·} and V{·} are statistical expectation and variance. NICV

is bounded in the range [0, 1].
From Figure 5a, it is clear that even for similar imple-

mentations, the leakage differs and each setting has its own

leakage characteristics. The impact of these difference will be

evaluated in the following sections using ML-based profiled

side-channel attacks. As a comparison, for the same device

and key scenario (B4 K1), as given in Figure 5b, the NICV

pattern is almost completely the same.

D. Scenarios under Consideration

In our experiments, we consider several scenarios with

respect to the targets:

• Same device and same key. In this setting, we use

the same device and only a single key to conduct both

profiling/validation and attack. Despite the fact that this

scenario is far from the realistic setting, it is usually

explored in the SCA community. Consequently, most of

the works consider this scenario and report results for it.

We emphasize that this is also the simplest scenario for

the attacker.

• Same device and different key. In this scenario, we

assume there is only one device to conduct both profiling

and attack, but the key is different in those 2 phases.

This scenario can sound unrealistic since there is only one

device, we still consider it as an interesting stepping stone

toward more realistic (but also more difficult) scenarios.

• Different device and same key. Here, we assume there

are two devices (one for profiling and the second one



280 290 300 310 320 330 340 350 360

Points in Time
0.0

0.1

0.2

0.3

0.4

0.5

0.6
NI

CV
B1_K1
B2_K1
B2_K2
B3_K1
B4_K1
B4_K1
B4_K3

(a) All devices

280 290 300 310 320 330 340 350 360

Points in Time
0.0

0.1

0.2

0.3

0.4

0.5

0.6

NI
CV

B4_K1
B4_K1

(b) B4 K1

Fig. 5: NICV comparison

for the attack) that use the same key. While this scenario

can again sound unrealistic, we note that it emulates the

setting where one key would be hardcoded on a number

of devices.

• Different device and different key. This represents the

realistic setting since it assumes one device to train and

a second device to attack. Additionally, the keys are

different on those devices.

To the best of our knowledge, such a variety of considered

scenarios have never been tested before.

E. Hyper-parameter Tuning

In our experiments, we consider 4 machine learning tech-

niques: Naive Bayes, Random Forest, multilayer perceptron,

and convolutional neural networks. We also distinguish be-

tween two settings for these techniques:

• In the first setting, we select 50 most important features to

run the experiments. To select those features, we use the

Pearson correlation. The Pearson correlation coefficient

measures linear dependence between two variables, x
and y, in the range [−1, 1], where 1 is the total positive

linear correlation, 0 is no linear correlation, and −1 is

the total negative linear correlation. Pearson correlation

for a sample of the entire population is defined by [35]:

Pearson(x, y) =

∑N

i=1
((xi − x̄)(yi − ȳ))

√

∑N

i=1
(xi − x̄)2

√

∑N

i=1
(yi − ȳ)2

.

(2)

In this setting, we use Naive Bayes, Random Forest, and

multilayer perceptron.

• In the second setting, we consider the full amount of fea-

tures (i.e., all 600 features) and we conduct experiments

with multilayer perceptron and convolutional neural net-

works. Note that MLP is used in both scenarios since it

can work with a large number of features but also does

not need the features in the raw form (like CNN).

For the experiments with 50 features, we use scikit-

learn [36] while for the experiments with all features, we use

Keras [37]. For Naive Bayes, Random Forest, and multilayer

perceptron when using 50 features, we use k-fold cross-

validation with k = 5. For experiments when using all

features, we use 3 datasets: train, validate, and test. Training

set sizes are 10 000 and 40 000, validation set size equals

3 000, and test set size is 10 000. Since there is in total 50 000

measurements with 10 000 measurements used for testing,

when using the validation set, then the largest training set size

is not 40 000 but 37 000.

a) Naive Bayes: Naive Bayes has no parameters to tune.

b) Random Forest: For Random Forest, we experimented

with the number of trees in the range [10, 100, 200, 300, 400].
On the basis of the results, we use 400 trees with no limit to

the tree depth.

c) Multilayer Perceptron: When considering scenarios

with 50 features, we investigate [relu, tanh] activation func-

tions and the following number of hidden layers [1, 2, 3, 4, 5]
and number of neurons [10, 20, 25, 30, 40, 50].

On the basis of our tuning phase, we selected (50, 25, 50)
architecture with relu activation function (recall, ReLU is of

the form max(0, x)). We use the adam optimizer, the initial

learning rate of 0.001, log − loss function, and a batch size

of 200.

When considering all features and MLP, we investigate

the following number of hidden layers [1, 2, 3, 4] and number

of neurons [100, 200, 300, 400, 500, 600, 700, 800, 900, 1 000].
Based on the results, we select to use 4 hidden layers where

each layer has 500 neurons. We set the batch size to 256, the

number of epochs to 50, the loss function is categorical cross-

entropy, and optimizer is RMSprop with a learning rate of

0.001.

d) Convolutional Neural Network: For CNN, we con-

sider architectures of up to 5 convolutional blocks and 2

fully-connected layers. Each block consists of a convolutional

layer with relu activation function and average pooling layer.

The first convolutional layer has a filter size of 64 and then

each next layer increases the filter size by a factor of 2. The

maximal filter size is 512. Kernel size is 11. For the average

pooling layer, pooling size is 2 and stride is 2. Fully-connected

layers have relu activation function and we experiment with

[128, 256, 512] number of neurons. After a tuning phase, we



select to use a single convolutional block and 2 fully-connected

layers with 128 neurons each. Batch size equals 256, the

number of epochs is 125, the loss function is categorical

cross-entropy, the learning rate is 0.0001, and optimizer is

RMSprop.

IV. RESULTS

In this section, we present results for all 4 scenarios we

investigate. Afterward, we discuss the issues with the val-

idation procedure and present our Multiple Device Model.

As mentioned earlier, we use guessing entropy as the metric

for comparison. In other words, we observe the average rank

of the key against the number of traces or measurement

samples. An attack is effective if the guessing entropy goes

to 0 with minimum required samples. If at the end of attack

if the guessing entropy stays at x, the attacker must brute

force 2x different keys for key recovery. Note that we give

averaged results for a certain machine learning technique and

number of measurements. We denote the scenario where we

use multilayer perceptron with all 600 features as MLP2, while

the scenario where multilayer perceptron uses 50 features we

denote as MLP.

A. Same Key and Same Device

The first scenario we consider uses the same devices

and keys for both training and testing phases. Consequently,

this scenario is not a realistic one but is a common sce-

nario examined in the related works. This scenario does

not consider any portability aspect and is the simplest one

for machine learning techniques so we consider it as the

baseline case. The results for all considered machine learning

techniques are given in Figure 6. We give averaged results

over the following settings: (B1 K1)−(B1 K1), (B2 K2)−
B2 K2), (B3 K1) − (B3 K1), (B4 K3) − (B4 K3). As

can be seen, all results are very good, and even the worst

performing algorithm reaches guessing entropy of 0 in less

than 10 measurements. Thus, an attack would need only

10 side-channel traces from the target device in order to

perform the full key-recovery. Additionally, we see that adding

more measurements can improve the performance of attacks.

The worst performing algorithm is Naive Bayes, followed

by Random Forest. The differences among other algorithms

are very small and we see that guessing entropy reaches

0 for 3 measurements. Note that despite somewhat smaller

training sets (37 000) for algorithms using all 600 features

(CNN and MLP2), those results do not show any performance

deterioration. In fact, the algorithms are able to reach guessing

entropy of 0 with up to 3 traces. Since we are using the

same device and key to train and attack, and we are using

validation or cross-validation to prevent overfitting, accuracy

in the training phase is only somewhat better than accuracy in

the test phase (depending on the algorithm, ≈ 10− 40%).

B. Same Device and Different Key

Next, we consider the scenario where we use the same

device in the training phase and testing phase but we change

Fig. 6: Same device and key scenario.

Fig. 7: Same device and different key scenario.

keys between those phases. When different user compute on

shared resources and standard cryptographic libraries (like

SSL), this scenario becomes relevant. The malicious user

profiles the library on own application with all access rights

and attacks when the target user application is running. We

present the results for this scenario in Figure 7. Here, we

give averaged results over scenarios (B2 K1) − (B2 K2)
and (B2 K2) − (B2 K1). The first observation is that this

setting is more difficult for machine learning algorithms. In-

deed, Naive Bayes, Random Forest, and multilayer perceptron

with 50 features require more than 100 measurements to

reach guessing entropy less than 10 (note that Naive Bayes

with 10 000 measurements reaches only guessing entropy of

around 40). Interestingly, for these 3 techniques, adding more

measurements (i.e., going from 10 000 to 40 000) does not

bring a significant improvement in performance. At the same

time, both techniques working with all features (MLP2 and

CNN) do not seem to experience performance degradation

when compared to the first scenario. Regardless of the number

of measurements in the training phase, they reach guessing

entropy of 0 after 3 measurements. For this scenario, we

observed that accuracy in the training phase can be up to

an order of magnitude better than accuracy in the test phase,

which indicates that our algorithms overfit.

C. Same Key and Different Device

The third scenario we consider uses two different devices

but the key stays the same. Note, since we consider different

devices we can talk about the real-world case but the same



Fig. 8: Same key and different device scenario.

key makes it still a highly unlikely scenario. The results are

averaged over settings (B1 K1)−(B2 K1) and (B2 K1)−
(B1 K1). When considering performance, we see in Figure 8

that this scenario is more difficult than the previous two as

different targets introduce their own noise patterns. Similarly

as in the previous scenario, all techniques using 50 features

require more than 100 measurements to reach guessing entropy

less than 10. Additionally, adding more measurements does

not improve results significantly. When considering techniques

using all 600 features, we see this scenario to be more

difficult than the previous ones as we need 7 or more traces

to reach guessing entropy of 0. Additionally, CNN using

10 000 measurements is clearly performing worse than when

using 40 000 measurements, which is a clear indicator that

we require more measurements to avoid underfitting on the

training data. Finally, we remark that in these experiments,

accuracy in the training set was up to an order of magnitude

higher than for the test set. Consequently, we see that while

we require more measurements in the training phase to reach

the full model capacity, those models already overfit as the

differences between devices are too significant.

D. Different Key and Device

Finally, we investigate the setting where training and testing

are done on different devices where those devices use different

secret keys. Consequently, this is the full portability scenario

one would encounter in practice. As expected, this is by

far the most difficult scenario for all techniques as seen in

Figure 9. In this scenario, the results are averaged over 8 dif-

ferent settings: (B1 K1)− (B4 K3), (B4 K3)− (B1 K1),
(B2 K2) − (B4 K3), (B4 K3) − (B2 K2), (B3 K1) −
(B4 K3), (B4 K3)− (B3 K1), (B1 K1)− (B2 K2), and

(B2 K2)− (B1 K1).
Interestingly, here Random Forest is the worst performing

algorithm and with 100 measurements it barely manages

to reach guessing entropy less than 90. Naive Bayes and

multilayer perceptron with 50 features perform better but still

with 100 measurements, they are not able to reach guessing

entropy less than 15. At the same time, we see a clear benefit of

added measurements only for Naive Bayes. When considering

CNN and multilayer perceptron with all features, we observe

we require somewhat more than 60 measurements to reach

Fig. 9: Different key and device scenario.

guessing entropy of 0. There is a significant difference in

performance for CNN when comparing settings with 10 000

and 40 000 measurements. For MLP2 that difference is much

smaller and when having a smaller number of measurements,

MLP2 outperforms CNN. When CNN uses 40 000 measure-

ments in the training phase, it outperforms multilayer per-

ceptron with 10 000 measurements and both techniques reach

guessing entropy of 0 with the approximately same number of

measurements in the testing phase. As in the previous scenario,

we see that CNN needs more measurements to build a strong

model. This is in accordance with the intuitive difficulty of the

problem as more difficult problems need more data to avoid

underfitting and to reach good model complexity. Interestingly,

in this scenario, accuracy for the training set is easily two

orders of magnitude higher than for the test set, which shows

that all techniques overfit significantly. Indeed, while we see

that we can build even stronger models if we use more

measurements in the training phase, such obtained models are

too specialized for the training data and do not generalize well

for the test data obtained from different devices.

E. General Observations

When considering machine learning techniques we used and

investigated scenarios, we see that multilayer perceptron using

all features performs the best (the difference with CNN is

small, especially if considering 40 000 measurements in the

training phase). In order to better understand the difficulties

stemming from specific scenarios, we depict the result for

MLP2 and all 4 scenarios in Figure 10.

Clearly, the first two scenarios (having the same device

and key as well as changing the key but keeping the same

device) are the easiest. Here, we see that the results for the

scenario when changing the key indicate it is even slightly

easier than the scenario with the same device and key. While

other machine learning techniques point that using the same

key and device is the easiest scenario, they all show these two

scenarios to be easy. Next, a somewhat more difficult case is

the scenario where we change the device and use the same key.

Again, the exact level of increased difficulty depends on the

specific machine learning algorithm. Finally, the most difficult

scenario is when we use different devices and keys. Here, we

can see that the effect of portability is much larger than the



Fig. 10: Multilayer perceptron with 600 features over all

scenarios, 10 000 measurements.

sum of previously considered effects (changing only key or

device).

While all scenarios must be considered as relatively easy

when looking the number of traces needed to reach guessing

entropy of 0, the increase in the number of required measure-

ments is highly indicative how difficult problem portability

represents. Indeed, it is easy to see that we require more than

an order of magnitude more measurements for the same per-

formance if we consider scenarios 3 and 4. At the same time,

already for scenario 3, we require double the measurements

than for scenarios 1 or 2.

While we use only a limited number of experimental

settings, there are several general observations we can make:

1) Any portability setting adds to the difficulty of the

problem for machine learning.

2) Attacking different devices is more difficult than attacking

different keys.

3) The combined effect of different key and different device

is much larger than their sum.

4) Adding more measurements does not necessarily help but

on average also does not deteriorate the performance.

5) CNN requires more measurements in portability settings

to build strong models.

6) While our results indicate that additional measurements

in the training phase would be beneficial to reach the full

model capacity, we observe that in portability settings,

there is a significant amount of overfitting. This represents

an interesting situation where we simultaneously underfit

on training data and overfit on testing data.

7) The overfitting occurs due to the fact that we do not train

on the same data distribution as we test.

V. MULTIPLE DEVICE MODEL

In this section, we first discuss the overfitting issue we

encounter in portability. Next, we propose a new model

for portability called the Multiple Device Model where we

experimentally show its superiority when compared to the

usual setting.

A. Overfitting

Recall from Section II-B1 that we are interested in super-

vised learning where on the basis of training examples (data

Fig. 11: Training and validation on the same device vs.

validation done on different device.

X and corresponding labels Y ) a function f is obtained. That

function is later used on testing data to predict the corre-

sponding labels. Here, the function f is estimated from the

observed data. That observed data is drawn independently and

identically distributed from a common distribution. To avoid

overfitting, we use validation (e.g., k-fold cross-validation or

a separate dataset for validation).

As it can be observed from the results in the previous

section, when training and testing data come from the same

device, the machine learning techniques do not have problems

in building good models as the model is fitted to the same

distribution of data as will be used in the attack phase.

There, validation on the same data distribution helps to prevent

overfitting.

However, when there are two devices, one for training and

the second one to attack, the problem of overfitting is much

more pronounced and having validation done on a training

device does not help significantly. Naturally, the problem is

that our model is fitted to the training data but we aim to

predict on testing data, which may not have the same distri-

butions. We depict this in Figure 11 where we show results for

training and validation on the device B1 K1 versus training

on the device B1 K1 and validation on the device B4 K3.

In this scenario, we experiment with multilayer perceptron

and we use all features (MLP2). We can clearly observe that

when conducting validation on the same device as training,

the accuracy increases with the number of epochs. At the

same time, when we run validation with measurements from a

different device, there is almost no improvement coming from

a longer training process.

On the basis of these results, we identify overfitting as

one of the main problems in the portability scenarios. There,

overfitting occurs much sooner than indicated by validation

if done on the same device as training. Additionally, our

experiments indicate that k-fold cross-validation suffers more

from portability than having a separate validation dataset. This

is because it allows a more fine-grained tuning, which further

eases overfitting.

To prevent overfitting, there are several intuitive options:



1) Adding more measurements. While this sounds like a

good option, it can bring some issues as we cannot know

how much data needs to be added (and in general in

SCA, we will use already from the start all available

data). Also, in SCA a longer measurement setup may

introduce additional artifacts in the data distribution [38].

Additionally, simply increasing the amount of training

data does not guarantee to prevent overfitting as we do

not know what amount of data one needs to prevent

underfitting.

2) Restricting model complexity. If we use a model that has

too much capacity, we can reduce it by changing the

network parameters or structure. Our experiments also

show the benefits of using shallower networks or shorter

tuning phases, but it is difficult to estimate a proper

setting without observing the data coming from the other

distribution.

3) Regularization. There are multiple options here: dropout,

adding noise to the training data, activation regulariza-

tion, etc. While these options would certainly reduce

overfitting in general case, they are unable to assess

when overfitting actually starts for data coming from

a different device, which makes them less appropriate

for the portability scenarios. We note that some of these

techniques have been also used in profiling SCA but not

in portability settings, see, e.g., [14], [24].

B. New Model

Validation on the same device as training can seriously

affect the performance of machine learning algorithms if

attacking a different device. Consequently, we propose a new

model that uses multiple devices for training and validation.

We emphasize that since portability is more pronounced when

considering different devices than different keys (and their

combined effect is much larger than their sum), it is not

sufficient to build the training set by just using multiple

keys and one device. Indeed, this is a usual procedure done

for template attack but it is insufficient for full portability

considerations.

In its simplest form, our new model, called the “Multiple

Device Model” (abbreviated MDM) consists of 3 devices: 2

for training and validation and one for testing. Since we use

more than one device for training and validation, the question

is which device to use for train and which one for validation.

The simplest setting is to use one device for training and the

second one for validation. In that way, we are able to prevent

overfitting as the model will not be able to learn the training

data too well. Still, there are some issues with this approach:

while we said we use one device for training and the second

one for validation, it is still not clear how to select which

device to use for what. Indeed, our results clearly show that

training on device x and validating on device y in order to

attack device z will produce different results when compared to

training on device y and validating on device x to attack device

z. This happens because we cannot know whether device x or

Device1 

Labels Tracestrain 

Classification 
Algorithm 

Devicetest 

Tracestest Labelhypothesis 

Classification 
Algorithm 

Secret 
Key 

Profiled 
Model 

Profiling Phase Attack Phase 

Tracesval 

Device2 Device3 

Fig. 12: Illustration of the proposed MDM model. Note a clear

separation between training/validation devices and a device

under attack, cf. Figure 1.

y is more similar to device z, which will influence the final

results.

Instead of deciding on how to divide devices among phases,

we propose the Multiple Device Model where a number of

devices participate in training and validation. More formally,

let the attacker has on his disposal t devices with N data

pairs xi, yi from each device. The attacker then takes the same

number of measurements k from each device to create a new

train set and the same number of measurements j from each

device to create a validation set. Naturally, the measurements

in the training and validation set need to be different. The

training set then has the size t·k and the validation set has size

t · j. With those measurements, the attacker builds a model f ,

which is then used to predict labels for measurements obtained

from a device under attack. We emphasize that in training and

validation, it is necessary to maintain a balanced composition

of measurements from all available devices in order not to

build a model skewed toward a certain device. We depict the

MDM setting in Figure 12.

Definition 2: The Multiple Device Mode denotes all settings

where an attacker has no access to traces from the device under

attack to conduct a training but only to traces from a number

of similar devices (at least 2), with uncontrolled variations.

While MDM requires a strong assumption on the attacker’s

capability (i.e., to have multiple devices of the same type as the

device under attack) we consider it to be well within realistic

scenarios. If a third device is not available, one could simulate

it by adding a certain level of noise to the measurements from

the training device. This solution is far from optimal since we

cannot know a proper level of noise, but it could still force

machine learning algorithms to generalize better as the trained

model would overfit less.

We present results for MDM and multilayer perceptron

that uses all features (MLP2) and 10 000 measurements as

it provided the best results in the previous section. The results

are for specific scenarios so they slightly differ from previous

results where we depict averaged results over all device

combinations. Finally, we consider here only the scenario

where training and attacking are done on different devices and

use different keys. Consequently, the investigated settings are

selected so as not to allow the same key or device to be used



in the training/validation/attack phases.

In Figure 13a, we depict several experiments when us-

ing different devices for training and validation. First, let

us consider the cases (B1 K1) − (B4 K3) − (B2 K2)
and (B1 K1) − (B2 K2). There, having separate devices

for training and validation improves over the case where

validation is done on the same device as training. On the

other hand, cases (B4 K3) − (B2 K2) − (B1 K1) and

(B4 K3) − (B1 K1) as well as (B4 K3) − (B1 K1) −
(B2 K2) and (B4 K3) − (B2 K2) show that adding an

additional device for validation actually significantly degrades

the performance. This happens because the difference between

the training and validation device is larger than the difference

between the training and testing device. Next, the cases

(B2 K2)− (B4 K3)− (B1 K1) and (B2 K2)− (B1 K1)
show very similar behavior, which means that validation and

testing datasets have similar distributions. Finally, for three

devices, e.g., cases (B1 K1) − (B4 K3) − (B2 K2) and

(B4 K3) − (B1 K1) − (B2 K2), the only difference is

the choice of training and validation device/key. Yet, the

performance difference is tremendous, which clearly shows

the limitations one could expect if having separate devices for

training and validation.

Next, in Figure 13b, we depict the results for our new MDM

model where training and validation measurements come from

two devices (denoted with “multiple” in the legend). As it can

be clearly seen, our model is able to improve the performance

significantly for two out of three experiments. There, we are

able to reach the level of performance as for the same key

and device scenario. For the third experiment, (B1 K1) −
(B2 K2)−(B4 K3), we see that the improvement is smaller

but still noticeable, especially for certain ranges of the number

of measurements. We see that MDM can result in an order of

magnitude better performance than using two devices. At the

same time, with MDM we did not observe any case where it

would results in performance degradation when compared to

the usual setting.

MDM may not be always necessary: if both training and

attacking devices contain small levels of noise and are suffi-

ciently similar, then using only those two devices could suffice.

Still, as realistic settings tend to be much more difficult to

attack, having multiple devices for training and validation

would benefit attack performance significantly.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we tackle the portability issue in machine

learning-based side-channel attacks. We show how even small

differences between devices can cause attacks to perform

significantly different. As expected, our results clearly show

that the scenario where we use different keys and devices in

the profiling and attacking phase is the most difficult one.

This is important because it means that most of the attacks

conducted in related works greatly overestimate their power as

they use the same device and key for both training and attack.

We identify the validation procedure as one of the pitfalls for

portability and machine learning. Consequently, we propose

(a) Results for separate devices for training and validation.

(b) Results for MDM.

Fig. 13: Results for different settings with multiple devices for

training and validation.

a new attack model called the Multiple Device Model that

assumes separate devices for profiling/validation and attack.

With this model, we are able to improve attack performance

by > 10×.

In our experiments, we considered AVR targets that have

no countermeasures. The choice was motivated by finding the

best case measurements to focus on the portability problems.

In future work, we plan to use different platforms and inves-

tigate what is the influence of various countermeasures (both

hiding and masking) to the performance of machine learning

classifiers when considering portability. Additionally, we plan

to experiment with a larger number of devices in order to

improve the generalization capabilities of machine learning

algorithms. A natural extension of this work would be when

the different devices are not measured on non-identical setups.

Finally, our experiments indicate that smaller datasets could be

less prone to overfitting. It would be interesting to see whether

we can obtain good performance with small training set sizes,

which would conform to setting as described in [39].

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Advances in Cryptology - CRYPTO ’96, 16th

Annual International Cryptology Conference, Santa Barbara, California,

USA, August 18-22, 1996, Proceedings, ser. Lecture Notes in Computer



Science, N. Koblitz, Ed., vol. 1109. Springer, 1996, pp. 104–113.
[Online]. Available: http://dx.doi.org/10.1007/3-540-68697-5 9

[2] ——, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems,” in Proceedings of CRYPTO’96, ser. LNCS,
vol. 1109. Springer-Verlag, 1996, pp. 104–113.

[3] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proceedings of the 19th Annual International Cryptology Conference

on Advances in Cryptology, ser. CRYPTO ’99. London, UK,
UK: Springer-Verlag, 1999, pp. 388–397. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=646764.703989

[4] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema): Mea-
sures and counter-measures for smart cards,” in Smart Card Program-

ming and Security, I. Attali and T. Jensen, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 200–210.

[5] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX

Security Symposium (USENIX Security 18), 2018.
[6] M. Zhao and G. E. Suh, “Fpga-based remote power side-channel

attacks,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 229–244.

[7] S. Chari, J. R. Rao, and P. Rohatgi, “Template Attacks,” in CHES, ser.
LNCS, vol. 2523. Springer, August 2002, pp. 13–28, San Francisco
Bay (Redwood City), USA.

[8] O. Choudary and M. G. Kuhn, “Efficient template attacks,” in Interna-

tional Conference on Smart Card Research and Advanced Applications.
Springer, 2013, pp. 253–270.

[9] X. T. Ngo, Z. Najm, S. Bhasin, S. Guilley, and J.-L. Danger, “Method
taking into account process dispersion to detect hardware trojan horse
by side-channel analysis,” Journal of Cryptographic Engineering, vol. 6,
no. 3, pp. 239–247, 2016.

[10] M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, and
D. Flandre, “A formal study of power variability issues and side-channel
attacks for nanoscale devices,” in Annual International Conference on

the Theory and Applications of Cryptographic Techniques. Springer,
2011, pp. 109–128.

[11] K. Kim, T. H. Kim, T. Kim, and S. Ryu, “Aes wireless keyboard:
Template attack for eavesdropping,” Black Hat Asia, Singapore, 2018.

[12] O. Choudary and M. G. Kuhn, “Template attacks on different devices,”
in Constructive Side-Channel Analysis and Secure Design - 5th

International Workshop, COSADE 2014, Paris, France, April 13-15,

2014. Revised Selected Papers, ser. Lecture Notes in Computer Science,
E. Prouff, Ed., vol. 8622. Springer, 2014, pp. 179–198. [Online].
Available: https://doi.org/10.1007/978-3-319-10175-0\ 13

[13] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in Security, Privacy,

and Applied Cryptography Engineering - 6th International Conference,

SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings,
2016, pp. 3–26.

[14] E. Cagli, C. Dumas, and E. Prouff, “Convolutional Neural Networks
with Data Augmentation Against Jitter-Based Countermeasures - Profil-
ing Attacks Without Pre-processing,” in Cryptographic Hardware and

Embedded Systems - CHES 2017 - 19th International Conference, Taipei,

Taiwan, September 25-28, 2017, Proceedings, 2017, pp. 45–68.
[15] A. Heuser, S. Picek, S. Guilley, and N. Mentens, “Side-channel analysis

of lightweight ciphers: Does lightweight equal easy?” in Radio Fre-

quency Identification and IoT Security - 12th International Workshop,

RFIDSec 2016, Hong Kong, China, November 30 - December 2, 2016,

Revised Selected Papers, 2016, pp. 91–104.
[16] S. Picek, A. Heuser, A. Jovic, and A. Legay, “Climbing down the

hierarchy: Hierarchical classification for machine learning side-channel
attacks,” in Progress in Cryptology - AFRICACRYPT 2017: 9th

International Conference on Cryptology in Africa, Dakar, Senegal,

May 24-26, 2017, Proceedings, M. Joye and A. Nitaj, Eds. Cham:
Springer International Publishing, 2017, pp. 61–78. [Online]. Available:
https://doi.org/10.1007/978-3-319-57339-7 4

[17] L. Lerman, R. Poussier, G. Bontempi, O. Markowitch, and F. Standaert,
“Template Attacks vs. Machine Learning Revisited (and the Curse of
Dimensionality in Side-Channel Analysis),” in COSADE 2015, Berlin,

Germany, 2015. Revised Selected Papers, 2015, pp. 20–33.
[18] A. Heuser and M. Zohner, “Intelligent Machine Homicide - Breaking

Cryptographic Devices Using Support Vector Machines,” in COSADE,
ser. LNCS, W. Schindler and S. A. Huss, Eds., vol. 7275. Springer,
2012, pp. 249–264.

[19] S. Picek, A. Heuser, A. Jovic, S. A. Ludwig, S. Guilley, D. Jakobovic,
and N. Mentens, “Side-channel analysis and machine learning: A
practical perspective,” in 2017 International Joint Conference on Neural

Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017, 2017,
pp. 4095–4102.

[20] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The
curse of class imbalance and conflicting metrics with machine learning
for side-channel evaluations,” IACR Transactions on Cryptographic

Hardware and Embedded Systems, vol. 2019, no. 1, pp. 209–237,
Nov. 2018. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/7339

[21] E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas, “Study of
deep learning techniques for side-channel analysis and introduction to
ASCAD database,” IACR Cryptology ePrint Archive, vol. 2018, p. 53,
2018. [Online]. Available: http://eprint.iacr.org/2018/053

[22] B. Timon, “Non-profiled deep learning-based side-channel attacks,”
Cryptology ePrint Archive, Report 2018/196, 2018, https://eprint.iacr.
org/2018/196.

[23] S. Picek, I. P. Samiotis, J. Kim, A. Heuser, S. Bhasin, and A. Legay,
“On the performance of convolutional neural networks for side-channel
analysis,” in Security, Privacy, and Applied Cryptography Engineering,
A. Chattopadhyay, C. Rebeiro, and Y. Yarom, Eds. Cham: Springer
International Publishing, 2018, pp. 157–176.

[24] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make
some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis,” IACR Transactions on Cryptographic

Hardware and Embedded Systems, vol. 2019, no. 3, pp. 148–179,
May 2019. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/8292

[25] M. A. Elaabid and S. Guilley, “Portability of templates,” J.

Cryptographic Engineering, vol. 2, no. 1, pp. 63–74, 2012. [Online].
Available: https://doi.org/10.1007/s13389-012-0030-6

[26] A. Gohr, S. Jacob, and W. Schindler, “CHES 2018 side channel
contest CTF - solution of the AES challenges,” IACR Cryptology

ePrint Archive, vol. 2019, p. 94, 2019. [Online]. Available: https:
//eprint.iacr.org/2019/094

[27] M. Carbone, V. Conin, M.-A. Cornlie, F. Dassance, G. Dufresne,
C. Dumas, E. Prouff, and A. Venelli, “Deep Learning to Evaluate
Secure RSA Implementations,” IACR Transactions on Cryptographic

Hardware and Embedded Systems, vol. 2019, no. 2, pp. 132–161,
Feb. 2019. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/7388

[28] S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm, “Nicv: Normalized
inter-class variance for detection of side-channel leakage,” IACR Cryp-

tology ePrint Archive, vol. 2013, p. 717, 2013.
[29] F.-X. Standaert, T. Malkin, and M. Yung, “A Unified Framework for the

Analysis of Side-Channel Key Recovery Attacks,” in EUROCRYPT, ser.
LNCS, vol. 5479. Springer, April 26-30 2009, pp. 443–461, Cologne,
Germany.

[30] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian Network Clas-
sifiers,” Machine Learning, vol. 29, no. 2, pp. 131–163, 1997.

[31] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[32] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, 1995.

[33] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’18. New York, NY,
USA: ACM, 2018, pp. 1928–1943. [Online]. Available: http:
//doi.acm.org/10.1145/3243734.3243768

[34] Y. Shen, E. Mariconti, P. A. Vervier, and G. Stringhini, “Tiresias:
Predicting security events through deep learning,” in Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’18. New York, NY, USA: ACM, 2018, pp. 592–605.
[Online]. Available: http://doi.acm.org/10.1145/3243734.3243811

[35] G. James, D. Witten, T. Hastie, and R. Tibsihrani, An Introduction to

Statistical Learning, ser. Springer Texts in Statistics. Springer New
York Heidelbert Dordrecht London, 2001.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.



[37] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[38] A. Heuser, M. Kasper, W. Schindler, and M. Stöttinger, “A New

Difference Method for Side-Channel Analysis with High-Dimensional
Leakage Models,” in CT-RSA, ser. Lecture Notes in Computer Science,

O. Dunkelman, Ed., vol. 7178. Springer, 2012, pp. 365–382.
[39] S. Picek, A. Heuser, and S. Guilley, “Profiling side-channel analysis in

the restricted attacker framework,” Cryptology ePrint Archive, Report
2019/168, 2019, https://eprint.iacr.org/2019/168.


