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Abstract

Background: Graphical models of network associations are useful for both visualizing and integrating multiple

types of association data. Identifying modules, or groups of functionally related gene products, is an important

challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when

applied to dense networks of experimentally derived interaction data. To address this problem, we have developed

an agglomerative clustering method that is able to identify highly modular sets of gene products within highly

interconnected molecular interaction networks.

Results: MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity

clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves

superior geometric accuracy and modularity for annotated functional categories. In comparison with the most

closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE

is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small

number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing

topological properties.

Conclusions: MINE was created in response to the challenge of discovering high quality modules of gene

products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and

user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering

algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional

annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans.

Background

Many types of molecular and functional associations,

such as protein-protein or genetic interactions, can be

usefully combined and represented as networks using

graphical models. Understanding how molecular com-

plexes and groups of functionally related gene products,

or “modules”, are organized within molecular interaction

networks - both physically and in terms of functional

dependencies - can lead to a better understanding of

how cellular and developmental processes are coordi-

nated. Because gene products within complexes or mod-

ules are expected to physically interact more frequently

and to show stronger functional dependencies with each

other than with other molecules in their environment,

they are expected to share many more linkages in any

network representation of functional associations.

Topological analysis of network graphs can identify den-

sely interconnected regions, which often correspond to

functionally related groups of genes or proteins that can

be identified as molecular complexes and modules, and

can also reveal how different modules may be function-

ally linked.

Several algorithmic approaches have been developed

to identify densely interconnected groups of vertices

(also called nodes; here, genes/proteins) within a graph

(here, biological interaction network). These can be

broadly classified as agglomerative methods that grow

clusters nucleated from densely interconnected regions

(e.g. MCODE [1], CFinder [2], NeMo [3], SPICi [4]), or

divisive methods that partition graphs into regions of

differing connectivity (e.g. MCL [5]). Some general fea-

tures differ between these approaches: for example, divi-

sive methods usually attempt to assign all nodes in a

graph into some cluster, while agglomerative methods

do not; some methods assign nodes exclusively to a sin-

gle cluster, while others allow membership of a single
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node in multiple clusters. We describe these five meth-

ods briefly below. MCODE is a popular clustering

method that uses vertex weighting (a form of the clus-

tering coefficient [6]) to grow clusters from a starting

vertex of high local weight by iteratively adding neigh-

boring vertices with similar weights. Cluster boundaries

can be adjusted using options to trim vertices linked by

a single edge (’haircut’) or to draw in additional neigh-

boring vertices (’fluff’). These options can allow nodes

to remain unassigned or to be included in multiple clus-

ters – both likely scenarios in vivo, where the precise

composition of functional modules and pathways may

vary in different biological contexts. CFinder is a clique-

finding algorithm that identifies fully connected sub-

graphs of different minimum clique size, and then

merges cliques based upon their percentage of shared

members, so that each node typically assumes member-

ship in an entire hierarchy of clusters of differing sizes.

CFinder results vary widely with each increment of

minimum clique size (an adjustable parameter). NeMo

identifies frequent dense subgraphs in input networks

based on SPLAT [7] and CODENSE [8], which look for

recurrence of dense subgraphs and coherent edge recur-

rence across subgraphs, respectively. NeMo is designed

for dense, large-scale networks because it uses coherent

edge frequencies, which can lose statistical power in

sparse networks with few edges. MCL is a Markov Clus-

tering method that is based on a flow simulation (essen-

tially a random walk) that partitions a graph into areas

of high and low flow. Nodes are grouped together as

complexes when edges that link them have similar

‘flow’, or probability of edge use based on path. SPICi is

a computationally efficient, local network-clustering

algorithm that emphasizes optimizing cluster density.

SPICi seeds clusters with nodes according to their

weighted degree and accounts for local density around

the growing cluster with each iteration. SPICi is

promoted for its speed and ability to process large

networks.

We applied all of these methods to molecular interac-

tion networks from Sacchromyces cerevisiae (yeast) and

Caenorhabditis elegans (worm) and compared their per-

formance with respect to the modularity, density, and

size of clusters, as well as the total number of clusters

identified and their ability to group genes with similar

functional annotations. To be as fair as possible in all

comparisons and tests, we used the final clustering out-

put from each implementation exactly as it was provided

to the user. For the yeast networks we achieved some

success using all of these methods, but we found them

not as well suited for the worm interactome: the clusters

identified were highly variable in quality, and adjustable

parameters could not accommodate the higher intercon-

nectivity of the worm network to produce consistently

sensible results. We found the yeast network to have

slightly higher density overall than the worm network

(2.58e-3 for FYI vs. 9.19e-4 for WI8), while its character-

istic path length (the average shortest path between all

pairs of nodes) was nearly double that of for worm (9.24

vs. 5.16). This indicates that nodes in the worm molecu-

lar interaction network are more highly interconnected,

and consequently would be expected to manifest less

modularity, or separation of distinct clusters from the

rest of the network. As a result, the methods described

above were unable to identify consistently high quality

clusters. For example, different algorithms variously

tended to recover low-density, stringy clusters

(MCODE), produce many small subnetworks that were

subsets of larger modules (CFinder), lacked suitable

parameter adjustability (CFinder, NeMo), partitioned the

network exhaustively leaving no unassigned nodes

(MCL), or tended to generate numerous small, exclusive

(non-overlapping) clusters (SPICi).

Here we describe Module Identification in Networks

(MINE), an alternative method we have developed that

can effectively identify functional modules in the C. ele-

gans molecular interaction networks. MINE at once

robustly identifies highly interconnected clusters that

are biologically coherent, has the flexibility to handle

many different types of networks, and contains a small

number of adjustable parameters that can be optimized

for different network topologies - all within a simple

graphical user interface. MINE is an agglomerative clus-

tering algorithm very similar to MCODE, but it uses a

modified vertex weighting strategy and can factor in a

measure of network modularity, both of which help to

define module boundaries by avoiding the inclusion of

spurious neighboring nodes within growing clusters. We

have evaluated MINE as applied to interactomes from

yeast and worm, and we show that it performs favorably

with respect to modularity and density in comparison

with other current methodologies.

Results

Overview of algorithm and design considerations

The clustering approach used by MINE is summarized

in Figure 1 and Additional File 1 Figure S1. MINE first

assigns weights to all nodes in a graph according to

their edge degree and local neighborhood density. It

then performs an iterative, agglomerative cluster finding

procedure, in which clusters are seeded from nodes in

order of their descending weight. With each iteration,

the seed node is grouped together with neighboring

nodes of similar weight and any neighbor nodes that

improve the modularity score. After a cluster is deli-

neated, it is compared to previously identified clusters

and merged if there is significant overlap. This proce-

dure is then repeated, starting with the next most highly
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weighted node, until all nodes have been inspected as a

seed.

In developing MINE we reasoned that the algorithm

should not attempt to force all vertices into a cluster, as

it may not be feasible to assign every gene/protein to a

physical complex or module in a real-world example -

this may either reflect the underlying biological reality,

or may occur because available network data is sparse

and incomplete. We thus opted for an agglomerative

clustering approach, and focused on three specific fac-

tors that are important for biologically and topologically

meaningful cluster identification: neighborhood edge

density calculation, optimization for modularity, and

treatment of overlapping clusters. We discuss these

three issues and their influence on performance

separately.

Neighborhood edge density

To build clusters, MINE uses a strategy similar to that

of MCODE, which we had found to return good results

in yeast (but which did not provide the flexibility we

sought for C. elegans). The primary differences lie in the

method that MINE uses to calculate how vertices are

weighted and the inclusion of a local modularity score

at each step. To retain information about the precise

local neighborhood of a vertex (all directly connected

vertices, i.e. all connected vertices of depth 1), we assign

the vertex (v) a weight (vw) that is the product of its

own clustering coefficient, i.e. its density (d), and the

number of edges (k) of the most highly connected node

in the local neighborhood of v, inclusive of v (kmax):

vw = kmax ∗ d

This weighting scheme improves the scores of densely

grouped genes that are linked to a highly connected

node, or ‘hub’. The topological effect of this scoring

scheme is to place higher weight on vertices connected

to hubs, which have been shown to be important for

robustness in biological interaction networks and tend

to occur within functional modules [9].

Modularity

We include an additional parameter that takes into

account a modularity score, which represents the level

of connectivity within a group of nodes relative to the

group’s connections to the rest of the network. Modu-

larity is defined as the ratio of the number of edges

between nodes in a cluster (in-degree, Ein) to the num-

ber of edges between members of the cluster and any

neighbors not designated as members of the cluster

(out-degree, Eout):

Cmod = Ein/Eout

A high modularity score will indicate that a cluster is

very isolated from the rest of the network. Thus in

expanding a cluster, not only is the weight of a vertex

considered, but also whether its inclusion will improve

the modularity score. Thus, nodes that satisfy the vertex

weight threshold but which decrease the modularity

score by more than ∆Cmod are not added; conversely,

nodes that improve the modularity score of the cluster

by at least ∆Cmod are added, even if they do not satisfy

the vertex weight threshold. Finally, all clusters undergo

an iterative culling procedure that removes nodes if this

will increase the score of the remaining cluster by at

least ∆Cmod. ∆Cmod is implemented as the user-specified

parameter msp (modularity score percentage).

Overlapping clusters

One of the attractive features of CFinder is its ability to

recover overlapping clusters, which is compatible with

Assign node weights

by local edge density 

Grow complex

 from highest weighted

node according to

weight and modularity

Repeat for next

most highly weighted

node until all visited

Post-processing

Trim single edges

Optimize modularity

Merge overlapping 

complexes

Input network

Figure 1 Conceptual Overview of MINE Procedure.

Rhrissorrakrai and Gunsalus BMC Bioinformatics 2011, 12:192

http://www.biomedcentral.com/1471-2105/12/192

Page 3 of 10



the idea that complexes in a biological system are not

necessarily static; all or part of a complex may be acti-

vated at a specific time or location, and component

parts may even be included in multiple complexes. Clus-

ters identified algorithmically should reflect this prop-

erty, and thus we designed MINE so that it can return

both exclusive and non-exclusive clusters, and can

merge together clusters that appear to overlap above a

user-defined threshold (with the default set at 50%

shared nodes). Among all the algorithms we compared,

CFinder is the only other method that is able to cluster

while permitting overlaps; however in contrast to CFin-

der, MINE has been designed to avoid returning both

the parent and child clusters (clusters that are primarily

a subset of a larger ‘parent’ cluster) where it would be

more appropriate to combine them.

Performance Evaluation

MINE was tested using protein-protein interaction data

from S. cerevisiae and C. elegans and compared with the

performance of five other algorithms. The yeast S. cerevi-

siae is a classic model organism for which a great deal is

known about protein complexes, and thus presents an

ideal opportunity to test a new network clustering algo-

rithm. We used as our test networks all yeast two-hybrid

data from BioGRID [10] and the ‘Filtered Yeast Interac-

tome’ (FYI) [9], which represents very high confidence

protein-protein interactions. For annotated complexes,

we used MIPS [11] and GO-SLIM Macromolecular Com-

plex annotations [12] as gold standards against which to

measure complex identification within these networks.

Clusters identified by MINE were then compared with

annotated complexes contained in the yeast networks.

For C. elegans, we used protein-protein interaction net-

works based on WI8 [13], as well as all physical interac-

tions from both MINT [14] and IntAct [15]. In contrast

to yeast, C. elegans is a biologically more complex organ-

ism for which, despite its well-studied genetic and devel-

opmental networks, there is no well-annotated database

of protein complexes. We used C. elegans Gene Ontology

(GO) annotations for Biological Process, Cellular Com-

ponent, and Molecular Function to provide a comparable

validation set. Only GO terms with at least 3 and at most

100 members were considered to avoid categories that

are too general or too specific. MINE was tested over a

broad range of parameters for vertex weight percentage

vwp (0 - 100%) and modularity score percentage msp (0 -

100%). Four of the five tested algorithms (CFinder, MCL,

SPICi and MCODE) also include adjustable parameters

and were evaluated across a wide spectrum of their set-

tings. The performance of all algorithms was then

assessed in terms of recall and precision, modularity, and

geometric accuracy of identified clusters with respect to

annotated complexes.

Recall and Precision

For both measures, all annotated complexes (according

to MIPS or GO terms) were matched to predicted clus-

ters with the most significant overlap as measured by

the hypergeometric test (p-value ≤ 0.05). Recall is

defined as the number of true positives (TP) over the

sum of all true positives and false negatives (FN): Recall

= TP/(TP+FN). Precision was calculated for the same

cluster, and is defined as the number of true positives

divided by the sum of true positives and false positives

(FP): Precision = TP/(TP+FP). In both measures, true

positives are defined as gene products that are anno-

tated as members of a protein complex by either GO or

MIPS.

In yeast, MINE was consistently among the top per-

forming algorithms with respect to both recall and pre-

cision for capturing MIPS and GO complexes in both

networks (Additional File 1 Figures S2A-D). When

examining the higher density C. elegans interactome,

MINE generally achieved a balance of recall and preci-

sion slightly higher than MCODE and CFinder when

considering GO Molecular Function, Biological Process

and Cellular Component (Additional File 1 Figures S2E-

M). While MCL and SPICi can reach a higher precision

and recall, they typically do so at the expense of produ-

cing many more (Additional File 1 Figures S3C-E) and/

or generally smaller (Figure 2A and Additional File 1

Tables S1, S2) clusters than any of the other algorithms.

Average precision and recall are inflated in these cases

by the higher contribution of very small clusters, which

necessarily have a lower bound on the proportion of

potential false negatives and false positives when at least

one node is a true positive (a requirement for inclusion

in the composite score). Though there are parameter

settings at which SPICi can perform better than other

methods on the C. elegans protein interaction network,

like most of the algorithms tested it does so with the

constraint of identifying only exclusive clusters.

Modularity

We evaluated global cluster modularity using a measure

defined in [16]. The global modularity score is calcu-

lated from a composite of the local modularity scores

across all clusters and accounts for edges inside each

cluster, edges connecting each cluster to the rest of the

network, and the total number of edges in the network.

The composite score provides a clear assessment of

each algorithm’s ability to delineate clusters that are

well separated from the rest of the network.

When evaluated over a range of parameters, we find that

MINE produces clusters with good separation from the

rest of the network, and also produces more clusters of

higher modularity than other methods, for both the yeast

and worm interactomes (Additional File 1 Figure S3). In

the yeast networks, MINE consistently outperforms other
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methods, with the exception of a single setting for CFinder

and NeMo in the FYI network (Additional File 1 Figures

S3A-B). For worm, only a single setting of CFinder achieve

comparable modularity and total number of clusters iden-

tified by MINE (Additional File 1 Figures S3C-E); SPICi

can produce higher overall composite modularity, but

there is an insignificant difference between the distribution

of modularity scores for SPICi and MINE (Figure 2A,

Additional File 1 Table S2 and data not shown). Other

algorithms also tend to produce a much greater variation

in the total number of clusters identified across their para-

meter settings, while still producing clusters of lower mod-

ularity; this is particularly striking for MCL (Additional

File 1 Figure S3).

Geometric Accuracy

Geometric accuracy simultaneously reports on the recall

and precision of clustering performance, and is defined

as the geometric mean of these two measures. This sin-

gle score provides an effective measure for evaluating

performance against annotation sets. Using the mean

geometric accuracy of all clusters at different parameter

settings, MINE consistently performs better than most

other methods over a range of parameters, with a typical

geometric accuracy of ~70% in yeast and ~22% in

worms (Figure 3). Results from MCODE, MCL, SPICi

and CFinder vary in geometric accuracy over a much

wider range. When plotted against the composite modu-

larity (Figure 3 and Additional File 1 Figure S4), MINE

performs favorably with respect to topological separa-

tion from the network and the ability to identify high-

quality clusters of varying sizes that capture commonly

recognized biological modules.

Discussion

For both yeast and worm interactomes, MINE surpasses

other methods in recovering clusters that are well sepa-

rated from the rest of the network, while achieving good

recall of annotated complexes (Figure 3 and Additional

File 1 Figure S4). Of the algorithms that do not allow

cluster overlap, SPICi appears to have better perfor-

mance with respect to mean geometric accuracy and

composite modularity; it even is slightly higher than

MINE with respect to these measures. However, MINE

maintains comparable performance while allowing

nodes to be shared between clusters, a feature that

SPICi lacks. We consider this to be of high biological

relevance in a multicellular organism like C. elegans, in

which different functional modules are reused in differ-

ent spatiotemporal contexts where their precise molecu-

lar composition may vary. Additionally, MINE results

are robust to a variety of parameter settings and consis-

tently identify high quality clusters with respect to the

Figure 2 Modularity vs. Cluster Size and Geometric Accuracy at Optimal Settings. for each algorithm, we selected the setting with the

optimal balance of modularity and average geometric accuracy for the C. elegans interactome from WI8 based on GO Cellular Component

annotations. The boxplot, below, represents the global modularity of the clusters (x-axis) vs. A) the distribution of cluster sizes (y-axis) and B) the

distribution of the geometric accuracy (y-axis). The circle indicates the median value; thick lines indicate upper and lower quartiles; whiskers

indicate 1.5 times the inter-quartile range (IQR). The total number of clusters identified by each algorithm is indicated in parentheses in the key.

A) The plot shows that MINE produces clusters of varying sizes while maintaining a higher overall modularity. B) The plot shows that MINE

produces clusters with a much higher overall modularity and a similar range of geometric accuracy as other algorithms without producing an

artificially large number of clusters.
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defined measures. This is in contrast to other methods,

for which the user must test over a broad range of para-

meters to find the optimal setting. Thus, MINE offers a

simpler tool for the end user to identify high quality

clusters without the need for extensive optimization

irrespective of any a priori knowledge of the network.

MINE does show excellent performance when all six

algorithms are compared at settings that provide an

optimal balance between modularity, geometric accu-

racy, and cluster number in C. elegans WI8 (for GO

Cellular Component, Figure 2B and Additional File 1

Table S1; the same is true for other GO categories, data

not shown). Here again MINE is one of the top perfor-

mers; its slightly lower modularity with respect to SPICi

is the result of its cluster overlap feature. Moreover, if

methods are compared at settings optimized solely for

geometric accuracy (again, for GO Cellular Component),

MINE remains one of the top performers with respect

to modularity, geometric accuracy, mean cluster density

and mean cluster size (Additional File 1 Table S2). This

performance advantage is illustrated graphically in

Figure 4, where the top fourteen clusters from MINE

and MCODE (the most closely related algorithm to

MINE) are displayed from an analysis of the C. elegans

protein-protein interactome, using optimal parameters

with respect to geometric accuracy and modularity for

both algorithms. Clusters identified by MINE are more

highly interconnected and less prone to comprise

multiple distinct clusters of nodes that have been gath-

ered together and reported as a single module; MCODE

clusters progressively lose cohesiveness as cluster scores

decrease.

We also note that MINE specifically filters for clusters

that are of size 1 or 2, as those are too small to be con-

sidered valid groups of genes (in contrast to some other

methods). This size criterion also accounts for some of

the differences in coverage (i.e. total number of nodes

clustered) between MINE and other methods. By elimi-

nating clusters of size 1 and 2, many genes remain iso-

lated, consistent with the biological intuition that not

every gene can be clearly associated with a functional

module in any particular dataset.

MINE performs very competitively with existing meth-

ods and offers a small number of tuneable parameters,

rendering this method highly adaptable for different

input networks. With an emphasis on graph-based clus-

tering and modularity, MINE behaves well on both

spare, modular networks and large, dense networks. In

contrast to MCL, CFinder, SPICi and MCODE, the

results produced by MINE do not change dramatically

with small parameter adjustments, thereby offering the

user both the ability to quickly discover high quality

clusters and fine-grained control over the final set of

clusters. This is likely because the evaluation of modu-

larity for each vertex addition acts as a buffer that pre-

vents large changes in cluster results. We found that
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Figure 3 Geometric Accuracy vs. Modularity of Predicted Complexes. Plot of geometric accuracy against global modularity across a range

of parameters for five algorithms: MINE (red), MCODE (black), NEMO (blue), CFinder (green), MCL (yellow), and SPICi (purple). See text for details

on different algorithms. A) S. cerevisiae FYI network, evaluated using MIPS complexes. B). C. elegans interactome network from WI8, evaluated

using GO Cellular Component annotations with 3-100 gene members.
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MINE also outperformed most other methods when

additional noise was introduced to test networks (data

not shown). Across all methods, the geometric accuracy

obtained for the worm interactome was significantly

lower than for the yeast network. This is likely because

the C. elegans interactome, although densely intercon-

nected, still has relatively low coverage and is missing

many known interactions [13]. Combined with the low

coverage of GO annotations for the worm genome, the

likelihood of recovering all components annotated with

a given GO category is reduced relative to the compara-

tively well-annotated yeast genome.

Conclusions

MINE is a highly tuneable graph-clustering algorithm

whose strengths for the identification of molecular

complexes are more pronounced in dense, highly

interconnected networks, such as the C. elegans pro-

tein-protein interaction network. MINE uses a small

number of adjustable parameters that enable it to iden-

tify high quality clusters that share common functional

annotations. MINE is implemented both as a Cytos-

cape plug-in and a Perl script. The Cytoscape plug-in

provides a simple graphical user interface (GUI),

whereas the Perl version allows automated batch pro-

cessing and offers several extensions to the core MINE

package, which include: edge weighting, requiring ver-

tex weights above background distribution for inclu-

sion in a cluster, identification of vertices that act as

linkers between clusters (non-clustered nodes that con-

nect two non-overlapping clusters), and the ability to

utilize expression or localization data to generate sub-

networks for condition-specific cluster identification.

These additional features position MINE as a

Figure 4 Comparison of Top MINE and MODE Cluster Results. Representative examples of cluster results from MCODE and MINE for the C.

elegans interactome from WI8, showing the 14 highest-scoring clusters from each algorithm. For each method, parameters were chosen to

provide the optimal balance between modularity and highest geometric accuracy for GO Cellular Component. Cluster size (n), local modularity

(m), and density (d) are provided below each cluster. A) MCODE (vwp = 0.30; haircut = true). B) MINE (vwp = 0.90; mod = 0.30; trim = true).
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particularly versatile tool for identifying the composi-

tion of functional modules within molecular networks.

Methods

Scoring

MINE receives as input any number of interaction files.

The network is treated as an undirected, unweighted

graph. All vertices V in the graph G = (V, E) are then

weighted based upon their local neighborhood N, defined

as the set all vertices connected directly to v (at a depth

of 1); we call the set N inclusive of v itself {N∪v}, which

we denote simply as N∪v. The vertex weight (vw) is the

product of the maximal number of edges connected to

any single node in N∪v (kmax) and the density of N∪v (d):

vw = kmax * d. Density is calculated as d = 2 eN∪v/(VN∪v *

(VN∪v - 1)), where VN∪v is the number of vertices in N∪v

(i.e. v and its direct neighbors) and eN∪v is the number of

edges in N∪v. A cluster (C) is then established by iterat-

ing through each vertex in order of highest to lowest

weight and adding neighbors if either of two criteria are

satisfied: A) the neighbor vertex weight is above a mini-

mum threshold (as determined by the user-defined vertex

weight percentage (vwp) of the seed vertex) and does not

decrease the cluster modularity score (by an amount

equal to or greater than the user-defined modularity

score percentage (msp)); B) the modularity score for the

cluster is improved by msp. Cluster modularity (Cmod) is

defined as the ratio of edges between nodes of a cluster

(Ein) and edges between cluster members and non-mem-

bers (Eout): Cmod= Ein/Eout. The process is continued

exhaustively until no further vertices can be added, and is

then repeated over all vertices in order of descending vw.

Clusters are next evaluated for improvements of modu-

larity scores if members are removed. They may option-

ally be refined further by removing all vertices with k = 1

(if the flag Trim is set). By default, clusters are non-exclu-

sive (i.e. members are allowed to participate in several

clusters), and clusters that overlap by > 50% are merged.

A cluster is scored (Cs) as the product of its density

(d) and the number of members in the cluster (VC): Cs =

d * VC.

Algorithm

1. Vertex Weighting

procedure Vertex-Weighting

input: graph: G = (V,E)

for all v in G

N = set of immediate neighbors of v (depth =

1)

kmax = maximum number of edges from any

one vertex in set N∪v

d = density of N∪v

vw = weight = kmax * d

end for

end procedure

2. Cluster Prediction

procedure Cluster-Prediction

input: graph: G = (V,E); vertex weight: vw; vertex

weight percentage: vwp; modularity score percen-

tage: msp; merge percentage: mp

for v Î Vw (from high ® low weight)

push (tocheck, v )

while tocheck not empty

n = pop(tocheck)

push (visited, n)

N = set of immediate neighbors of n

(depth = 1)

if ( n == v )

vs = v

else

vs = source vertex in cluster that pushed

vertex n onto toCheck

if vw of n ≥ (vw of vs)(1 - vwp) then

if modularity-score(C∪n) > modularity-

score(C) - modularity-score(C)*msp then

add n to cluster C

push(tocheck, {N\{C∪visited}})

else if modularity-score(C∪n) > modular-

ity-score(C) + modularity-score(C)*msp

add n to cluster C

push(tocheck, {N\{C∪visited}})

end if

end while

if trim == true then call: Trim (C)

for v Î VC

if modularity-score({C \v}) > modularity-

score(C) + modularity-score(C)*msp then

remove v from C

end for

if percent overlap C with existing cluster ≥

mp

Merge(C) with existing cluster

Cscore = density(C) * sizeof(C)

end for

end procedure

procedure Trim

input: cluster: C

for all v in C

if k of v < 2 then remove v from C

end for

end procedure

procedure modularity-score

input: cluster: C

in = number of edges exclusively between mem-

bers of C

out = number of edges exclusively between

members and non-members of C
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score = in/out

end procedure

Recall and Precision

Recall and Precision were calculated for each cluster

with respect to all annotated complexes in the valida-

tion set (MIPS or GO ontology), and the complex

showing the most significant overlap with the cluster

was selected as the representative annotation for per-

formance evaluations among different algorithms. For

each annotated complex, true positives (TP) are

defined as members of the annotated complex that are

found in the cluster; false positives (FP) are defined as

cluster members that are not part of the annotated

complex; false negatives (FN) are defined as annotated

complex members that are not part of the cluster.

Recall is calculated as TP/(TP + FN). Precision is cal-

culated as TP/(TP + FP). To arrive at an aggregate sta-

tistic, the mean recall and precision across all

annotated complexes were calculated using the highest

scoring cluster for each annotated complex. Signifi-

cance was calculated using a hypergeometric test (p-

value ≤ 0.05).

Modularity

Global modularity was calculated according to [16] and

[17]. This measure provides a composite modularity

score across all clusters and is defined as:

Modularity =
∑

c∈C

[

Ecln

Etotal

−

(

2Ecln + EcOut

2Etotal

)2
]

where, for each cluster c in the set of all clusters C,

EcIn, EcOut and Etotal represent the number of edges

within the cluster, the number of edges leading out of

the cluster, and the total edges in the network, respec-

tively. We note that while the global modularity score

only considers clusters that are contained within the

main graph component, in practice this does not signifi-

cantly affect the results because few or no clusters in

the networks we consider are isolated from the main

component. Local modularity for each cluster is defined

as: Cmod = EcIn/EcOut. The MINE algorithm uses only

local modularity in predicting individual clusters, while

the global modularity score serves as an aggregate statis-

tic on the cumulative output.

Geometric Accuracy

Geometric accuracy is defined as √(R * P), where R is

Recall and P is Precision. This measures how well an

algorithm is able to strictly identify a training set of

complexes from the validation set without drawing in

too many extraneous nodes.

Algorithm Comparison

MINE was tested over a range 30 settings of vwp (0.1 -

1) and msp (0.1 - 1) with trim single edges = True. The

MCODE Cytoscape plug-in was run with haircut =

True and depth = 2 over 21 settings of of vwp (from 0

to 1). NeMo was executed with its Cytoscape plug-in

and offers no adjustable parameters. CFinder was down-

loaded from http://angel.elte.hu/cfinder/ and tested with

8 k clique sizes ranging from 3 to 10. MCL was exe-

cuted as the R package mclR (distributed by http://

micans.org/mcl/) with 20 granularity settings ranging

from 1.2 to 5.0. SPICi was downloaded from http://

compbio.cs.princeton.edu/spici/ as a C++ distribution

and tested for 20 density settings from 0.1 to 1.0.

Datasets

For the network analysis, we used the following protein-

protein interaction maps: for yeast, the Filtered Yeast

Interactome FYI [9] and BioGRID yeast two-hybrid data

[10]; for C. elegans, three datasets were used: 1) physical

interactions from MINT [14], 2) physical interactions

from IntAct [15], 3) a combined network of WI8

(Worm Interactome version 8) [13], supplemented with

interologs (inferred interactions between orthologous

proteins as identified by InParanoid from D. melanoga-

ster, S. cerevisiae, and H. sapiens) [18], and a domain-

based interaction map of proteins involved in embryo-

genesis [19]. We also evaluated the performance of

MINE using WI8 only and obtained essentially the same

results (data not shown).

Several training sets were used for validation: yeast

MIPS annotated complexes (http://mips.gsf.de/genre/

proj/genre), GO Macromolecular Complexes for S. cere-

visiae and GO categories [12] for C. elegans. 127 MIPS

complexes and 175 GO Macromolecular Complexes are

present in the FYI map. 98 MIPS complexes and 209

GO Macromolecular Complexes are present in the yeast

two-hybrid from BioGRID map and these were used for

all validation in yeast. For validation in C. elegans, GO

annotations from all three ontologies, Biological Process,

Cellular Component and Molecular Function, were

used. We considered only GO terms with at least 3 and

at most 100 annotated members.

Implementation and availability

MINE is available as a Cytoscape plug-in (compatible

with versions of Cytoscape 2.4 and up) from the Cytos-

cape website (http://www.cytoscape.org) and can be

installed and updated through the built-in plugin man-

ager; it has also been provided as Additional File 2 and

should be placed in the plugin folder of one’s local

Cytoscape installation. Finally a Perl implementation,

which offers several extensions to the core MINE algo-

rithm, is available from the authors upon request.
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Additional material

Additional file 1: Supplementary Figures 1-4 and Supplementary

Table 1 in PDF format.

Additional file 2: MINE Cytoscape plugin.
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