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Abstract: Mineral identification is an important part of geological research. Traditional mineral iden-
tification methods heavily rely on the identification ability of the identifier and external instruments,
and therefore require expensive labor expenditures and equipment capabilities. Deep learning-based
mineral identification brings a new solution to the problem, which not only saves labor costs, but also
reduces identification errors. However, the accuracy of existing recognition efforts is often affected by
various factors such as Mohs hardness, color, picture scale, and especially light intensity. To reduce
the impact of light intensity on recognition accuracy, we propose an efficient deep learning-based
mineral recognition method using the luminance equalization algorithm. In this paper, we first
propose a new algorithm combining histogram equalization (HE) and the Laplace algorithm, and use
this algorithm to process the luminance of the identified samples, and finally use the YOLOv5 model
to identify the samples. The experimental results show that our method achieves 95.6% accuracy for
the identification of 50 common minerals, achieving a luminance equalization-based deep learning
mineral identification method.

Keywords: deep learning; image enhancement; mineral identification; convolutional neural networks

1. Introduction

Mineral identification occupies an important position in geological research. Tradi-
tional geological mineral identification methods mainly identify minerals by the naked eye
or observation instruments. Naked-eye identification heavily relies on the discriminatory
ability of the identifier. Observations through instruments, such as the identification of clay
minerals and hydrocarbons by using near-infrared spectroscopy [1], and mineral identi-
fication and mineral mapping by imaging spectroscopy [2], require special identification
instruments. Both methods are labor intensive and their accuracy is often influenced by
the experience and ability level of the identifier. In recent years, researchers have used
deep learning techniques to reduce these effects, for example, Porwal et al. [3] used arti-
ficial neural networks in mineral potential mapping, and Li et al. [4] used convolutional
neural networks based on geological big data for mineral prospect prediction. In mineral
identification, many works also use intelligent algorithms, and these methods can be clas-
sified into three categories according to the test method and the type of data obtained:
identification based on chemical composition analysis; identification based on spectral
analysis; and identification based on optical pictures. The main types of data involved in
identification methods based on chemical composition analysis [5] are energy scattering
spectroscopy (EDS) [6], electron probe (EPMA) [7], and laser-induced breakdown spec-
troscopy (LIBS) [8]. The identification method [9] based on spectral analysis is the most
reliable method for mineral identification, but it requires expensive testing instruments
and is therefore difficult to be widely promoted. The optical picture-based identification
method is the most common identification method, which can be performed by microscopic
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images [10–15] and ordinary photographs [16–18]. As shown in Table 1, we summarized
the different current mineral identification methods.

All of the above studies enable the identification of minerals, but usually only for
a small number of species of minerals, and also lack stable and excellent identification
accuracy. In addition, one difficulty in using photo-based mineral identification is that
mineral photos in the field are often affected by light intensity as well as shadows, resulting
in photos with different photometric details, which can easily lead to errors in identification.
For example, the same mineral may be pictured in two colors with strong and weak
light intensity, and color is one of the important features used for mineral identification.
Therefore, it is difficult to achieve high accuracy with a direct identification of photos taken
with cell phones or cameras. Studies using image enhancement techniques to eliminate
the effects of extraneous factors on photographs have emerged and demonstrated utility in
many other applications. For example, Zhi et al. [19] investigated a new method to improve
the change detection accuracy of synthetic aperture radar (SAR) remote sensing images
by combining image enhancement algorithms based on wavelet and spatial domains and
power law. In addition, regarding the effect of luminance, Xiao et al. [20] relied on Retinex
theory and used a two-step approach combining candidate regions and object locations
to achieve object recognition in low luminance situations. Xiong et al. [21] achieved the
identification of ripe litchi under different lighting conditions based on Retinex image
enhancement and improved the accuracy of image identification. In more detail, we
compare the accuracy of mineral identification approaches based on image type later on,
as shown in Section 4.3.

Table 1. Comparison of different mineral identification methods.

Methods Studies Characteristics

[1] Wide range of applications.Instrument Observation [2] Spectrometer with very high pixels.

[6] Fast data acquisition.
[7] High accuracy of chemical element identification.Chemical Composition Analysis
[8] Low sample loss.

Spectral Analysis [9] Reliable and has international datasets.

[10] High accuracy rate.
[11] Effectively differentiate between quartz and resin.
[12] Effective mineral grain identification.
[13] Good results for rock minerals.
[14] High accuracy of sulfide mineral identification.

Micro-optical Picture Analysis

[15] Good performance in petrographic thin sections.

[16] Combined with mineral hardness.
[17] High accuracy of malachite and blue copper mineral identification.Traditional Image Analysis
[18] Be able to distinguish the formation minerals of different granite types.

There are many models for object detection, such as EfficientDet [22] and YOLOv5.
YOLOv5 (as shown in Section 3) extends from YOLOv4 [23], which is one of the most effec-
tive object detection models available. Yolov5 has been used in many practical applications
such as face recognition [24] and aircraft target detection [25].

In this paper, we combine image enhancement techniques with YOLOv5 for mineral
detection to address the effects of illumination factors on image chromatic aberrations.
With this method, we achieved the accurate identification of mineral images without relying
on specialized instruments for obtaining identification data. In addition, our method
enables the more accurate identification of samples with poor lighting conditions (too
bright or too dark) than other efforts to identify minerals based on image data. Moreover,
our work expands the range of mineral species that can be identified to a greater extent
than other works. Our detailed contributions are shown below.

• We first propose a novel image enhancement algorithm, one which combines his-
togram equalization (HE) and the Laplace algorithm. In subsequent experiments,
the algorithm shows powerful results.
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• We achieved the an efficient identification of 50 minerals, which is a significant expan-
sion of the number of mineral species identified compared to the existing works.

• Experiments show that our method achieves 95.6% accuracy in mineral identification,
surpassing existing mineral identification methods.

The content of this paper is shown as follows. We introduce a novel image enhance-
ment approach in Section 2, combining histogram equalization (HE) and the Laplace
algorithm. In Section 3, we focus on the structure of the model we use and briefly describe
the training environment and process. In Section 4, we show the results of our experiments
and compare them with other methods, in addition to evaluating the model effectiveness
using objective evaluation metrics. In Section 5, we conclude the article and propose
future work.

2. The Proposed Method
2.1. Histogram Equalization

Histogram equalization [26] is an important method for the statistical analysis of the
image grayscale distribution and is useful for images where both the background and
foreground are too bright or too dark. This method enables more detail in overexposed or
underexposed [27] photographs. The traditional histogram equalization method uses the
cumulative distribution function of the probability of each gray level of the image as the
transformation function, and according to this transformation relationship, an image with
uniformly distributed gray probability density can be obtained. Its cumulative distribution
function can be expressed as:

sk = T(rk) =
k

∑
j=0

nj

n
=

k

∑
j=0

pr
(
rj
)

, 0 6 rj 6 1, k = 0, 1, · · · , L− 1 (1)

where rj is the normalized gray level before the transformation, T(rk) is the transformation
function, sk is the normalized gray level after the transformation, nj is the number of
pixels with the k-th gray level in the original image, n is the total number of pixels in the
image, and pr(rj) is the probability of taking the k-th gray level in the image before the
transformation. However, due to its unselective data processing, it may increase the contrast
of background noise and decrease the contrast of useful signals. In addition, the gray level
of the transformed image is reduced and some details may be lost. Some images, such as
histograms with peaks, are processed to show the unnatural over-enhancement of contrast.

2.2. Laplace Operator Image Enhancement

The Laplace operator [28] image enhancement is widely used in image processing
as a second-order differential algorithm commonly used in the field of digital image
processing. It causes the gray contrast to be enhanced, thus making the blurred image
sharper. The essence of image blurring is that the image is subject to averaging or integration
operations, so the image can be inverse operated. For example, differential operations can
highlight image details and make the image sharper. Since Laplace is a differential operator,
its application enhances the areas of sudden gray changes in the image and attenuates the
areas of slow gray changes. Therefore, the Laplace operator can be selected to sharpen the
original image to produce an image describing the abrupt grayscale changes, and then the
sharpened image is produced by superimposing the Laplace image with the original image.
The basic method of Laplace sharpening can be represented by the following equation.

L(x, y) =
{

f (x, y)−∇2 f (x, y), t 6 0
f (x, y) +∇2 f (x, y), t > 0

(2)

where f (x, y) denotes the two-dimensional image, ∇2 f (x, y) denotes its Laplace operator,
and t is the neighborhood center comparison coefficient. This simple sharpening method
produces the effect of a Laplace sharpening process while preserving the background
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information. By superimposing the original image to the processing result of the Laplace
transform, we can preserve each gray value in the image so that the contrast at the gray
abrupt change is enhanced. The final outcome is to bring out small details in the image
while preserving the image background. However, this tends to produce a double response
to image edges, which will affect the experimental results.

2.3. A New Algorithm Based on HELaplace

In order to overcome the shortcomings of the aforementioned classical histogram
and Laplace algorithms, and considering the characteristics of using image fusion, this
paper proposes a new algorithm for image enhancement by HELaplace. In this paper, we
combine the idea of image fusion by first processing the images with histogram equalization
algorithm and Laplace operator, respectively, and then fusing the processed images into a
new image after weighting the average by a certain proportion. This approach demonstrates
a good enhancement effect within a certain percentage range.

We convert the input image G into YCrCb (a kind of color coding method) [29] space,
and then separate the YCrCb image channels and equalize the image histogram using the
CLAHE [30] algorithm, which can improve the details of the image while avoiding the
problem of the excessive contrast enhancement of the image. The processed channel and
the unprocessed channel are combined and then converted to RGB image A. The image
is then sharpened and enhanced using the 8-neighborhood Laplace operator with center
5 and image convolution, and the enhanced image is noted as B. The weighted average
image fusion algorithm can be expressed as:

F(i, j) = λA(i, j) + (1− λ)B(i, j) (3)

where the input image A(i, j) represents the illumination function of the image after HE
algorithm processing, B(i, j) represents the illumination function of the image after Laplace
processing, and the output image F(i, j) represents the fused image. The size of the image
is 256 × 256 pixels, i and j are the coordinates of a pixel in the image, and i, j ∈ [256, 256],
A, B ∈ [0, 255].

The algorithm description of HELaplace is shown in Algorithm 1. We apply the
HELaplace algorithm to the same image and the result is shown in Figure 1. By comparison,
we can see that the image is better after the HELaplace algorithm.

Algorithm 1 HELaplace

Input: Original image G
Output: Synthetic image G0

1: YCrCb = COLOR_BGR2YCR_CB(G)
2: // Converting RGB images to YCrCb space
3: channels = split(YCrCb)
4: // Separate YCrCb image channels
5: YCrCb = merge(channels)
6: // Convert YCrCb image back to RGB image
7: G1 = COLOR_YCR_CB2BGR(YCrCb)
8: kernel = np.array
9: // np.array is the Laplace operator

10: G2 = filter2D(G1, cv2.CV_8UC3, kernel)
11: // Convolve G with kernel
12: G0 = a*G1+b*G2
13: // a,b are coefficients
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(a) (b) (c) (d)

Figure 1. (a) Original image; (b) image processed by HE; (c) image processed by Laplace; and (d)
image processed by HELaplace.

3. Architecture of the Neural Network
3.1. Description of Our Model

The main procedure of the experiment is shown in Figure 2. First, we collect data on a
variety of minerals. Then, we label all the data and split the dataset into a training set and a
test set. HELaplace processing is performed on the data from the test set and training set.
Then, the obtained training set is used to train in a convolutional neural network through
the YOLOv5 model. Finally, the classification to which each mineral picture in the test set
belongs is calculated and the accuracy rate is recorded.

Trained
Model

HELaplace B.  Labeling and Processing

Training Set

AccuracyTest Set

A.  Data Collection

C.  Model Training

D.  Model Testing

...

...

...

Data for Test
...

...
Data for Traning

Figure 2. The structure of our model.

Specifically, Figure 3 illustrates the specific structure of the YOLOv5 network. It
consists of four parts: input, backbone, neck, and prediction. The input side uses Mosaic
data enhancement [23] and adaptive anchor frame calculation. The backbone part uses
the focus structure and the cross-stage-partial-connections (CSP) structure. The neck part
uses a feature pyramid network (FPN) + pixel aggregation network (PAN)) structure.
The prediction part uses non-maximal suppression (NMS) to filter the targets, so it has
high accuracy. As a new type of deep neural network (DNN), unlike traditional algorithms
that require strict image pixel size, YOLOv5’s adaptive image scaling has no requirement
in terms of image size. We also modified the YOLOv5 code in the letterbox function of
datasets.py to add a minimum of black borders to the adaption of the original image,
reducing information redundancy and therefore greatly improving the processing speed.
The CSP structure of YOLOv5s is to divide the original input into two branches and
perform separate convolution operations to halve the number of channels. One branch
performs the Bottleneck * N operation, then concats two branches. This allows the input
and output of BottlenneckCSP to be the same size, which enables the model to learn more
features. The neck of YOLOv5 has the same FPN+PAN structure as in YOLOv4. However,
the convolution operation used in the neck of YOLOv4 is regular. In contrast, the CSP2
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structure inspired by the CSPNet [31] design is used in the neck structure of YOLOv5 to
enhance the network feature fusion and improve the identification accuracy.

Focus CBL CSP1_1 CBL CSP1_3 CBL SPP CSP2_1 CBL UPSAM
PLING

CONCA
T CSP2_1 CBL

UPSAM
PLING
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CONCAT
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CSP2_1

CSP2_1 CONV

CONV

CONCAT

CBL
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Focus

slice
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Input
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NeckBackbone Prediction

X

2*X

Figure 3. The main model of YOLOv5 network.

3.2. Model Training

In this paper, the deep learning integrated development environment is Pycharm. Test
environment: NVIDIA GTX 1060, 8G memory, Intel Core(TM) i7-8750H CPU, and Python
3.8 as the compiler language. The parameters we used for model training are shown in
Table 2. Parameters not listed in the table are used as default values.

Table 2. Parameters used for model training.

Parameters Configuration

Pre-training weight YOLOV5S.PT
Epochs 100

Sample size 183,380
Conf-thres 0.05
Iou-thres 0.45
Img-size 640

Batch-size 10

In our experiments, we use the GLOU function [32] as our loss function. Its smaller
value indicates more accurate results. The expression of its function is

Glouloss = −
1

∑p 1 ∑
p

(
1− loup

)
(4)

where p denotes the predicted positive example index and loup is the intersection ratio of
the predicted positive example frame p to the corresponding true frame.

We recorded the changes in loss function GLOU values during the training process
and tested the accuracy of the model on the validation set after each iteration of the training
set was completed. The change in GLOU loss during the training process is shown in
Figure 4. It can be seen that the model converges effectively, and the GLOU loss has reached
a low level after 50 epochs. According to the figure, the model achieves the best accuracy
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on the validation set after the 90th iteration, and the accuracy decreases after continuing
the training, probably due to some overfitting.

(a) (b)

Figure 4. Change in (a) loss value and (b) precision value.

4. Test Result and Discussion

To test the accuracy of our method, we selected 13,911 images from a collection of
220,057 images for testing our neural network model. After inputting one of the images
into the neural network, the mineral category with the highest probability is given. We
evaluate the performance of our method in terms of accuracy, and also compare it with
other methods and give results.

4.1. Data

The training of mineral identification using YOLOv5 requires a large amount of data
during validation and testing. The more data available for training, the more generalizable
and robust the model will be, and the higher the accuracy will be. To obtain a large
amount of specialized image data for a wide range of minerals, we chose to use image data
from Mindat [33]. Mindat is a community-led global mineral and provenance database
website and the world’s largest database of mineral information. In this paper, one mineral
is selected as a training representative in the database according to the mineral category
criteria [33] in each mineral major category to obtain adequate category coverage. To further
extend the mineral coverage categories, we expanded 26 minerals from those covered by
work [16]. Therefore, the images of a total of 50 minerals were collected as experimental
samples. The names of relevant minerals and the number of samples are shown in Table 3.
Among them, the small numbers of samples of certain minerals are due to their rarity, which
makes it difficult to obtain a large number of samples. It is worth noting that all samples of
minerals in this paper are labeled according to the classification criteria of Mindat.

Since some of the images directly obtained from the website were taken under a
microscope or after processing, this may have some influence on the experimental results.
Therefore, we artificially removed the images that did not meet the requirements in the
dataset during the collection process. We uniformly mixed each of the obtained mineral
images in the ratio of 10:1:1 and separated them into a training set, a validation set, and a
test set. An example of the mineral images is shown in Figure 5.
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Table 3. Names of the minerals and the number of samples.

#No. Mineral Number of
Samples #No. Mineral Number of

Samples

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Adularia
Aegirine

Agate
Albite

Almandine
Amber

Anglesite
Azurite

Beryl
Biotite

Boracite
Cassiterite

Chalcopyrite
Cinnabar
Copper

Demantoid
Diopside
Elbaite
Epidote
Fluorite
Galena

Goethite
Gold

Gypsum
Halite

738
909

3636
1882
2124
294

1981
8320
9836
1437
240

3321
3296
1618
5504
785

1649
5683
3915

28,147
6661
4063
4796
2439
821

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Hematite
Magnetite
Malachite
Marcasite

Moissanite
Niccolite
Nitratine

Opal
Orpiment
Ozocerite

Pyrite
Quartz

Rhodochrosite
Ruby

Sapphire
Schorl

Selenium
Sphalerite

Stibnite
Sulphur
Topaz

Torbernite
Turquoise

Whewellite
Wulfenite

6086
2615
7919
1748
10
245
10

3283
754
23

13,042
46,398
4510
872

1056
2200
106

6412
2548
1843
3926
1170
988
94

8104

Total 220,057

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5. Examples of cropped images ((a–d) chalcopyrite; (e–h) copper; (i–l) elbaite; and (m–p)
demantoid). The original images are from Mindat.
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4.2. Test Result

We used the YOLOv5 neural network and HELaplace+YOLOv5 neural network to
test images with too little light and too much light, respectively, and the average accuracy
obtained is shown in Table 4. The test results show that the combination of the HELaplace
and YOLOv5 algorithms can greatly improve the identification accuracy. Figure 6 shows
the accuracy of mineral identification for all 50 categories. As we can see, except for
specific minerals, all of our minerals are identified with an accuracy of more than 80%.
Among them, four minerals possess relatively low accuracy due to the a small number
of training samples, which include Moissanite, Nitratine, Ozocerite and Selenium. Using
HELaplace in combination with YOLOv5, the accuracy of all mineral species was improved
compared to the results without using HELapace, especially the identification accuracy of
minerals (Azurite, Chalcopyrite, Galena, Topaz) which was improved by 10%. The main
reason is that the images taken in insufficiently or excessively bright light will have chro-
matic aberrations due to the light, many minerals have similar shapes and textures, and the
resulting chromatic aberrations make it difficult for the model to correctly identify them
based on the images. After applying HELaplace, the minerals (Adularia, Magnetite, and
Malachite) do not significantly improve the accuracy, which is due to the fact that these
minerals themselves are too dark and less influenced by light. It can be seen from Table 4
and Figure 6 that combining HELaplace with YOLOv5 can improve the identification
accuracy of most minerals.

Table 4. Comparison of the accuracy of different methods.

Method Accuracy

YOLOv5
HE + YOLOv5

Laplace + YOLOv5
HELaplace + YOLOv5

85.31%
87.14%
86.82%
95.63%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

YOLOv5 HELaplace+YOLOv5

Figure 6. Accuracy comparison of specific mineral species.

4.3. Comparison with Other Methods

Table 5 demonstrates the number and accuracy of identified minerals for existing
mineral detection methods. In contrast to the dual-energy CT chemometric calibration
method [34], our work does not require the use of instruments for the medical X-ray
tomography of minerals. Compared to the method using polarized light microscopy to
obtain images [10], which can only identify five minerals, our method can identify 50 species
with similar accuracy. Similarly, compared to the work of Julio et al. [11] which could only
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distinguish between resin and quartz, we were able to differentiate more minerals and
maintain a similar accuracy. Furthermore, in contrast, we do not need special instruments to
obtain the picture data under the polarized light microscope, we only need to take pictures
of the minerals to perform the identification. In contrast to the work of Zeng et al. [16] who
used Mohs hardness and images to identify minerals, our work does not require the use
of instruments to obtain Mohs hardness. It is worth noting that the aforementioned work
on identification using mineral images was experimentally measured using images taken
under normal lighting, and when experiments were conducted using images taken under
excessively dark or excessively bright conditions, the accuracy rate would be reduced to
varying degrees.

Table 5. Comparison of deep learning-based and image-based mineral identification works.

Studies Accuracy (%) Number of Identified Minerals Image Type

[10] 89 5 Microscopic
[11] 95 2 Microscopic
[12] 90 9 Microscopic
[13] 90.9 4 Microscopic
[14] 90 4 Microscopic
[15] 95.4 23 Microscopic
[34] \ 23 CT
[35] 94.2 5 Raman spectra
[16] 90.6 36 Photo and hardness
[17] 86 16 Photo
[18] 90 7 Photo

Our method 95.6 50 Photo

4.4. Objective Evaluation Indicators

Since it is difficult to obtain the normal illumination image corresponding to the image
under abnormal illumination, for the image quality after enhancement, natural image
quality evaluator (NIQE) [36] was used in this paper. NIQE is a non-reference image quality
index often used to measure the quality of the image, a smaller NIQE indicating a better the
quality of the measured picture. In addition, we used the lightness-order-error (LOE) [37]
to evaluate the contrast of the enhanced image with the original illuminated image. LOE
reflects the natural retention of the image, and a smaller value indicates that the image has
a better order of luminance and therefore looks more natural. Table 6 shows the objective
evaluation data of the corresponding methods in Figure 1. From the data in the table, we
can see that the LOE of our algorithm is lower than that of the Laplace algorithm, and it is
the lowest among all algorithms, indicating that we have the best result in maintaining the
naturalness of the image. Furthermore, the NIQE value of the algorithm in this paper is
the lowest among all algorithms, which indicates that the method in this paper does not
produce much detail, thus blurring and color distortion to the original image.

Table 6. Result of LOE and NIQE.

Index HE Laplace HELaplace

LOE 222.6444 156.2836 150.7435
NIQE 25.3780 41.7903 25.2050

5. Conclusions and Future Work

In this paper, we propose a deep learning mineral identification method based on
luminance equalization. Compared with traditional mineral identification methods, we
reduce the reliance on the researcher’s experience and instruments. Compared with tradi-
tional mineral identification algorithms, we reduce the influence of illumination intensity
on mineral identification and greatly improve the accuracy rate. In the deep learning recog-
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nition part, we used YOLOv5 to further improve the identification accuracy. During model
selection, we used the optimized YOLOv5 to further improve the identification accuracy.
In the future, more features will be introduced, such as combining the density and trans-
parency of minerals with photos to further improve the accuracy of mineral identification.
However, the identification method mentioned in this paper has some limitations: when
the input picture is a mineral other than fifty minerals, the closest one among fifty minerals
will be given. In the future, we will collect more mineral data to address this issue.
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