

REVIEWS in MINERALOGY and GEOCHEMISTRY

Volume 52

2003

151

URANIUM-SERIES GEOCHEMISTRY

EDITORS:

Bernard Bourdon

Institut de Physique du Globe de Paris Paris, France

Gideon M. Henderson

University of Oxford Oxford, United Kingdom

Craig C. Lundstrom

Simon P. Turner

University of Illinois, Urbana-Champaign Urbana, Illinois, USA

> University of Bristol Bristol, United Kingdom

FRONT COVER: The background of the front cover image is an exert from a paper published exactly 100 years before this volume. That paper was the first to calculate the half life for 234 Th, or U-X as this newly discovered radioactive substance was then called. Further details of the early history of U-series science can be found in the second preface to this volume. Superimposed on this background is the full series of radioactive nuclides produced by the initial decay of 238 U, and finally resulting in the formation of 206 Pb. Nuclides with half lives longer than a year are shown in red, while those with half lives between one day and one year are shown in blue.

Series Editors: Jodi J. Rosso & Paul H. Ribbe

GEOCHEMICAL SOCIETY MINERALOGICAL SOCIETY of AMERICA

RiMG Volume 52

U-series Geochemistry

- Table of Contents

Introduction to U-series Geochemistry

Bernard Bourdon, Simon Turner, Gideon M. Henderson and Craig C. Lundstrom

1.1	NEW DEVELOPMENTS IN U-SERIES GEOCHEMISTRY	1
2. I	U AND TH RADIOACTIVE DECAY SERIES	2
	2.1. Basic concepts	2
	2.2. Disequilibrium between U-series nuclides	6
	2.3. Processes creating disequilibria between U-series nuclides	7
3. (CHEMISTRY AND GEOCHEMISTRY OF THE U-SERIES NUCLIDES	10
4. I	DETERMINATION OF THE HALF-LIVES OF U-SERIES NUCLIDES	12
,	4.1. Methods for measurement of half-life	13
	4.2. Recommended half-lives for key nuclides	15
5. (OUTLINE OF THE VOLUME	16
RE	FERENCES	17
AP	PENDIX: GENERAL SOLUTIONS OF U-SERIES DECAY EQUATION USI	NG
	LAPLACE TRANSFORMS	20

2

. 1

Techniques for Measuring Uranium-series Nuclides: 1992-2002

Steven J. Goldstein and Claudine H. Stirling

1. INTRODUCTION	23
2. SAMPLE PREPARATION	24
2.1. Microwave digestion of solids	24
2.2. Tracer addition and tracer/sample equilibration	24
3. CHEMICAL SEPARATIONS	26
3.1. Extraction chromatography resins/disks	26
4. INSTRUMENTAL ANALYSIS METHODS	27
4.1. Alpha spectrometry	27
4.2. Gamma spectrometry	29
4.3. Thermal ionization mass spectrometry (TIMS)	30
4.4. Secondary ion mass spectrometry (SIMS)	36
4.5. ICPMS and MC-ICPMS	37
5. COMPARISON OF ANALYTICAL METHODS FOR U-SERIES NUCLIDES	48
6. FUTURE DEVELOPMENTS	52
ACKNOWLEDGMENTS	53
REFERENCES	53

Mineral-Melt Partitioning of Uranium, Thorium and Their Daughters

Jonathan Blundy and Bernard Wood

1. INTRODUCTION	
2. PARTITIONING PRELIMINARIES	60
3. SOURCES OF PARTITIONING DATA	
4. THE IMPORTANCE OF PARTITIONING IN INTERPRETING	
U-SERIES DATA	
5. THE LATTICE STRAIN MODEL	65
5.1. Proxies	
5.2. Derivation of proxy relationships	
6. ADDITIONAL CONSIDERATIONS	
6.1. Henry's Law	82
6.2. Ingrowth	83
7. MINERAL-MELT PARTITION COEFFICIENTS	
7.1. Clinopyroxene	84
7.2. Orthopyroxene	
7.3. Olivine	
7.4. Garnet	
7.5. Amphibole	100
7.6. Plagioclase	102
7.7. Alkali-feldspar	106
7.8. Phlogopite (biotite)	108
7.9. Oxide minerals	111
7.10. Zircon	
7.11. Other accessory phases	116
8. CONCLUSIONS	116
ACKNOWLEDGMENTS	118
REFERENCES	118

4

3

Timescales of Magma Chamber Processes and Dating of Young Volcanic Rocks

C

Michel Condomines, Pierre-Jean Gauthier, and Olgeir Sigmarsson

120
126
126
126
128
129
129
131
133

3.4. Evolution of disequilibria during the eruptive history of a volcano:	
magma storage or residence times	135
3.5. Studies on minerals and crystallization ages:	
timescales of crystallization	140
3.6. Timescales of magma degassing	153
4. DATING YOUNG VOLCANIC ROCKS	160
4.1. Mineral isochrons	160
4.2. Dating of whole-rocks	163
5. SUMMARY AND CONCLUSIONS	167
ACKNOWLEDGMENTS	169
REFERENCES	169

Uranium-series Disequilibria in Mid-ocean Ridge Basalts: Observations and Models of Basalt Genesis

5

Craig C. Lundstrom

1. INTRODUCTION 1	175
1.1. A primer on U-series disequilibria	175
2. OBSERVED U-SERIES DISEQUILIBRIA IN MORB	176
2.1. Analysis of U-series nuclides	176
2.2. Observed U-series disequilibria in MORB relative to other	
tectonic settings	177
2.3. Observed U-series disequilibria at specific ridge locations	179
2.4. Applications: dating of MORB using U-series disequilibria	188
2.5. Assessing secondary contamination in creating U-series disequilibria	189
3. MODELS OF U-SERIES DISEQUILIBRIA GENERATION DURING	
MELTING	190
3.1. Constraints on element partitioning	191
3.2. Time-independent melting models	192
3.3. Ingrowth melting models 1	193
3.4 A review of U-series melting models	196
4. RELATING MODELS TO OBSERVATIONS	200
5. INTEGRATING U-SERIES DISEQUILIBRIA MODELS WITH	
CONSTRAINTS FROM OTHER GEOCHEMICAL TRACERS	203
5.1. Comparison of melting at ridges to other tectonic settings	203
5.2. The relationship between Th isotopes and long-lived isotope systems 2	203
5.3. Reconciling U-series interpretations with other geochemical observations 2	204
6. CONCLUDING REMARKS	207
ACKNOWLEDGMENTS	207
REFERENCES	207
APPENDIX: TRANSPORT-BASED MODELS FOR CREATING U-SERIES	
DISEQUILIBRIA	212

U-series Constraints on Intraplate Basaltic Magmatism

Bernard Bourdon and Kenneth W. W. Sims

1. INTRODUCTION	. 215
2. DIFFICULTIES IN CONSTRAINING HOTSPOT MELTING PROCESSES	. 215
2.1. Source composition and source heterogeneities	. 215
2.2. Role of the lithosphere	. 217
2.3. Complexities in the melting region	. 218
3. THE ROLE OF SOURCE HETEROGENEITIES ON U-SERIES	
FRACTIONATION IN HOTSPOT MAGMATISM	. 219
3.1. Identifying residual mineral phases	. 219
3.2. Role of source heterogeneities on melting processes	. 226
3.3. Tracing mantle sources	. 227
4. MELTING PROCESSES AND RELATION TO CONVECTIVE STRUCTURE	
OF PLUME	. 230
4.1. Time dependent melting models for hotspot magmatism	. 230
4.2. Sources of uncertainty in these models	. 236
4.3. Observational constraints	. 237
5. SUMMARY AND PERSPECTIVES	. 244
ACKNOWLEDGMENTS	. 244
REFERENCES	. 244
APPENDIX: ANALYTICAL SOLUTIONS FOR TIME DEPENDENT MELTING	
MODELS	. 249
A.1. Dynamic melt transport	. 249
A.2. Chromatographic melt transport	. 249
A.3. Box-model for equilibrium melting	. 253

7

6

Insights into Magma Genesis at Convergent Margins from U-series Isotopes

Simon Turner, Bernard Bourdon and Jim Gill

1. INTRODUCTION	255
2. CONVERGENT MARGIN MAGMATISM	256
2.1. Geochemical signatures of source components	256
2.2. The enriched component-sediment or OIB?	256
2.3. The fluid component	258
2.4. Relative depletion of the mantle wedge	260
3. U-SERIES ISOTOPES IN ARC LAVAS	260
4. BEHAVIOUR OF THE U-SERIES NUCLIDES IN AQUEOUS FLUIDS	261
4.1. General empirical evidence	263
4.2. Empirical observations from arc lavas	263
4.3. Experimental constraints on mineral/fluid partitioning	264
4.4. Composition of fluids released from the subducting plate	268
4.5. Chromatographic interaction with the mantle wedge	268
5. SEDIMENT ADDITION, MASS BALANCE FOR Th AND TIME SCALES	269
5.1. Mass balance for Th content and ²³⁰ Th/ ²³² Th ratios	270

U-series Geochemistry – Table of Contents

5.2. Mechanism of sediment transferimplications for the temperature	
of the wedge?	271
5.3. Time scale of sediment transfer	272
6. FLUID ADDITION TIME SCALES	273
6.1. U addition time scales	273
6.2. Ra addition time scales	276
6.3. Reconciling the U and Ra time scales	278
6.4. Single-stage fluid addition	278
6.5. Two-stage fluid addition	280
6.6. Continuous fluid addition	281
6.7. Mechanisms of fluid addition	282
7. PARTIAL MELTING AND MELT ASCENT RATES	283
7.1. ²³¹ Pa- and ²³⁰ Th-excess evidence for a partial melting	
signature in the wedge	284
7.2. Ra evidence for melt ascent rates	284
7.3. Models to reconcile the Pa, Th and Ra data	286
7.4. Batch and equilibrium porous flow melting models	286
7.5. Dynamic melting	286
7.6. Flux melting	290
7.7. Partial melting of the subducting oceanic crust	293
8. DISCUSSION OF U-SERIES TIME SCALE IMPLICATIONS FOR	
ARC LAVAS	293
9. REAR ARC LAVAS	295
10. MODIFYING PROCESSES	297
10.1. Time since eruption	297
10.2. Alteration and seawater interaction	297
10.3. Magma chambers processes	298
10.4. Radioactive decay	298
10.5. Crystal fractionation or accumulation	299
10.6. Magma recharge	299
10.7. Crustal contamination	299
11. TIME-INTEGRATED U-Th-Pb EVOLUTION OF THE CRUST-MANTLE	301
12. FUTURE WORK	303
ACKNOWLEDGMENTS	303
REFERENCES	303
APPENDIX: EQUATIONS FOR SIMULATING MELTING AND	
DEHYDRATION MODELS IN ARCS	311
A1. Single-stage model	311
A2. Two stage-model for fluid addition	311
A3. Continuous dehydration and melting	313

8

The Behavior of U- and Th-series Nuclides in Groundwater

Donald Porcelli and Peter W. Swarzenski

1. INTRODUCTION	
2. NUCLIDE TRANSPORT IN AOUIFERS	
2.1. General modeling considerations	
2.2. Radon and the recoil rate of U-series nuclides	

U-series Geochemistry – Table of Contents

2.3. Ra isotopes	334
2.4. Th isotopes	339
2.5. U isotopes	343
2.6. ²¹⁰ Pb	348
3. GROUNDWATER DISCHARGE INTO ESTUARIES	349
3.1. Background	349
3.2. Tracing groundwater using ²²² Rn and the Ra quartet	351
4. OPEN ISSUES	353
4.1. The effects of well construction and sampling	353
4.2. Quantification of model parameters	354
4.3. Interpreting model-derived information	354
4.4. Inputs at the water table	355
4.5. Applications to pollutant radionuclide migration studies	355
4.6. Tracing groundwater discharges	355
ACKNOWLEDGMENTS	355
REFERENCES	356

Uranium-series Dating of Marine and Lacustrine Carbonates

9

R.L. Edwards, C.D. Gallup, and H. Cheng

1. HISTORICAL CONSIDERATIONS	363
2. THEORY	365
2.1. Decay chains	365
2.2. Secular equilibrium and uranium-series dating	366
2.3. 230 Th, 231 Pa, and 230 Th/ 231 Pa age equations	366
2.4. Tests for ²³¹ Pa- ²³⁰ Th age concordancy	373
3. TESTS OF DATING ASSUMPTIONS	376
3.1. Are initial 230 Th/ 238 U and 231 Pa/ 235 U values equal to zero?	376
3.2. Tests of the closed-system assumption	378
4. SOURCES OF ERROR IN AGE	387
4.1. Errors in half-lives and decay constants	387
4.2. Errors in measurement of isotope ratios	389
4.3. Error in initial ²³⁰ Th/ ²³² Th	391
5. LATE QUATERNARY SEA LEVELS FROM CORAL DATING	391
5.1. Deglacial sea level	391
5.2. Sea level during the last interglacial/glacial cycle and earlier	393
6. DATING OF OTHER MARINE AND LACUSTRINE MATERIALS	394
6.1. Deep sea corals	394
6.2. Carbonate bank sediments	396
6.3. Mollusks and foraminifera	397
6.4. Lacustrine carbonates	398
7. CONCLUSIONS	399
ACKNOWLEDGMENTS	399
REFERENCES	400

10

Uranium-series Chronology and Environmental Applications of Speleothems

David A. Richards and Jeffrey A. Dorale

1. INTRODUCTION	407
2. BASIC GEOCHRONOLICAL PRINCIPLES AND ASSUMPTIONS	410
2.1. General principles of ²³⁰ Th- ²³⁴ U- ²³⁸ U and ²³¹ Pa- ²³⁵ U dating	410
2.2. Initial conditions	412
2.3. Closed system decay	419
2.4. 234 U/ 238 U dating methodology	423
2.5. U-Th-Pb dating of secondary carbonates of Quaternary age	424
3. SPELEOTHEM GEOCHRONOLOGY IN PRACTICE	428
3.1. Speleothem sampling strategy	428
3.2. Treatment of U-series ages	430
4. SPELEOTHEM CHRONOLOGY AND ENVIRONMENTAL CHANGE	431
4.1. Applications based on the presence/absence or growth	
rate of speleothems	431
4.2. Applications based on proxy evidence for environmental change	
contained within speleothems	439
5. CONCLUDING REMARKS	449
ACKNOWLEDGMENTS	450
REFERENCES	450

11 Short-lived U/Th Series Radionuclides in the Ocean: Tracers for Scavenging Rates, Export Fluxes and Particle Dynamics

J. K. Cochran and P. Masqué

1. INTRODUCTION	461
2. MEASUREMENT TECHNIQUES	462
3. SCAVENGING FROM SEAWATER	465
3.1. Early observations of Th scavenging	465
3.2. Development of scavenging models based on Th	467
3.3. The role of colloids in Th scavenging	468
3.4. Scavenging of Po	469
4. THORIUM AND POLONIUM AS TRACERS FOR ORGANIC CARBON	
CYCLING IN THE OCEANS	469
4.1. Basis, approach and early results	469
4.2. Results of the past decade: JGOFS and other studies	472
4.3. Unresolved issues	476
5. ²³⁴ Th AS A TRACER FOR PARTICLE TRANSPORT AND SEDIMENT	
PROCESSES IN THE COASTAL OCEAN	482
5.1. Sediment mixing rates	482
5.2. ²³⁴ Th as a tracer of particle transport in shelf and estuarine environments	. 484
6. CONCLUDING REMARKS	486
ACKNOWLEDGMENTS	487
REFERENCES	487

12

The U-series Toolbox for Paleoceanography

Gideon M. Henderson and Robert F. Anderson

1. INTRODUCTION	493
2. U-SERIES ISOTOPES IN THE OCEAN ENVIRONMENT	493
2.1. The ocean uranium budget	493
2.2. Chemical behavior of U-series nuclides in the oceans	496
3. HISTORY OF WEATHERING – $(^{234}U/^{238}U)$	
4. SEDIMENTATION RATE $-\frac{230}{230}$ Th _{xs}	
4.1. The downward flux of ²³⁰ Th	
4.2. Seafloor sediments	505
4.3. Mn crusts	508
5. PAST EXPORT PRODUCTIVITY - (²³¹ Pa _{xs} / ²³⁰ Th _{xs})	508
5.1. Chemical fractionation and boundary scavenging	
5.2. (²³¹ Pa _{xs} / ²³⁰ Th _{xs}) ratios as a paleoproductivity proxy	511
5.3. The role of particle composition	
5.4. Prospects for future use	
6. RATES OF PAST OCEAN CIRCULATION – $(^{231}Pa_{xs})^{230}Th_{xs}$)	517
7. HOLOCENE SEDIMENT CHRONOLOGY – ²²⁶ Ra	
8. SEDIMENT MIXING – ²¹⁰ Pb	520
9. CONCLUDING REMARKS	522
ACKNOWLEDGMENTS	
RFFERENCES	523
ADDENIDIY	530

13

U-Th-Ra Fractionation During Weathering and River Transport

F. Chabaux, J. Riotte and O. Dequincey

1. INTRODUCTION	533
2. ORIGIN OF RADIONUCLIDE FRACTIONATION DURING	
WEATHERING AND TRANSFERS INTO SURFACE WATERS	534
2.1. Chemical fractionation and mobilization factors	534
2.2. Alpha recoil	542
3. RADIOACTIVE DISEQUILIBRIA IN WEATHERING PROFILES:	
DATING AND TRACING OF CHEMICAL MOBILITY	542
3.1. Dating of pedogenic concretions	543
3.2. Characterization and time scale of chemical mobility	
in weathering profiles	543
4. TRANSPORT OF U-Th-Ra ISOTOPES IN RIVER WATERS	553
4.1. Transport of uranium isotopes in river waters	553
4.2. Transport of thorium and radium isotopes	558
5. ESTIMATES OF WEATHERING MASS BALANCE FROM U-SERIES	
DISEQUILIBRIA IN RIVER WATERS	565
6. CONCLUDING REMARK	568
ACKNOWLEDGMENTS	569
REFERENCES	569

14

The Behavior of U- and Th-series Nuclides in the Estuarine Environment

.....

Peter W. Swarzenski, Donald Porcelli, Per S. Andersson and Joseph M. Smoak

1. INTRODUCTION	. 577
1.1. Estuarine mixing	. 578
1.2. Estuary fluxes	. 579
1.3. Colloids	. 581
2. URANIUM	. 583
2.1. U in seawater	. 584
2.2. River water U inputs	. 584
2.3. U behavior in estuaries	. 584
2.4. Uranium removal to anoxic sediments	. 586
2.5. Importance of particles and colloids for controlling estuarine uranium	. 587
2.6. The $\binom{234}{238}$ activity ratios in estuaries	. 588
3. THORIUM	. 590
3.1. ²³⁴ Th	. 590
3.2. ²²⁸ Th	. 592
3.3. Long-lived Th isotopes – ²³² Th and ²³⁰ Th	. 592
4. RADIUM	. 593
5. RADON-222	. 597
6. LEAD AND POLONIUM	. 597
7. CONCLUSIONS	. 599
REFERENCES	. 600

15

U-series Dating and Human Evolution

A. W. G. Pike and P. B. Pettitt

1. INTRODUCTION	607
2. U-SERIES DATING OF BONES AND TEETH	608
2.1. The diffusion-adsorption (D-A) model	610
2.2. U-series combined with electron spin resonance dating	615
2.3. Non-destructive U-series dating by gamma spectrometry	617
2.4. Future developments	617
3. APPLICATIONS	618
3.1. The issue of chronology in hominid evolution	618
3.2. Neanderthals and modern humans in Israel	619
3.3. Homo erectus and Homo sapiens in Java	620
3.4. Homo erectus and Homo sapiens in China	621
3.5. The "Pit of the Bones" and a new species of hominid in Spain	622
3.6. The earliest Australian human remains	624
4. CONCLUSION	625
ACKNOWLEDGMENTS	626
REFERENCES	626
APPENDIX: FURTHER DETAILS OF THE D-A MODEL	630

16 Mathematical–Statistical Treatment of Data and Errors for ²³⁰Th/U Geochronology

K. R. Ludwig

	-
1. INTRODUCTION	631
2. WHY ERROR ESTIMATION IS IMPORTANT	631
3. ERRORS OF THE MEASURED ISOTOPIC RATIOS	632
4. ERROR CORRELATIONS	633
5. FIRST ORDER ESTIMATION OF ERRORS	
6. WHEN FIRST ORDER ERROR ESTIMATION IS INADEOUATE	635
6.1. Improving the first order estimate analytically	636
6.2. Error estimation by Monte Carlo	636
7. CORRECTING A SINGLE ANALYSIS FOR DETRITAL THORIUM	
AND URANIUM	639
8. ISOCHRONS	641
8.1. Isochron representations for the general ²³⁰ Th/U system	642
8.2. Error-weighted regressions and isochrons for x-y data	644
8.3. 3-dimensional error-weighted regressions and isochrons	646
8.4. Isochrons with excess scatter	647
8.5. Beyond error-weighted least-squares isochrons	648
8.6. Robust and resistant isochrons	648
9. PITFALLS IN DATA PRESENTATION	650
10. NOTE ON IMPLEMENTATION OF ALGORITHMS	651
ACKNOWLEDGMENTS	651
REFERENCES	651
APPENDIX I: ESTIMATING ERROR CORRELATIONS	653
APPENDIX II: WORKED EXAMPLE OF DETRITAL CORRECTION	
AND ERROR PROPAGATION	655
APPENDIX III: FUNCTIONS/ROUTINES FOR ²³⁰ Th/U DATING	
PROVIDED BY ISOPLOT	656