
Mineralocorticoid receptor antagonists for nephroprotection
and cardioprotection in patients with diabetes mellitus and
chronic kidney disease

Alberto Ortiz 1,*, Charles J. Ferro 2,3,*, Olga Balafa4, Michel Burnier 5, Robert Ekart6,

Jean-Michel Halimi7,8, Reinhold Kreutz9, Patrick B. Mark 10, Alexandre Persu11,12, Patrick Rossignol13,14,

Luis M. Ruilope15,16,17, Roland E. Schmieder18, Jose M. Valdivielso19, Lucia del Vecchio20, Carmine

Zoccali21, Francesca Mallamaci21 and Pantelis Sarafidis 22, for the European Renal and Cardiovascular

Medicine (EURECA-m)Working Group of the European Renal Association – European Dialysis and

Transplant Association (ERA-EDTA) and the Hypertension and the KidneyWorking Group of the

European Society of Hypertension (ESH)
1IIS-Fundacion Jimenez Diaz UAM and School of Medicine, GEENDIAB, UAM,Madrid, Spain, 2Institute of Cardiovascular Sciences, University

of Birmingham, Birmingham,UK, 3University Hospitals BirminghamNHS Foundation Trust, Birmingham, UK, 4Department of Nephrology,

University Hospital of Ioannina, Ioannina, Greece, 5Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne,

Switzerland, 6Department of Dialysis, Clinic for Internal Medicine, University Clinical Center Maribor, Maribor, Slovenia, 7Service de
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ABSTRACT

Diabetic kidney disease (DKD) develops in �40% of patients
with diabetes and is the most common cause of chronic kid-
ney disease (CKD) worldwide. Patients with CKD, especially
those with diabetes mellitus, are at high risk of both develop-
ing kidney failure and cardiovascular (CV) death. The use of
renin–angiotensin system (RAS) blockers to reduce the inci-
dence of kidney failure in patients with DKD dates back to

studies that are now �20 years old. During the last few years,
sodium–glucose co-transporter-2 inhibitors (SGLT2is) have
shown beneficial renal effects in randomized trials. However,
even in response to combined treatment with RAS blockers
and SGLT2is, the renal residual risk remains high with kidney
failure only deferred, but not avoided. The risk of CV death
also remains high even with optimal current treatment.
Steroidal mineralocorticoid receptor antagonists (MRAs)
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reduce albuminuria and surrogate markers of CV disease in
patients already on optimal therapy. However, their use has
been curtailed by the significant risk of hyperkalaemia. In
the FInerenone in reducing kiDnEy faiLure and dIsease
prOgression in DKD (FIDELIO-DKD) study comparing the
actions of the non-steroidal MRA finerenone with placebo,
finerenone reduced the progression of DKD and the incidence
of CV events, with a relatively safe adverse event profile. This
document presents in detail the available evidence on the cardi-
oprotective and nephroprotective effects of MRAs, analyses the
potential mechanisms involved and discusses their potential fu-
ture place in the treatment of patients with diabetic CKD.

Keywords: cardiovascular risk, diabetic kidney disease, hyper-
kalaemia, mineralocorticoid antagonism, nephroprotection

ADDITIONAL CONTENT

An author video to accompany this article is available at:
https://academic.oup.com/ndt/pages/author_videos.

EPIDEMIOLOGY AND OUTCOMES OF

DIABETIC KIDNEY DISEASE IN 2020

Around 850 million persons in the world have chronic kidney
disease (CKD), with 3.9 million receiving kidney replacement
therapy [1]. Diabetic kidney disease (DKD) develops in �40%
of patients with diabetes and is the leading cause of CKD world-
wide [2]. The use of renin–angiotensin system (RAS) blockers
in patients with type 2 diabetes mellitus (T2DM) with CKD
mainly originates from the Reduction of Endpoints with the
Angiotensin II (AngII) Antagonist Losartan (RENAAL) [3] and
Irbesartan in Diabetic Nephropathy Trial (IDNT) [4] studies
published 20 years ago. Within the last 5 years, sodium–glucose
co-transporter-2 inhibitors (SGLT2is) have shown beneficial re-
nal and cardiovascular (CV) effects in randomized trials [5].
However, even in response to combined treatment with RAS
blockers and SGLT2is, the renal residual risk remains high with
kidney failure only deferred, but not avoided [2, 5, 6].
Furthermore, for patients with CKD Stage 3 [estimated glomer-
ular filtration rate (eGFR) 30–59mL/min/1.73m2] the risk of
CV death is at least 10 times higher than the risk of developing
kidney failure [7]. Classical steroidal mineralocorticoid receptor
antagonists (MRAs) reduce albuminuria and blood pressure
(BP), and thus are potentially useful for nephroprotection and
cardioprotection, but their use may be limited by the risk of
hyperkalaemia, especially in patients with both CKD and DM
[8–10]. Non-steroidal MRAs, with a potentially more favour-
able side effect profile, are currently at different stages of devel-
opment. Of these, finerenone is currently the most studied. The
recent publication of the FInerenone in reducing kiDnEy
faiLure and dIsease prOgression in DKD (FIDELIO-DKD) [11]
results comparing the actions of finerenone with placebo shows
that the deterioration in renal function can be slowed in
patients with DKD. This document presents current evidence
on the cardioprotective and nephroprotective effects of MRAs,
analyses potential mechanisms involved in these beneficial
actions and discusses their potential future place in the

treatment of patients with DKD following the recent publica-
tion of the FIDELIO-DKD trial.

CURRENT STATUS OF NEPHROPROTECTION

AND CARDIOPROTECTION IN DKD

Before SGLT2is

Intensified multifactorial intervention in T2DM patients
delays renal and CV complications of diabetes [12, 13]. This
intervention focuses mainly on lowering body weight, hyperli-
pidaemia and albuminuria and keeping glycosylated haemoglo-
bin (HbA1c) levels in 6.5–8% range and systolic and diastolic
BP (SBP and DBP)<130 and 80mmHg, respectively [14–17].

RAS blockade with either angiotensin-converting enzyme
inhibitors (ACEis) or angiotensin receptor blockers (ARBs) is
first-line therapy in DM patients with hypertension and albu-
minuria [14, 15]. From landmark trials like the Captopril Study
in Type 1 DM (T1DM) [18], to RENAAL [3] and IDNT [4] in
T2DM, to relevant meta-analyses [19, 20], data confirm that
RAS blockade reduces the risk of the hard renal outcomes such
as doubling of serum creatinine, end-stage kidney disease
(ESKD) or death by 15–20%, and decreases proteinuria by
�30% compared with placebo. Combination therapy of ACEi
and ARB, or aliskiren, a renin inhibitor, with ACEi or ARB,
may intensify the anti-proteinuric actions but hyperkalaemia
and acute kidney injury are serious side effects that counterbal-
ance the possible benefits. In this regard, the Aliskiren Trial in
Type 2 Diabetes Using Cardiorenal Endpoints (ALTITUDE)
[21] and the Veterans Affairs Nephropathy in Diabetes (VA
NEPHRON-D) [22] trials, with hard renal outcomes, were pre-
maturely terminated due to an unfavourable risk/benefit ratio.
New anti-diabetic drugs like Glucagon-like peptide-1 receptor
agonists decrease major adverse CV events by 12% and reduce
albuminuria, although whether or not they preserve renal func-
tion is presently unknown [23]. However, all relevant studies
were designed with a CV primary endpoint and trials with strict
kidney outcomes are still missing [5].

Despite the solid evidence and guidelines existing for many
years, in the real world, many patients with DKD are deprived
of the benefits of single RAS blockade, mainly due to drug intol-
erance and suboptimal medication doses prescribed mainly to
avoid the common side effects of hyperkalaemia and acute kid-
ney injury [24, 25]. Moreover, even in the strict environment of
clinical trials, a high residual risk for CV death and CKD pro-
gression still remains in patients with DKD [2, 6].

Effects of SGLT2is

In the last 5 years, three major CV outcome trials with
SGLT2is in patients with type 2 diabetes were published. The
Empagliflozin CV Outcome Event Trial in T2DM Patients
(EMPA-REG OUTCOME) showed reductions of 14% in the
primary outcome (non-fatal myocardial infarction, non-fatal
stroke or death from CV causes), 38% in CV death, 35% in hos-
pitalization for heart failure (HHF) and 32% in all-cause
mortality compared with placebo [26]. The Canagliflozin CV
Assessment Study (CANVAS) showed 14% reduction in the
same primary outcome and 33% reduction in HHF, while the
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Multicentre Trial to Evaluate the Effect of Dapagliflozin on the
Incidence of CV Events Thrombolysis In Myocardial Infarction
58 (DECLARE-TIMI 58) showed non-inferiority of dapagliflo-
zin in the aforementioned primary composite outcome and a
27% reduction in HHF compared with placebo [27, 28]. A clear
benefit of SGLT2is on heart failure (HF) was recently
highlighted by two randomized trials in patients with HF and
reduced ejection fraction in persons with or without T2DM [29,
30]. Interestingly, in the EMPagliflozin outcomE tRial in
Patients With chrOnic HF With Reduced Ejection Fraction
(EMPEROR-Reduced) trial over 70% of patients were on
MRAs, and the hazard ratio (HR) [95% confidence interval
(CI)] of the primary endpoint was 0.76 (0.59–0.97) in non-
MRA users and 0.75 (0.63–0.88) inMRA users [30].

Most importantly, EMPA-REG OUTCOME, CANVAS and
DECLARE-TIMI showed prominent and similar effects on out-
comes associated with kidney disease progression [27, 28, 31, 32].
In a meta-analysis of these trials, SGLT2is reduced the incidence of
the composite renal outcome of worsening renal function (dou-
bling of serum creatinine accompanied by an eGFR of �45mL/
min/1.73m2), ESKD or renal death by 45% (HR 0.55; 95% CI
0.48–0.64) [33]. Moreover, the Canagliflozin and Renal Events in
Diabetes with Established Nephropathy Clinical Evaluation
(CREDENCE) study in 4401 patients with T2DM, CKD and albu-
min-to-creatinine ratio 300–5000mg/g was prematurely stopped
because of benefit, showing reductions of 34% in the composite of
ESKD, doubling of serum creatinine or renal death and 32% in
ESKD with canagliflozin compared with placebo [6]. Finally, the
Dapagliflozin in Patients with CKD (DAPA-CKD trial) [34] con-
firmed the nephroprotective and cardioprotective effects of these
drugs in a CKD population including patients with diabetic and
non-diabetic CKD [eGFR 25–75mL/min/1.73m2 and urinary al-
bumin-to-creatinine ratio (UACR) 200–5000mg/g], with benefit
observed for both diabetic and non-diabetic patient subgroups.
This trial was also stopped early because of benefit and showedma-
jor benefits in the composite outcome of eGFR decline�50%, kid-
ney failure or death from renal causes (HR 0.56; 95% CI 0.45–
0.68), the combined outcome of death from CV causes and HHF
(HR 0.71; 95% CI 0.55–0.92) and all-cause mortality (HR 0.69;
95% CI 0.53–0.88). These effects of SGLT2is are independent of
age, sex and race, and are equal for patients with eGFR below or
above 45mL/min/1.73m2.

As previously discussed in a Consensus Statement by the
European Renal and Cardiovascular Medicine (EURECA-
m) and Diabesity working groups of the European Renal
Association – European Dialysis and Transplantation
Association (ERA-EDTA) [35], an observation of major im-
portance is that the above renoprotective effects of SGLT2is
take place on top of standard treatment with an ACEi or an
ARB. The main mechanism by which SGLT2is exert a renal
protective effect is thought to be reduction in intraglomerular
pressure and single-nephron hyperfiltration, as in the case of
RAS blockade. This is supported by a functional ‘dip’ in eGFR
during the first weeks of SGLT2i treatment [35]. Data obtained
in patients with T1DM suggest that the decreased sodium reab-
sorption in proximal tubules resulting from the mode of action
of SGLT2is increases the distal availability of sodium chloride;

this is sensed by the macula densa, resulting in restoration of the
tubuloglomerular feedback mechanism towards reversal of the
vasodilation of afferent arterioles [36], while in T2DM, vasodila-
tion of the efferent arteriole may also take place [37]. Other
mechanisms, including tubular protection, reduced hypoxia
and inflammation, and long-term effects of natriuresis have also
been proposed as alternative reno-protective mechanisms [38].

Not surprisingly, in the previous Consensus Statements of
ERA-EDTA, the American Diabetic Association/European
Association for the Study of Diabetes [14] and the Kidney
Disease: Improving Global Outcomes Guidelines on DM [15],
the use of SGLT2is in patients with T2DM and eGFR>30mL/
min/1.73m2 is strongly recommended. As of this writing, there
are no data on the use of SGLT2is in real world patients with
CKD; based on current marketing indications, and in data from
ongoing or recent trials, this percentage is anticipated to be very
low, that is around 5% [39].

NEPHROPROTECTIVE PROPERTIES OF MRAs

Evidence before FIDELIO-DKD

Following background data on a nephroprotective effect
of MRAs, several clinical studies evaluated the effects of spi-
ronolactone, eplerenone or finerenone on urine albumin or
protein excretion (UPE), the most commonly used interme-
diate renal endpoints [10, 40]. In a pilot study,
Chrysostomou et al. [41] randomized 41 subjects with
UPE>1.5 g/day previously treated with ACEi to one of four
groups: (i) ramipril/placebo/placebo; (ii) ramipril/irbesar-
tan/placebo; (iii) ramipril/placebo/spironolactone; or (iv) ram-
ipril/irbesartan/spironolactone. At 12weeks, UPE reduction
was 1.4%, 15.7%, 42.0% and 48.2%, respectively, suggesting
that addition of spironolactone offered significant nephropro-
tection, while triple therapy offered practically no advantage to
dual therapy with ramipril/spironolactone. Another study ran-
domized 81 diabetic patients with UACR>300mg/g receiving
lisinopril 80mg to placebo, losartan 100mg or spironolactone
25mg for 48weeks [42]. Compared with placebo, UACR de-
creased by 34.0% (P¼ 0.007) with spironolactone and 16.8%
(P¼ 0.20) with losartan. Clinic and ambulatory BP, creatinine
clearance, sodium and protein intake did not differ between
groups. Serum potassium and incidence of hyperkalaemia in-
creased with the addition of either spironolactone or losartan.
A recent randomized controlled trial (RCT) demonstrated that
spironolactone did not delay or prevent development of con-
firmed microalbuminuria in patients with T2DM at high risk
of developing microalbuminuria [43]. Hyperkalaemic episodes
were reported in 9% of the 102 patients randomized to spiro-
nolactone and in 1% of the 107 patients randomized to pla-
cebo. Although possibly under-powered, this study suggests
that MRAs may not have a role in the prevention of DKD.

Studies with eplerenone suggested similar renoprotective
properties: in a study randomizing 268 patients with diabetes
and UACR�50mg/g on enalapril treatment, to placebo, epler-
enone 50mg or eplerenone 100mg for 12weeks, UACR reduc-
tions were 7.4%, 41% and 48.4%, respectively (P< 0.001 for
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both eplerenone groups) [44]. Likewise, in 821 patients with di-
abetes and high or very high albuminuria on ACEi or ARB
treatment, finerenone demonstrated dose-dependent reduc-
tions in UACR (placebo-corrected mean ratio of the UACR at
3months relative to baseline at 0.79, 0.76, 0.67 and 0.62 for the
finerenone 7.5, 10, 15 and 20mg/day groups, respectively), with
relevant incidence of hyperkalaemia leading to discontinuation
at 2.1%, 0%, 3.2% and 1.7% [45]. Other studies with MRAs in
patients with diabetic [46–52] or non-diabetic CKD [53–59]
showed similar nephroprotection. A recent meta-analysis eval-
uating the nephroprotective role of MRAs [60] suggested that
these agents (alone or on top of RAS blockade) decreased
UACR by 24.55%, and uPCR by 53.93% compared with pla-
cebo. Addition of an MRA was associated with average eGFR
decrease of 2.38mL/min/1.73m2 (95% CI 3.51–1.25), rise in
potassium by 0.22mmol/L (95% CI 0.16–0.28) and a 2.6-fold
increase in hyperkalaemia risk compared with placebo/active
control. However, it should be pointed out that the study dura-
tion for the two trials with highest weight (both assessing finere-
none) was 28–90 days, and the slight reduction in eGFR
observed potentially only reflects decreased glomerular hyper-
filtration [45, 61].

Renal outcomes in FIDELIO-DKD

FIDELIO-DKD was a randomized, double-blind, placebo-
controlled, parallel-group, event-driven trial assessing the effi-
cacy and safety of finerenone compared with placebo on renal
and CV outcomes. The study randomly assigned 5734 patients
with T2DM on maximum tolerated dose of an ACEi or an ARB
who had either UACR 300–5000mg/g or eGFR 25 to <75mL/
min/1.73m2 or UACR 30 to <300mg/g and eGFR 25 to
<60mL/min/1.73m2 plus diabetic retinopathy [39]. All
patients needed to have serum potassium �4.8mmol/L at both
the run-in and screening visits. Following these inclusion crite-
ria, at baseline 12.1% of the patients had high (30 to <300mg/
g) and 87.5% very high (300–5000mg/g) albuminuria. The
mean baseline eGFR was 44.36 12.6mL/min/1.73m2, with
33.5% of patients being at the 45–60mL/min/1.73m2 and
52.5% at the 25–45mL/min/1.73m2 eGFR range [11, 39].

The primary outcome was a composite of kidney failure, sus-
tained (�4weeks) eGFR decrease of at least 40% from baseline or
death from renal causes. Kidney failure was defined as ESKD (dial-
ysis for �90days or kidney transplantation) or eGFR<15mL/
min/1.73m2. During a median of 2.6 years, a primary outcome
event occurred in 504/2833 patients (17.8%) in the finerenone
group and 600/2841 patients (21.1%) in the placebo group (HR
0.82; 95% CI 0.73–0.93; P¼ 0.001). Finerenone had a rather con-
sistent effect on the individual components of the primary out-
come. Importantly, 40% of the events of the primary outcome
were kidney failure events. Finerenone was associated with an even
larger reduction (HR 0.76; 95% CI 0.65–0.90) in the main second-
ary renal outcome, a composite of kidney failure, sustained eGFR
decrease of�57% (equivalent to doubling of serum creatinine), or
renal death. During follow-up, the finerenone group had a 31%
greater reduction in the UACR from baseline to Month 4 than the
placebo group. Finally, when compared with baseline, SBP was
numerically lowered at Month 12 in the finerenone group

(�2.1mmHg) but not in the placebo group (þ0.9mmHg; no for-
mal statistical analysis provided) [11].

POTENTIAL MECHANISMS FOR THE

NEPHROPROTECTIVE ACTIONS OF MRAs

The analysis of the potential mechanisms for the nephroprotec-
tive actions of MRAs and, more specifically, of finerenone, in
addition to RAS blockade should answer the question of why
would MRAs increase nephroprotection when dual conven-
tional RAS blockade does not [21, 22]. Two basic mechanisms
for nephroprotection may be considered: a haemodynamic ef-
fect and a direct action on tissue inflammation and fibrosis
(Figure 1A). The different specificity and impact on cofactor re-
cruitment may account for differences between individual
MRA on the adverse effect profile, including hyperkalaemia
(Figure 1B) [62–64].

Evidence supporting a haemodynamic role is that finerenone
caused an early decrease in eGFR, followed by a slower slope of
eGFR loss and a 40% decrease in albuminuria [11]. This pattern is
consistent with the response to conventional RAS blockers and
SGLT2is [65, 66] and suggests decreased intraglomerular pressure
that may limit podocyte injury and albuminuria, preventing albu-
minuria-induced tubular cell inflammatory and profibrotic
responses, thus preventing loss of Klotho, and even decreasing the
metabolic load of proximal tubular cells [67–69]. Studies with
SGLT2is have already demonstrated that in patients on RAS block-
ers there is an opportunity for further intraglomerular pressure re-
duction [5, 36, 37]. If this is indeed the mechanism of action of
MRA, there should be some limit as to how low glomerular pres-
sure can go, and albuminuria decreased as a direct consequence of
this reduction in glomerular pressure. Interestingly, the numerical
HR for the primary endpoint for the 259 patients who were treated
with SGLT2is at baseline in FIDELIO-DKD was 1.38 (95% CI
0.61–3.1) and these patients were at very low risk of the primary
endpoint on placebo [11]. No statistical interaction tests were per-
formed while the effects of finerenone on the primary outcome
were generally consistent across pre-specified subgroups [i.e. HR
0.82 (95% CI 0.72–0.92) in the no SGLT2i group]. To clarify the
mechanisms of action ofMRA, it will be helpful to analyse the early
impact of finerenone on eGFR and albuminuria in these patients
and to also analyse the further 402 patients that started on an
SGLT2i during the course of the trial [11]. In prior trials of dual
conventional RAS blockade that did not show nephroprotec-
tion, the initial decrease in eGFR compared with placebo was
absent in the intervention arm and the difference in the decrease
in albuminuria ranged from 11% to 20%, that is it was 2- to 4-
fold lower than in FIDELIO-DKD [21, 22] (Figure 2). Thus, the
different impact of dual conventional RAS blockade versus RAS
blockade and MRA on outcomes should not be used to argue
against a haemodynamic effect. Rather, the question is why a
haemodynamic effect, and indeed a clinical benefit, was ob-
served with RAS blockade and MRA but not on dual conven-
tional RAS blockade?

A second hypothesis, which is neither supported nor dis-
carded by the available FIDELIO-DKD data, relates to inhibi-
tion of proinflammatory and profibrotic effects recruited by

4 A. Ortiz et al.
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the transcription factor induction via MR. In common with
the activation of the AngII/angiotensin receptor axis [70, 71],
MR activation leads also to non-haemodynamic actions [72,
73]. Specifically, direct proinflammatory and profibrotic
effects on a variety of cell types and organs have been well
characterized in pre-clinical studies [72, 74]. Furthermore,
MR activation is a key mediator of kidney damage induced

by Klotho deficiency and results from the loss of direct
actions of Klotho on adrenal cells, independently from the
RAS [75]. In this regard, multiple human kidney parenchy-
mal cell types express the NR3C2 gene encoding the MR
(Figure 3A–C) [76]. Indeed, MR expression is increased in
kidney leukocytes in DKD, potentially sensitizing them to
MR activation (Figure 3D) [77].

Mineralocorticoid receptor antagonistA

B

MR-induced hemodynamic effects Other direct MR effects

Observed:

• Early decrease in eGFR

• Long-term preservation of eGFR

• Decrease in albuminuria

Likely correlates/implications:

• Decreased intraglomerular pressure/hyperfiltration:

  decreased podocyte loss

• Decrease albumin load proximal tubular cells

• Decrease metabolic load proximal tubular

  (e.g. glucose) and other tubular cells

Aldosterone

secretion
Parenchymal

cells

Leukocytes

Albuminuria,

metabolic load

Decreased

Klotho

Inflammatory and

profibrotic responses

Androgen

receptor

Progesterone

receptor

SRC-1

S810L

MR
MR

SRC-1

MR MR

Spironolactone Eplerenone Finerenone

FIGURE 1: Potential mechanisms of action of MRAs on DKD and key differences between MRAs. (A) MRAs may be nephroprotective

through haemodynamic actions, decreasing intraglomerular pressure, glomerular filtration and albuminuria and thus decreasing workload for

tubular cells and the resulting adverse effects of albuminuria on inflammation, fibrosis and Klotho expression. FIDELIO-DKD observed an

early decrease in GFR, followed by a slower loss of eGFR thereafter as well as a large decrease in albuminuria, consistent with a haemodynamic

effect. Additionally, MRAs may have direct effects on leukocytes and kidney cells, decreasing the proinflammatory and profibrotic actions of

MR activation and preserving Klotho expression. Decreased Klotho, in turn, results in aldosterone secretion. Klotho is an anti-aging protein

expressed mainly by kidney cells that has among others anti-inflammatory and antifibrotic properties. In blue, FIDELIO-DKD observations,

in brown, likely pathophysiological correlates; in red, injury pathways shown to be responsive to MRAs in pre-clinical studies. Sources for

images: Wikipedia, smart.servier. (B) Spironolactone and eplerenone are steroid MRAs while finerenone is a non-steroidal MRA.

Spironolactone may antagonize additional receptors for steroid hormones, including the androgen and progesterone receptors. This may ex-

plain adverse effects such as gynaecomastia. The selectivity of eplerenone is higher, but the affinity for MR is lower than that of spironolactone

and finerenone. There are further differences [62–64]. Additionally, the impact on the recruitment of cofactors required for gene transcription

may differ. As an example, while eplerenone has intrinsic activity recruiting cofactors to the MR, finerenone actually decreased the baseline in-

teraction between MR and its cofactors and this may result in additional antifibrotic activity [64]. Specifically, only finerenone prevented the

interaction of the MR with its key cofactor steroid receptor coactivator-1 (SRC-1). These and other differences in cofactor recruitment may ex-

plain the milder impact of finerenone on serum potassium while preserving nephroprotective characteristics [63, 64].
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CARDIOPROTECTIVE PROPERTIES OF MRAs

Evidence before FIDELIO-DKD

The concept that aldosterone promotes CV damage is
well established. Epidemiological evidence from the

Framingham study demonstrated that higher concentrations
of aldosterone are associated with left ventricular hypertro-
phy (LVH), which in turn is associated with the syndrome of
HF with preserved ejection fraction (HFpEF) [78, 79]. LVH
becomes increasingly prevalent in CKD as eGFR falls [80]
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FIGURE 2: Haemodynamic impact of dual conventional RAS blockade versus MRA plus RAS blockade according to selected large outcomes

clinical trials. (A) ALTITUDE. Aliskiren þ RAS blockade versus RAS blockade þ placebo [21]. Note the overlapping SE bars for early eGFR

changes and milder early impact on albuminuria than in FIDELIO-DKD. (B) VA NEPHRON-D. losartan þ lisinopril versus losartan þ

placebo [22]. Note overlapping 95% CI bars for early eGFR changes and milder early impact on albuminuria than in FIDELIO-DKD.

(C) FIDELIO-DKD. Note the non-overlapping 95% CI for the early decrease in eGFR as well as the large decrease in albuminuria. Finerenone

þ RAS blockade versus RAS blockade þ placebo [11]. Note different scales for different graphs.
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and it is plausible that aldosterone excess is a major patho-
logical mechanism underpinning HFpEF in patients with
CKD. In this regard, aldosterone excess was associated with
myocardial fibrosis both in experimental and human studies

[81, 82]. It is now well established that inhibition of the RAS
with ACEi or ARB alone does not fully suppress aldosterone
production and aldosterone is only transiently suppressed
by RAS blockers [83]. These data provide the rationale for
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FIGURE 3: Kidney expression of key genes involved in MR signalling. (A) Multiple human cell types, including ECs, podocytes, mesangial

cells, proximal and distal tubular epithelial cells, expressed NR3C2 encoding the MR as well as NCOA1 encoding its key cofactor steroid recep-

tor coactivator-1 (SRC-1) [76]. However, macrophage expression of both NR3C2 and NCOA1 was very low, questioning a role of MR activa-

tion in kidney macrophages in healthy kidneys. (B) Protein Atlas confirmed the wide expression of MR in different types of tubular cells, (C)

as well as in podocytes and parietal epithelial cells (inset, arrow and arrowhead, respectively). (D) Both proximal tubular cell and leukocyte ex-

pression of both NR3C2 and NCOA1 were increased in human DKD, suggesting a potential impact of inhibition of MR activation in additional

tubular cells and inflammatory cells in the mechanism of action of MR antagonists in DKD [77]. (Images from http://humphreyslab.com/

SingleCell/ and https://www.proteinatlas.org/ENSG00000151623-NR3C2/tissue/kidney#img; accessed 24 October 2020.)
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addition of MRAs to conventional RAS inhibition for CV
protection [73].

The greatest magnitude of benefit of MRAs on CV outcomes
was generally observed in patients with HF, and particularly in
those with HF and reduced left ventricular ejection fraction
(LVEF), heart failure with reduced ejection fraction (HFrEF). In
the Randomized Aldactone Evaluation Study trial of 1663 peo-
ple with LVEF<35%, allocation of spironolactone led to a 30%
reduction in CV mortality [relative risk (RR) 0.69; 95% CI
0.58–0.82] [84]. Two subsequent large RCTs of eplerenone in
patients with HF following myocardial infarction or patients
with left ventricular systolic dysfunction but less severe symp-
toms showed similar benefits [85, 86]. Such consistent results
led to MRAs receiving a Level 1A grading for use in HFrEF
across international guidelines [87].

To date, no therapy has been demonstrated to alter out-
comes in HFpEF—the dominant form of HF in patients with
CKD. Spironolactone reduced left ventricular mass and vascu-
lar stiffness in patients with Stages 2–3 CKD in a placebo-con-
trolled RCT and therefore it is plausible that MRAs would
improve outcomes in HFpEF [88]. In the Treatment of
Preserved Cardiac Function HF with an Aldosterone
Antagonist (TOPCAT) trial in 3445 patients [median eGFR 65
(54–79) mL/min/1.73m2, 39% had CKD], spironolactone was
associated with fewer episodes of hospitalization compared
with placebo [206 patients (12.0%) versus 245 patients (14.2%);
HR 0.83; 95% CI 0.69–0.99], but there was no statistically signif-
icant impact on the primary composite endpoint of the trial of
death from CV causes, aborted cardiac arrest or hospitalization
for the management of HF [89]. However, a post hoc analysis
revealed regional differences in patient characteristics, study
drug adherence and responses to spironolactone, with notably
profound different event rates for patients in the USA, Canada,
Brazil and Argentina compared with those from Russia and
Georgia [90]. A separate analysis of patients from the Americas
suggested that spironolactone may indeed improve clinical out-
comes in HFpEF [90] and led to a Class IIb level B-R grading by
US guidelines [87]. Spironolactone for HFpEF is being retested
in two separate trials: the Spironolactone Initiation Registry
Randomized Interventional Trial (SPIRRIT; NCT02901184)
and the SPIRolactone In the Treatment of HF (EudraCT 2017-
000697-11) [87].

In all the CV outcome trials in HF, the incidence of hyperka-
laemia and serum potassium was higher in the MRA group
compared with placebo [84–86, 89] but hyperkalaemia occur-
rence did not hinder the clinical benefit of MRAs [91, 92] even
in high-risk subgroups (CKD, diabetes and elderly patients)
[93, 94].

CV outcomes of the FIDELIO-DKD study

In the FIDELIO-DKD trial, the key composite secondary
outcome consisted of death from CV causes, non-fatal myocar-
dial infarction, non-fatal stroke and HHF [39]. Patients treated
with finerenone had a lower incidence of this secondary out-
come compared with placebo (13.0% versus 14.8%; HR 0.86;
95% CI 0.75–0.99; P ¼ 0.03) [11]. The CV benefit was seen
within a month and continued to be observed thereafter.

Interestingly, although the individual components of the key
composite secondary outcome tended to improve with finere-
none treatment, the incidence of stroke did not (HR 1.03; 95%
CI 0.76–1.38). This is consistent with the important role of BP
for stroke risk and the very little difference in BP between the
groups [17, 95]. The improvement in the key secondary CV
outcome was independent of having had a history of previous
CV disease [96]. Indeed, FIDELIO-DKD is the first study in
patients with CKD showing a reduction in CV events in a popu-
lation in which symptomatic HF or reduced LVEF were ex-
cluded [96].

POTENTIAL MECHANISMS FOR THE

CARDIOPROTECTIVE ACTIONS OF MRAs

Apart from its obvious cardioprotective impact by reducing so-
dium retention and, therefore volume expansion, MRAs elicit
direct effects in different cell types of the CV system.
Furthermore, a post hoc analysis of the Eplerenone Post-Acute
Myocardial Infarction HF Efficacy and Survival trial
(EPHESUS) in HF post-myocardial infraction suggested that
an early (1 month) rise in serum potassium as a potassium-
sparing effect, and an early diuretic effect may contribute to the
beneficial effects of eplerenone [97]. In FIDELIO-DKD, the
early CV benefit is compatible with a haemodynamically medi-
ated mechanism via natriuresis, although other actions cannot
be excluded and were not explored, such as improvement in en-
dothelial dysfunction and possibly an improvement in vascular
stiffness and myocardial remodelling in the longer term [98–
100].

MRAs and the vasculature

The MR is a functional transcription factor in vascular
smooth muscle cells (VSMCs) and endothelial cells (ECs)
[101]. The VSMC-MR directly contributes to BP control and
vascular tone by regulating L-type calcium channel expression
and function [102], mediating AngII signalling [103] and regu-
lating the phosphorylation of contractile regulatory proteins
[104]. The VSMC-MR also contributes to vascular remodelling
by regulating genes involved in vascular fibrosis, inflammation
and calcification [105, 106]. Thus, VSMC-MR knockout mice
exhibit less aging-associated vascular stiffness [107]. A direct
role for VSMC-MR in vascular remodelling after injury from
mechanical damage has been also demonstrated [108].

The EC-MR does not appear to play a major role in either
basal vasomotor function or BP control [109]. However, the
EC-MR contributes to endothelial dysfunction and vascular
damage when CV risk factors are present, through mecha-
nisms involving oxidative stress, inflammation and vessel stiff-
ening [110, 111]. Overexpression of human MR in EC
increased BP [112]. However, EC-specific MR deletion did not
alter basal BP [109], although it protected against AngII-in-
duced hypertension [113] and DOCA/salt hypertension-medi-
ated vascular inflammation and fibrosis [109]. Furthermore,
global MR blockade increases nitric oxide bioavailability by
reducing endothelial nitric oxide synthase uncoupling and in-
creasing vascular superoxide dismutase and catalase expres-
sion [114]. Aldosterone may also favour inflammation by

8 A. Ortiz et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
d
t/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/n

d
t/g

fa
b
1
6
7
/6

2
6
3
8
6
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



promoting intercellular adhesion molecule-1 expression [115],
thereby promoting leukocyte adhesion to EC [110].
Furthermore, aldosterone is implicated in vascular remodel-
ling in the context of abnormal sodium handling (which may
be comparatively more important in patients with CKD where
sodium excess is common) by promoting sodium entry into
fibrocytes which stimulates collagen synthesis [116].

MRAs and the heart

The MR is also expressed in cardiomyocytes and myofibro-
blasts [117]. Aldosterone directly induces cardiac hypertrophy,
ventricular remodelling, arrhythmia and ischaemia, indepen-
dently of its haemodynamic effects [118], and it appears that
progression from LVH to cardiac failure is mediated by aldoste-
rone through the MR [119]. Moreover, MR activation stimu-
lates apoptosis and induces coronary vasoconstriction in
animal hearts [120] and MR overexpression in the mouse heart
results in severe ventricular arrhythmias [121]. By contrast, MR
deletion in cardiomyocytes in mice had no adverse consequen-
ces [122], prevented left ventricular dilatation and dysfunction
after chronic pressure overload [123], and improved infarct
healing and prevented progressive adverse cardiac remodelling,
cardiac hypertrophy and contractile dysfunction in ischaemic
HF [124], mainly through decreased apoptosis [125]. In addi-
tion, some cardiac protective effects of MRAs in vivo can be
partially mediated by macrophages, in which MR deletion eli-
cited effects similar to those of MRAs [126, 127].

MRAs limit also infarct size after reperfusion in mice
through non-genomic intracellular signalling including adeno-
sine receptor stimulation, and activation of the Reperfusion
Injury Salvage Kinase pathway [128, 129]. Indeed, MRAs have
consistently shown beneficial effects on left ventricular dilation,
cardiac function, fibrosis or collagen content in pre-clinical
studies [130–132]. Furthermore, aldosterone may stimulate
proliferation of myofibroblasts [133], an important cell type in
scar formation.

SAFETY OF MRAs IN DKD

Despite the Class 1A recommendation of using MRAs in
patients with HFrEF, �30% of whom will also have CKD [134,
135], the use of the two approved steroidal MRAs (i.e. spirono-
lactone and eplerenone) is limited by the fear of hyperkalaemia
and impaired kidney function. According to registry data, only
70% of eligible patients are treated and 70% of these are under-
dosed [136, 137]. Spironolactone is also prone to induce breast
pain and gynaecomastia, erectile dysfunction in men and men-
strual irregularities in pre-menopausal women [135]. Despite
not being life-threatening, these adverse effects may compro-
mise treatment adherence and persistence.

As discussed above, in a meta-analysis of studies evaluating
the effect of MRAs on albuminuria or proteinuria, most of
which included patients with CKD, the addition of an MRA to
placebo/active drug was associated with an overall 2.6-fold in-
crease in hyperkalaemia risk (RR 2.63; 95% CI 1.69–4.08) [60].
However, this meta-analysis also found that the RR of hyperka-
laemia was 4.44 (95% CI 1.99–9.93) for MRAs compared with

placebo in patients already on a single RAS blocker as were
those that participated in the FIDELIO-DKD trial.

A number of approaches have been proposed to reduce the
risk of hyperkalaemia associated with the use of the steroidal
MRAs such as the concomitant use of potassium binders [138]
and the development of non-steroidal MRA, such as finerenone
[135]. In the AMBER Phase II trial, 295 patients with resistant
hypertension and an eGFR between 25 and 45mL/min/1.73m2

(mean 36mL/min/1.73m2), the potassium binder patiromer,
compared with placebo, enabled a more persistent use and a
higher dose of spironolactone. Two-thirds of patients in the pla-
cebo group developed hyperkalaemia over the 12-week follow-
up, and this risk was halved in the patiromer group
(P< 0.0001) [138].

In the FIDELIO-DKD trial, the incidence of all and serious
adverse events during the treatment period was similar in the
finerenone and placebo groups. Mean serum potassium was
�0.23mmol/L higher with finerenone, remaining around
4.6mmol/L. Incidences of hyperkalaemia, defined as serum po-
tassium >5.5mmol/L and >6.0mmol/L were 21.7% and 4.5%,
respectively, in the finerenone group and 9.8% and 1.4%, re-
spectively, in the placebo group [11]. Investigator-reported
hyperkalaemia (18.3% versus 9.0%) and hyperkalaemia leading
to discontinuation of the trial regimen (2.3% versus 0.9%) were
higher with finerenone, while no fatal hyperkalaemia adverse
events were reported. The above rates of discontinuation due to
hyperkalaemia are rather low, when compared with the relevant
rates with dual RAS blockade with ACEi/ARB and the direct
renin inhibitor aliskiren (4.8%) in the ALTITUDE [21] and
combined losartan and lisinopril treatment (9.9%) in the VA
NEPHRON-D trial [22] over similar follow-up periods.
Therefore, the burden of hyperkalaemia associated with steroi-
dal MRA use in patients treated with single, conventional RAS
blockade could be alleviated by the use of finerenone or of
other non-steroidal MRAs under development [139, 140].
Furthermore, in FIDELIO-DKD, the incidence of acute kidney
injury and related discontinuation of drug treatment was low
and similar between groups.

WHAT TO EXPECT FROM FIGARO-DKD

In addition to FIDELIO-DKD, the Finerenone in Reducing CV
Mortality and Morbidity in DKD (FIGARO-DKD;
NCT02545049) study [141] will compare finerenone versus pla-
cebo on CV and renal outcomes and has randomized 7437
patients with T2DM. The study design of FIDELIO-DKD and
FIGARO-DKD is quite similar, apart from that the primary
outcome of FIGARO-DKD is CV and not renal and there are
slightly different inclusion/exclusion criteria. Indeed, patients
were permitted to switch between the two studies before ran-
domization. Both studies excluded patients with an
eGFR<25mL/min/1.73m2, with FIGARO-DKD also includ-
ing patients with better-preserved kidney function (maximum
allowed eGFR of 90mL/min/1.73m2 compared with 75mL/
min/1.73m2 in FIDELIO-DKD). Different parameters were
also given for high- and very high-albuminuria, and for the co-
existence of diabetic retinopathy (not necessary for inclusion in
FIGARO-DKD). Additionally, the number of patients on an
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SGLT2i at baseline was higher at 613 (8.3%), and this may be
increased by patients starting an SGLT2i during the trial, poten-
tially allowing a better assessment of the impact of finerenone/
SGLT2i combination therapy, especially if analysed together
with FIDELIO-DKD data. The FIGARO-DKD study has at
least 90% power to detect a 20% reduction in the primary out-
come, a composite of time to first occurrence of CV death, non-
fatal myocardial infarction, non-fatal stroke or HHF; this is the
same as for the CV outcomes in FIDELIO-DKD. Data presen-
tation is expected in 2021.

Combined, FIDELIO-DKD and FIGARO-DKD will consti-
tute the largest cardiorenal outcome programme designed to
investigate the occurrence of fatal and non-fatal CV events and
progression of kidney disease in <13 000 patients with T2DM.
In addition, unlike previous studies, recruited patients will not
only have high levels of albuminuria and CKD Stages 3–4
(eGFR 15–59mL/min/1.73m2) but will also include patients
with CKD Stages 3–4 with low levels of albuminuria
(UACR�30mg/g but <300mg/g), as well as patients with
CKD Stages 1–2 (eGFR�60mL/min/1.73m2) and high levels
of albuminuria (UACR>300mg/g). Therefore, taken together,
the results of the FIDELIO-DKD and FIGARO-DKD studies
should provide the strongest level of evidence as to whether op-
timally treated patients with T2DM and CKD at high risk of
CV events and renal progression of CKD will have improved
cardiorenal outcomes with the addition of a non-steroidal
MRA to their treatment regimen.

OTHER ONGOING STUDIES WITH MRAs OF

NEPHROLOGICAL INTEREST

There are further ongoing clinical trials testing MRAs of neph-
rological interest. The ALdosterone antagonist Chronic
HEModialysis Interventional Survival Trial (ALCHEMIST)
[142] and the Aldosterone bloCkade for Health Improvement
EValuation in End-stage Renal Disease (ACHIEVE;
ClinicalTrials.gov identifier: NCT03020303) are two ongoing
CV outcome trials using spironolactone in dialysis patients.
Beyond the previously quoted SPIRIT and SPIRRIT trials with
spironolactone in HFpEF, another ongoing trial with finere-
none, expected to be completed inMay 2024, is the FINerenone
trial to investigate Efficacy and sAfety superioR to placebo in
paTientS with HF (FINEARTS-HF; ClinicalTrials.gov identi-
fier: NCT04435626). This trial will randomize subjects with HF
[New York Heart Association (NYHA) 2–4] and LVEF�40%
to either finerenone or placebo. The study is primarily aimed at
testing CV and heart-related endpoints, with a composite renal
endpoint among the secondary outcomes.

Other non-steroidal MRAs are undergoing clinical develop-
ment in patients with DKD, hypertension and HF (Table 1).

Esaxerenone (CS-3150) is being developed for the treatment
of essential hypertension and DKD [143, 144]. It was approved
for the treatment of essential hypertension in Japan in 2019
[143, 144]. In patients with T2DM, esaxerenone induces UACR
remission (defined as UACR<30mg/g at the end of treatment
and�30% decrease from baseline) in 21% of participants com-
pared with 3% in those taking placebo [145]. In a further Phase
III study, 455 patients with DKD and UACR 45 to <300mg/g T
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already on RAS inhibitors were randomized to either esaxere-
none or placebo [146]. The proportion of patients with UACR
remission was higher in the esaxerenone group (22%) com-
pared with the placebo group (4%; P< 0.001) at the end of
52weeks of treatment.

Apararenone (MT-3995) is being developed for the treat-
ment of diabetic nephropathy [147, 148]. In Phase II clinical
trial in patients with diabetic nephropathy, 24weeks of aparare-
none decreased UACR by 54% and induced UACR remission
in 28% of participants taking the higher dose of 10mg daily
[149].

AZD-9977 recently completed Phase I studies in healthy vol-
unteers [150] and ongoing Phase I studies are enrolling patients
with various degree of renal impairment (ClinicalTrials.gov
identifier: NCT04469907) and HF with preserved or mid-range
LVEF in comparison with spironolactone (ClinicalTrials.gov
identifier: NCT03682497). A large, randomized, Phase II study
(ClinicalTrials.gov identifier: NCT04595370) has just started to
compare the antiproteinuric effect of AZD-9977 at ascending
dose in combination with dapagliflozin to either dapagliflozin
alone or placebo. As a secondary outcome, the trial will also test
the change of eGFR during a 3-month follow-up period. The
study population will be made of patients with stable symptom-
atic HF (NYHA 2–3) with an LVEF<55%, CKD Stage 3 and
micro-macroalbuminuria. The direct comparison or combina-
tion with SGLT2is makes this a significant trial.

KBP-5074 is under development for the treatment of cardi-
orenal diseases. It has finished recruiting into Phase II trial in
patients with uncontrolled hypertension and CKD Stages 3b–4
(ClinicalTrials.gov identifier: NCT03574363) [140, 151].

MRA BI690517 recently (May 2020) completed a Phase II
study in patients with diabetic nephropathy (ClinicalTrials.gov

identifier: NCT03165240). Other non-steroidal MRA,
LY2623091 [152] and PF03882845 [153] are not being devel-
oped further [154].

CONCLUSIONS ON MRAs USE FOR DKD AND

CURRENT RESEARCH NEEDS

A multifactorial intervention in patients with T2DM, including
improving glycaemic control, treating hypertension with ACEi/
ARB, using statins and implementing lifestyle interventions
slows CKD progression and lowers CV risk [5, 155]. However,
such multifactorial interventions have been used for decades
with very little progress, while several disappointing RCTs have
been performed in DKD patients, with agents such as bardoxo-
lone [156], aliskiren [21, 157] and darbepoetin [158]. However,
published RCTs in the last few years have provided important
evidence on the effects of SGLT2is on renal and CV outcomes,
changing the landscape in treatment of T2DM [5]. Reports ad-
vocate the preferred use of these agents in patients with T2DM
and CKD, within their licensed indications [5]. To add to these
promising developments comes the results from the FIDELIO-
DKD trial [11]. In this RCT, finerenone, a non-steroidal MRA,
lowered the risk of progression of kidney disease and CV events
with a low risk of side effects, especially of hyperkalaemia.

On the basis of FIDELIO-DKD, applications to licence finer-
enone in the European Union and USA were filed on 9
November 2020. Once licensed and reimbursed, it will become
a valuable addition to the available treatment options for
patients with T2DM and CKD. Based on the evidence presented
herein (prone to slight changes pending license indications and
available doses), finerenone is likely to be efficacious for cardio-
protection and nephroprotection when used on top of an ACEi

Box 1. Patients who are likely to benefit from treatment with finerenonea

T2DM As defined by the American Diabetes Association [12]

Diagnosis of DKD Persistent high albuminuria (30–299mg/g) and
presence of diabetic retinopathy

and
eGFR�25 but <60 mL/min/1.73m2

or
Persistent very high albuminuria (�300mg/g)

and
eGFR�25 but <75mL/min/1.73m2

Serum potassium <4.8mmol/L
Treatment with maximum labelled and tolerated dose
of ACEi or ARB therapy for at least 4 weeks

BP SBP�160mmHg and DBP�100mmHg
Absence of clinical diagnosis of HF with reduced ejec-
tion fraction

HBA1c <12%
Absence of significant non-diabetic renal disease, in-
cluding clinically relevant renal artery stenosis

–

No recent (within 12weeks) episode of acute kidney in-
jury requiring dialysis

–

aBased on the inclusion and exclusion criteria for the FIDELIO-DKD trial.
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or an ARB in maximum tolerated doses and independently of
the use of an SGLT2is in patients with T2DM and CKD with:
eGFR 25–75mL/min/1.73m2, moderately or severely increased
albuminuria and serum potassium �4.8mmol/L (Boxes 1
and 2). Although currently direct evidence that finerenone pro-
vides additional cardioprotection and nephroprotection in
patients treated with RAS blockers and SGLT2is is not available,
the residual risk in these patients still remains high and would
potentially justify this approach. It should be remembered that,
although other currently available steroidal MRAs spironolac-
tone and eplerenone have shown similar benefits in the inter-
mediate outcomes of albuminuria and proteinuria in CKD, the
results of FIDELIO-DKD, in terms of both efficacy on hard
renal outcomes and safety, cannot be extended to them due to
the lack of relevant evidence. The results of currently ongoing
and future trials with finerenone and other non-steroidal
MRAs are awaited to shed more light on this field.

A key point that requires further evidence development is
the relative position of SGLT2is and finerenone or other MRAs
in kidney and CV protection in DKD. In this regard, as previ-
ously pointed out, SGLT2is were allowed in FIDELIO-DKD,
whereas patients treated with MRAs were excluded from the
CREDENCE and DAPA-CKD trials. Although pre-clinical evi-
dence suggests that the mechanisms of kidney and CV protec-
tion by MRAs and by SGLT2is may be complementary,
whether the combination of both agents offers additional pro-
tection should be ideally tested in randomized clinical trials.
Meanwhile, insights into potentially additive benefit may be de-
rived from subgroup analysis of trials that allowed the com-
bined use of MRAs and SGLT2is in DKD patients on RAS
blockers, although data obtained with other MRAs may not
necessarily reflect the behaviour of finerenone. In a recent ran-
domized trial testing sotagliflozin in DKD patients (most on
RAS blockade) with a primary kidney endpoint, 15% of patients
were on MRAs and subgroup analyses of those with HF-related
criteria was consistent with additional benefit on those already
on an MRA for the primary endpoint of the composite of the
total number of deaths from CV causes, hospitalizations for HF
and urgent visits for HF [159]. Further information will likely

be available in the near future. FIGARO-DKD includes a higher
percentage of patients on SGLT2is at baseline than FIDELIO-
DKD, leading to an overall number of 872 patients in both tri-
als, which may allow a combined analysis. Additionally, trials
specifically addressing this question are ongoing for AZD-9977.
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