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During January–May in 2007, the Chinese research cruise DY115-19 discovered an active hydrothermal field at 49°39′E/37°47′S 

on the ultraslow spreading Southwest Indian Ridge (SWIR). This was also the first active hydrothermal field found along an ul-

traslow-spreading ridge. We analyzed mineralogical, textural and geochemical compositions of the sulfide chimneys obtained 

from the 49°39′E field. Chimney samples show a concentric mineral zone around the fluid channel. The mineral assemblages of 

the interiors consist mainly of chalcopyrite, with pyrite and sphalerite as minor constitunets. In the intermediate portion, pyrite 

becomes the dominant mineral, with chalcopyrite and sphalerite as minor constitunets. For the outer wall, the majority of minerals 

are pyrite and sphalerite, with few chalcopyrite. Towards the outer margin of the chimney wall, the mineral grains become small 

and irregular in shape gradually, while minerals within interstices are abundant. These features are similar to those chimney edi-

fices found on the East Pacific Rise and Mid-Atlantic Ridge. The average contents of Cu, Fe and Zn in our chimney samples were 

2.83 wt%, 45.6 wt% and 3.28 wt%, respectively. The average Au and Ag contents were up to 2.0 ppm and 70.2 ppm respectively, 

higher than the massive sulfides from most hydrothermal fields along mid-ocean ridge. The rare earth elements geochemistry of 

the sulfide chimneys show a pattern distinctive from the sulfides recovered from typical hydrothermal fields along sediment- 

starved mid-ocean ridge, with the enrichment of light rare earth elements but the weak, mostly negative, Eu anomaly. This is at-

tributed to the distinct mineralization environment or fluid compositions in this area. 

sulfide chimneys, 49°39′E hydrothermal field, Southwest Indian Ridge, mid-ocean ridge, DY115-19 Chinese cruise 

 

Citation:  Tao C H, Li H M, Huang W, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest 

Indian Ridge and their geological inferences. Chinese Sci Bull, 2011, 56: 2828−2838, doi: 10.1007/s11434-011-4619-4 
 

 

 

In 1977 the first hydrothermal black smoker was discovered 

on the Galapagos Rift by scientists diving in a deep-sea 

submersible [1]. Since then, more than 170 hydrothermal 

fields have been found at different tectonic settings, such as 

the mid-ocean ridges, back-arc basins and intraplate vol-

canisms. Among them, more than 60% are distributed along 

mid-ocean ridges (MORs) [2]. By the end of last century, 

explorations of hydrothermal activities were mainly focused 

on the regions of the fast to intermediate spreading ridges in 

the Pacific Ocean and the slow spreading ridges in the At-

lantic Ocean, few investigations along the ultraslow-spreading 

Southwest Indian ridge (SWIR) and the Gakkel Ridge in the 

Arctic [3].  

The topographic, tectonic features and magmatic activities 
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along mid-ocean ridges are controlled by the spreading rate 

[4,5]. The full spreading rate of the SWIR is about 1.3–  

1.6 cm/a [6], places SWIR in the category of ultraslow- 

spreading ridges with distinct topographic, tectonic, mag-

matic and hydrothermal features [7–11]. In recent years, 

geological and geophysical investigations on the SWIR 

have become a hot topic in the field of marine geology. 

However, reports on the hydrothermal activity are rare. 

During the Fuji cruise in 1997, hydrothermal plumes were 

found at six locations in the east of the SWIR. In 1998 relict 

hydrothermal field “Mt. Jourdanne” was located at 27°51′S/ 

63°56′E during the Indoyo cruise. During R/V Knorr cruise 

162 in 2000, eight sites with hydrothermal anomalies were 

discovered in the west of the SWIR [12,13], and in the next 

year, a hydrothermal deposits site in a peridotite-hosted 

field was discovered between 10° and 16°E [14]. However, 

active hydrothermal vents were not documented until 2007. 

During January–May 2007, the Chinese research cruise 

DY115-19 discovered an active hydrothermal field at 

49°39′E/37°47′S in the SWIR. This cruise was supported by 

the China Ocean Mineral Resources Research and Devel-

opment Association (COMRA). The venting “black smoke” 

and biological communities were captured by the ABE 

(WHOI’s autonomous benthic explorer) (Figure 1). Samples 

of chimneys and basalts as well as hydrothermal faunas 

were obtained by TVG (television video guided grab). This 

field is also the first active hydrothermal field found along 

any ultraslow-spreading ridges, which provides a good op-

portunity to understand the hydrothermal circulation, min-

eralization, vent biota and heat/mass contribution there. We 

presented results of the mineral assemblages and geochem-

ical compositions of sulfide chimney samples obtained in 

the 49°39′E field. 

1  Geological setting 

The SWIR separates the African and Antarctic plates and 

extends from the east Rodriguez Triple Junction to the west 

Bouvet Triple Junction over a distance of about 8000 km, 

representing more than 10% of the total length of global 

ridges. It has a very slow spreading rate, and at some seg-

ments, spreading is oblique with respect to the direction of 

plate motion. The ridge axis is offset by sets of north-south 

trending transform faults, and is characterized by deep axial 

valleys and low magmatic budget [7]. Dick et al. [15]  

 

Figure 1  Seafloor in the study area. a, Sulfide chimney; b, altered basalt around the vent; c, stalked barnacles on the top of the vent; d, sea anemone. The 

photographs were taken by the ABE, WHOI’s autonomous benthic explorer, during the cruise DY115-19. Views are 4 m × 4 m. 
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suggested that the SWIR has the characters of both slow and 

ultraslow-spreading ocean ridges and is an example of a 

transitional ridge between slow and ultraslow. The crust is 

around 4 km thick, which is much thinner than the average 

thickness of the ocean crust (about 7 km [2]). However, the 

crustal thickness is not homogeneous at the SWIR. The pla-

gioclase-hosted and olivine-hosted melt inclusions from the 

sections between 70°E and 49°E on the SWIR indicate the 

high melting fractions of mantle, shallow ridge axis depth 

and thick crust [16]. Cannat et al. [17] identified three types 

of seafloor at the SWIR as volcanic seafloor, smooth sea-

floor and corrugated seafloor. Among these, smooth terrain 

appears specific to ultraslow-spreading ridges and the mode 

of seafloor spreading may be analogous to processes at the 

ocean-continent transition of continental margins. The rocks 

exposed on the seafloor are mainly basalts, with some gab-

bros, pyroxenites and serpentinized peridotites [12]. Sauter 

et al. [18,19] and Cannat et al. [20] discussed the melt sup-

ply processes based on gravitational, magnetic and petro-

logical data. They found that at the ultraslow-spreading 

ridges, the melt may migrate horizontally along the axis and 

mantle upwelling may be focus at some specific sections 

[18–20]. Moreover, the ridge spreading and hydrothermal 

activities may interact with hot spots such as the Marion, 

Bouvet, Del Cano and Crozet plateau [21,22]. 

The 49°39′E hydrothermal field is located at the west end 

of the east-west trending segment 28 of the SWIR between 

Indomed and Gallieni FZ (Figure 2). The axial depth along 

this segment varies from 1500 m at the southern end to 

2800 m at the northern. Crustal thickness is up to 9 km [23], 

much thicker than in the vicinity (61°–63°E) where is about 

4–5 km [24]. This implies that melt supply is abundant at 

this segment and magma provides enough heat for the hy-

drothermal activity. The seafloor surrounding the hydro-

thermal field is a dramatic relief, with a great deal of steep 

slope and lack of sediments. The vent is located at a high 

mound on the south-east wall of the ridge valley, at a depth 

of 2755 m. It is the junction point of the ridge valley and a 

small transform fault with local fissures.  

2  Samples and methods 

Two sulfide chimney samples, TVG4-1 and TVG4-2 (Fig-

ure 3), were analyzed. Sample TVG4-1 is a chunk of chim-

ney edifice in irregular shape (about 22 cm in length and  

10 cm in average width) with clear channel in the central 

part. The inner zone is dark gray and dense and the outer 

zone is porous. Concentric layers surrounding the feeder 

channel can be clearly observed on the cross or vertical pro-

file. The out surface is covered by brown or black materials 

as a result of iron-hydroxidation. Sample TVG4-2 is a piece 

of dark gray sulfide crust with tiny fluid pores on the sur-

face. Its inner part is denser than the outer. 

Polished sections were prepared for petrographic exami-

nation. 11 subsamples were taken from the inner to outer 

portion along a profile across the chimney and they were 

named as 4-1-1 to 4-1-11 (Figure 3). Minerals of these sub-

samples were identified by Rigaku D/MAX 2400 X-ray 

diffraction (XRD) at the Institute of Geology and Geophys-

ics, Chinese Academy of Sciences, Beijing. The major and 

minor elements were analyzed at the Quality Supervision 

and Testing Center of Exploration Geochemistry, Ministry 

of Land and Resources, Langfang, and the State Key Labor-    

atory of Ore Deposit Geochemistry, Institute of Geochemis-

try, Chinese Academy of Sciences, Guiyang. Ag, Cu, Mo, 

Ni, Pb, Sb, Zn, U and Rare Earth Elements (REEs) were 

quantified by Inductively Coupled Plasma Mass Spectrometry  

 

Figure 2  Location of the 49°39′E hydrothermal field (data from Baker et al. [10] and China Ocean Cruise). 
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Figure 3  Pictures of sulfide chimney samples. a, TVG4-1; b, TVG4-2. 

(ICP-MS). Fe and Al were determined by Inductively Cou-

pled Plasma Optical Emission Spectrometry (ICP-OES). Si 

and Au were determined by X-ray Fluorescence (XRF) and 

Flameless Atomic Absorption Spectrometry (AAS), respec-

tively. 

3  Results and discussion 

3.1  Mineralogy and textures 

Early studies suggested that mineral paragenesis and tex-

tures are important to identify multiple stages of mineraliza-

tion and understand the evolution of chimney edifices [25]. 

Typical models for the growth of sulfide chimneys have 

been described for several submarine hydrothermal fields. 

When the hot, acidic and Ca-rich hydrothermal fluids ema-

nating from the vents react with cold SO4
2−-rich seawater, 

sulfates, particularly anhydrite are precipitated (as well as 

sulfides like pyrrhotite, colloid from pyrite and marcasite) 

in marginal portions of the edifices. The new formed anhy-

drite walls restrict the seawater mixing with the hot fluid. 

Then chalcopyrite, pyrite and sphalerite precipitated at 

higher temperatures (>250°C), often being confined to the 

central portions of the chimneys [26–29]. With the growth 

of the chimneys, the temperature in the outer portion of the 

edifices decreases. When it is low enough, anhydrite begins to  

dissolve and the chimneys will collapse. 

Mineral composition obtained by XRD and petrographic 

textures (Figures 4 and 5) show concentric mineral zones 

around the fluid channel in the samples TVG4-1 and TVG4-2. 

The interior of the chimney walls consist mainly of chalco-

pyrite, with a few of pyrite and sphalerite. Towards the in-

termediate portion, pyrite becomes the dominant mineral, 

with chalcopyrite and sphalerite becoming minor minerals. 

For the outer wall, the main sulfides are pyrite and sphalerite, 

with chalcopyrite as the minor minerals. Towards the outer 

margin of chimney wall, the mineral grains also become 

small and irregular in form. In addition, interstices among 

the minerals become abundant. Sporadically, fine and irreg-

ular barite and amorphous silica occur within interstices of 

the major minerals, such as pyrite and chalcopyrite. Ac-

cording to the chimney-growth model provided by Graham 

et al. [30], the mineral assemblages found in sample TVG-4 

reflect the high maturity of its source chimney and hydro-

thermal field. 

From microscopic observation of the polished optical 

sections of sample TVG4-1 (Figure 5), fine grain (usually 

<0.05 mm) texture was observed, and the grains are crystals  

 

Figure 4  X-ray diffraction patterns for the two samples collected from 

the sulfide chimney. a, TVG4-1-1; b, TVG4-1-11. py, Pyrite; ma, marcasite; 

cp, chalcopyrite. 
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Figure 5  Textural features of sulfide chimney samples. py, Pyrite; cp, chalcopyrite; sp, sphalerite.  

of pyrite, chalcopyrite and sphalerite in subhedral and 

xenomorphic unequigranular crystal forms. Pyrite is the 

most abundant mineral and as the main framework of the 

samples. Several pyrite crystals, anhedral, subhedral, euhe-

dral cubic crystals, are present, arranged in irregular lines or 

dendritic clusters (Figure 5a). Chalcopyrite occurs as the 

dominant mineral only in the interior wall, while in the 

middle and outer part of the chimney, chalcopyrite and 

sphalerite occur irregularly within the inter-grain spaces of 

pyrite. Replacement of chalcopyrite by sphalerite, or on the 

contrast, are common, and remnants of such replacement 

were identified (Figure 5c,d). Thin pyrite laminars or layers 

were also observed under the microscope (Figure 5b) and 

very slim chalcopyrite layers occasionally fulfilled the fis-

sure of pyrite layers. 

3.2  Geochemistry  

Major and minor compositions of the bulk analyses of sam-

ples TVG4-1 and TVG4-2 are presented in Table 1. 

Because of the different tectonic settings, base rocks and 

fluid compositions, the sulfide chimneys recovered from 

different hydrothermal fields demonstrate different miner-

alogical and geochemical features. Seven other hydrother-

mal fields, including the TAG and Logatchev fields on the 

Mid-Atalntic Ridge (MAR), the 21°N and 7°24′S field on 

the East Pacific Rise (EPR), the MESO field on the Central 

Indian Ridge (CIR), the Mt. Jourdanne field on the SWIR 

and the Jade field in the Okinawa Trough were selected for 

comparison (Table 2). The chimney samples in this study 

contain high Fe concentrations (average 45.6 wt%) and 

generally low Cu and Zn contents (averages 2.83 wt% and  

3.28 wt%, respectively), which are similar to the chimneys 

from other hydrothermal fields and indicating promising 

resource potential. The noble metals, Au and Ag, average 

contents are 2.0 ppm and 70.2 ppm, respectively, higher 

than those found in typical sediment-starved hydrothermal 

fields along mid-ocean ridges such as the MESO field on 

the CIR, the 7°24′S field on the EPR, and the TAG field on 

the MAR. However, they are similar to those found in the 

Mt. Jourdanne field on the SWIR, and lower than the Jade 

field in the back-arc basin Okinawa Trough. The high pre-

cious metal concentrations of the 49°39′E and the Mt. Jour-

danne field on the SWIR may be a characteristic feature of 

metalliferous sulfide deposits on ultraslow-spreading ridge. 

The sample TVG4-1 was selected for a detailed study of 

the growth process of the chimneys. The elements measured 

were divided into three groups according to the gradient of 

elemental contents from the interior to the outer portion. 

The first group, without an evident gradient, includes Fe, Cr, 

Ni, Sb, As and Mo. The second group consists of Zn, Pb, 

Cd, Au, Ag and U with an increasing trend of concentra-

tions moving outwards. The elements Cu and Co with high 

contents in the interior and low on the outer surface were 

the third group (Figure 6). 

The positive correlation between Cr, Ni and Fe (r = 0.87 

and 0.80; n = 11) indicates that Cr and Ni occur in the pyrite 

crystals or other minerals associated with pyrite. The all 

values of correlation coefficients for Sb, As, Mo with Fe or 

Cu were all lower than 0.3, which indicates that these ele-

ments may disperse in the sulfide samples. Si has a signifi-

cant negative correlation with Fe (r = −0.95; n = 11). There 

are significant positive correlations among Zn, Pb, Cd, Au 

and Ag. These elements generally enrich in the outer por-

tions of the chimney wall because their source minerals, 

such as sphalerite and galena, often precipitate at relatively  
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Table 1  Bulk geochemical compositions of sulfide chimney samples 

  
Fe2O3  

(wt%) 

Cu 

(wt%) 

Zn 

(wt%) 

Al2O3 

(wt%) 

SiO2 

(wt%) 

Au 

(ppm) 

Ag 

(ppm) 

As 

(ppm) 

Cd 

(ppm) 

Co 

(ppm) 

Cr 

(ppm) 

Mo 

(ppm) 

Ni 

(ppm) 

Pb 

(ppm) 

Sb 

(ppm) 

U 

(ppm) 

TVG4-1 pyrite-chalcopyrite                

Inner 
TVG4-1-1 51.5 5.82 2.15 0.47 0.92 1.8 55.8 87.5 81.4 234.2 4.0 35.3 2.0 53.5 3.35 0.34 

TVG4-1-2 37.0 1.11 1.05 1.10 4.70 0.8 24.6 77.7 56.0 198.6 5.1 14.5 0.6 48.6 2.88 0.06 

(2 cm  

interval) 

TVG4-1-3 56.4 0.75 0.38 0.24 0.58 1.6 15.6 89.0 11.2 413.7 9.0 19.1 3.3 72.0 3.40 0.26 

TVG4-1-4 56.4 2.06 0.61 0.28 1.38 1.0 25.7 91.0 19.9 227.7 11.4 22.3 2.8 85.5 4.15 0.23 

TVG4-1-5 39.9 0.54 0.40 0.72 3.42 0.8 14.4 60.1 16.7 176.4 4.8 13.8 1.6 58.6 3.04 0.01 

TVG4-1-6 40.5 0.44 0.35 0.45 3.15 0.5 12.3 66.5 13.3 231.9 4.1 17.8 0.3 96.6 3.12 0.01 

TVG4-1-7 55.9 0.68 0.32 0.23 0.78 1.0 13.9 92.5 7.5 263.5 14.1 21.6 4.6 106.0 3.05 0.32 

TVG4-1-8 49.8 0.77 9.29 0.22 − 3.9 122.6 86.5 315.9 105.0 8.6 25.6 3.7 183.0 9.15 0.49 

TVG4-1-9 52.3 0.22 7.86 0.14 1.98 2.4 115.6 36.0 182.7 63.5 13.0 43.2 3.7 213.5 3.40 1.10 

Outer 
TVG4-1-10 37.1 0.42 2.53 0.58 5.25 2.4 56.0 65.0 144.6 73.9 3.9 13.2 0.3 86.7 3.92 0.61 

TVG4-1-11 35.6 0.48 4.66 0.45 4.96 2.0 97.4 62.7 214.9 52.3 3.2 26.6 0.9 155.3 4.42 0.66 

 Average 46.6 1.21 2.69 0.44 2.71 1.7 50.4 74.0 96.7 185.5 7.4 23.0 2.2 105.4 4.00 0.37 

TVG4-2  pyrite-chalcopyrite                

(2 cm  

interval) 

Inner 

TVG4-2-1 39.7 17.13 0.97 0.29 1.83 0.9 66.0 12.5 29.9 194.3 2.3 19.6 2.2 46.8 2.10 0.09 

TVG4-2-2 47.4 2.78 3.90 0.30 3.39 1.5 62.6 79.5 114.0 568.8 2.6 24.2 3.1 148.2 2.64 0.21 

TVG4-2-3 43.1 3.37 6.09 0.43 2.54 2.9 121.9 95.2 187.2 232.8 2.6 24.2 2.7 181.2 3.89 0.27 

TVG4-2-4 42.6 3.69 6.49 0.41 1.81 3.9 143.1 75.2 209.1 154.3 2.5 27.7 1.7 155.3 3.95 0.20 

TVG4-2-5 45.8 2.05 4.39 0.27 0.76 3.5 139.0 56.8 148.5 294.1 3.3 61.9 4.1 184.6 3.25 0.97 

Average 43.7 5.80 4.37 0.34 2.07 2.5 106.5 63.8 137.7 288.9 2.7 31.5 2.8 143.2 3.17 0.35 

Outer Average 45.6 2.83 3.28 0.41 2.47 2.0 70.2 70.4 111.2 222.0 5.7 26.0 2.4 118.7 3.70 0.36 

“−” Not detected. 

Table 2  Comparison of major elemental compositions of sulfide from selected hydrothermal fields 

 
Waterdepth 

(m) 

Spreading half- 

rate (cm/a) 

Mineral-

ogy 

Cu 

(wt%) 

Fe 

(wt%) 

Zn 

(wt%) 

Pb 

(wt%) 

Au 

(ppm) 

Ag 

(ppm) 

Co 

(ppm) 

Ni 

(ppm) 

Cd 

(ppm) 

Mo 

(ppm) 

Data  

sources 

Southwest Indian Ocean              

Study area 2750 0.6 py 2.83 45.6 3.28 0.01 2.0 70.2 222.0 2.4 111.2 26.0 this article 

Mt. Jourdanne field 2940 0.7 sph 2.72 13.88 25.66 1.65 5.6 1021 − 7.67 1204 − [13] 

Central Indian Ocean              

MESO zone 2850 2.5 py, cp 29.4 27.6 0.5 0.03 0.7 55.3 583.7 127.8 23.5 300.0 [25] 

   py, mc 6.2 37.2 0.8 0.05 0.6 22.4 1089.6 70.4 34.2 156.2 [25] 

Pacific              

21°N, EPR 2600 3.0 chimney 0.2 2.0 1.1 0.05 <0.1 6.0 29.2 2.2 40.0 1.0 [25] 

7°24′S, EPR 2740 7.7 
sph, py 1.1 22.0 31.0 0.18 <0.2 118.0 4.1 4.1 840.0 45.0 [25] 

py 0.33 40.34 2.85 0.083 0.043 40 214 38 73 22 [38] 

   py, cp 10.53 34.46 2.23 0.034 0.051 23.41 906 29 88 120 [38] 

Atlantic              

TAG, MAR 3620 1.3 chimney 13.4 21.2 0.6 0.01 0.5 13.0 531.0 48.0 17.0 118.0 [25] 

Logatchev, MAR 2600–3400 1.3 
py, cp 12.8 37.3 1.4 0.02 1.4 38.0 75.0 − 38.0 144.0 [25] 

chimney 23.1 28.6 7.85 0.022 − − 778 <20 − − [39] 

Okinawa Trough              

Jade site 1340  sph, cp 4.41 11.50 27.4 12.00 8.60 11300 − − 1300 − [40] 

    5.39 10.20 33.6 4.3 0.41 4100 − − 2000 − [40] 

“−” Not detected; Py, pyrite; sph, sphalerite; cp, chalcopyrite; mc, marcasite.  
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low temperatures during the late or the waning stage of hy-

drothermal activity. According to Münch et al., the signifi-

cant positive correlations of Cd, Au, Ag with Pb in the sul-

fides from the Mt. Jourdanne field can be attributed to re-

mobilization under lower temperature conditions, possibly 

less than 100°C [13]. U is also rich in the outer margin sec-

tion (up to 1.1 ppm). Because the content of U in the sea-

water (about 3.3 ppm), is much higher than that of hydro-

thermal fluid, the element U in the outer margin of chimney 

wall may mainly come from the seawater. The interior por-

tions of chimneys are characterized by high Cu concentra-

tions because they mainly consist of chalcopyrite, a mineral 

phase precipitating under higher temperature conditions. 

The correlation coefficients for Co with Cu is 0.24 (n = 11). 

According to Hekinian and Fouquet, a partial enrichment in 

Co can be attributed to late-stage leaching of Fe from 

Co-bearing pyrite, thus relatively concentrating residual Co 

[31]. The enrichment of Co in the interior of our chimney 

samples may be caused by similar processes, but not by 

precipitation of chalcopyrite. 

3.3  REEs 

The REE geochemistry of metalliferous sulfides is generally 

considered as an indicator for the source and evolution  

processes of hydrothermal fluids. The REE concentrations 

and corresponding parameters for 16 subsamples from 

chimney samples TVG4-1 and TVG4-2 are presented in 

Table 3. There are some similarities between the REE geo-

chemistry of samples TVG4-1 and TVG4-2. The REE con-

centrations (ΣREE) are low in both samples, varying be-

tween 0.2 and 3.66 ppm. ΣREE generally increase in pro-

files across the chimney wall from the dense interior por-

tions to the loose outer ones, reflecting the different mixing 

proportions of the hydrothermal fluid with seawater [32]. 

The ratios of light rare earth elements (LREEs) to heavy 

rare earth elements (HREEs) vary between 1.29 and 6.46, 

showing the enrichment of LREEs. The chondrite-normalized 

patterns also show LREEs enrichment (Figure 7), with the 

variable (La/Yb)N 3.17 and 24.80. (La/Sm)N and (Gd/Yb)N 

vary between 2.03 and 7.04 and between 0.54 and 2.31,  

Table 3  REE concentrations (ppm) of metalliferous sulfide chimney samples  

 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 2-1 2-2 2-3 2-4 2-5 Average 

La 0.260 0.136 0.250 0.515 0.154 0.109 0.235 0.395 0.610 0.130 0.108 0.038 0.034 0.095 0.054 0.081 0.200 

Ce 0.550 0.286 0.450 1.050 0.237 0.221 0.650 0.950 1.550 0.252 0.196 0.067 0.069 0.273 0.157 0.230 0.449 

Pr 0.050 0.050 0.055 0.080 0.032 0.029 0.165 0.070 0.130 0.035 0.024 0.008 0.008 0.018 0.014 0.019 0.049 

Nd 0.200 0.101 0.205 0.255 0.108 0.087 0.550 0.240 0.525 0.117 0.089 0.039 0.030 0.060 0.047 0.067 0.170 

Sm 0.056 0.025 0.047 0.046 0.031 0.019 0.055 0.041 0.097 0.027 0.021 0.009 0.008 0.018 0.013 0.025 0.034 

Eu 0.011 0.007 0.010 0.011 0.006 0.006 0.008 0.009 0.042 0.007 0.006 0.003 0.002 0.003 0.003 0.006 0.009 

Gd 0.029 0.020 0.041 0.040 0.023 0.017 0.035 0.035 0.092 0.022 0.022 0.004 0.005 0.011 0.004 0.012 0.026 

Tb 0.006 0.003 0.006 0.006 0.004 0.003 0.008 0.005 0.013 0.003 0.005 0.003 0.001 0.002 0.001 0.002 0.004 

Dy 0.035 0.023 0.039 0.029 0.022 0.022 0.045 0.026 0.068 0.020 0.030 0.008 0.004 0.014 0.005 0.011 0.025 

Ho 0.007 0.004 0.006 0.005 0.006 0.004 0.007 0.005 0.013 0.006 0.008 0.001 0.001 0.003 0.002 0.003 0.005 

Er 0.022 0.016 0.018 0.023 0.014 0.014 0.015 0.022 0.063 0.013 0.022 0.003 0.004 0.009 0.003 0.008 0.017 

Tm 0.004 0.002 0.003 0.003 0.002 0.002 0.004 0.003 0.005 0.002 0.003 0.003 0.001 0.002 0.001 0.002 0.003 

Yb 0.018 0.015 0.016 0.014 0.013 0.014 0.021 0.015 0.044 0.015 0.023 0.003 0.006 0.007 0.006 0.010 0.015 

Lu 0.004 0.002 0.004 0.003 0.001 0.013 0.005 0.003 0.007 0.002 0.004 0.003 0.001 0.003 0.001 0.003 0.004 

Y 0.235 0.164 0.240 0.180 0.155 0.138 0.225 0.155 0.400 0.156 0.228 0.023 0.029 0.100 0.049 0.086 0.160 

LREE 1.127 0.605 1.017 1.957 0.568 0.471 1.663 1.705 2.954 0.568 0.444 0.162 0.151 0.467 0.288 0.427 0.911 

HREE 0.360 0.249 0.373 0.303 0.240 0.227 0.365 0.269 0.705 0.239 0.345 0.049 0.052 0.151 0.072 0.135 0.258 

LREE/HREE 3.13 2.43 2.73 6.46 2.37 2.07 4.56 6.34 4.19 2.38 1.29 3.33 2.90 3.09 4.00 3.16  

ΣREE 1.49 0.85 1.39 2.26 0.81 0.70 2.03 1.97 3.66 0.81 0.79 0.21 0.20 0.62 0.36 0.56  

δ Eu 0.83 0.96 0.70 0.78 0.69 1.02 0.56 0.73 1.36 0.88 0.85 1.40 0.97 0.65 1.27 1.06  

δ Ce 1.16 0.83 0.92 1.25 0.81 0.95 0.79 1.38 1.32 0.90 0.93 0.96 1.01 1.59 1.37 1.43  

(La/Yb)N 9.74 6.11 10.53 24.80 7.99 5.25 7.54 17.75 9.35 5.84 3.17 10.11 3.82 9.15 6.07 5.71  

(La/Sm)N 2.92 3.42 3.35 7.04 3.12 3.61 2.69 6.06 3.96 3.03 3.24 2.78 2.67 3.32 2.61 2.03  

(Gd/Yb)N 1.30 1.08 2.07 2.31 1.43 0.98 1.34 1.88 1.69 1.18 0.77 1.13 0.67 1.27 0.54 1.02  
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Figure 6  Variation in geochemical composition of sulfide chimney samples across the chimney wall.  
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Figure 7  REE abundance patterns normalized to chondrite for some 

sulfide chimney samples. The chondritic REE values are given by Boynton 

(1984). 

respectively, indicating the higher degree fractionation among 

the LREEs than among the HREEs. 

The pattern of LREEs enrichment with significant posi-

tive Eu anomalies is common for the hydrothermal fluids 

from the vent fields hosted on a basaltic or ultramafic rock 

substratum along MORs [33–35]. REEs in the sulfides 

mainly come from the fluids and thus inherit the patterns of 

the fluids. The sulfide samples show similar LREEs en-

richment patterns, but with weakly negative anomalies for 

most samples (δEu: 0.56–1.40), which is different from the 

typical pattern found on the sediment-starved ridge. At pre-

sent, our knowledge about the hydrothermal activities on 

the ultraslow-spreading ridges is still very poor and fluid 

samples were not available in the study area. In this article 

we have suggested some possible processes to interpret the 

REEs pattern found in the sulfides of the study area, based 

on the limited information.  

Firstly, if the REE compositions of the hydrothermal 

fluid at the 49°39′E field is similar to those of typical vent-

ing fluids with the pattern of LREEs enrichment and a posi-

tive Eu anomaly, depositional environment and processes 

should be the main factors to control the pattern of sulfides. 

Except for Eu and Ce, other REEs usually occur as trivalent 

cations. Eu mainly occurs as a divalent cation under the 

conditions of high temperatures (>250°C), high pressure 

and low oxidation state. However, under lower temperature 

conditions, it can occur as both divalent and trivalent cati-

ons. Therefore, under the high temperature conditions in the 

hydrothermal fluids, the larger ion radius of Eu
2+ (1.09) 

compared with Eu3+ (0.95) and the other trivalent REEs will 

restrict its entry into the precipitating sulfide crystals. This 

results in the negative Eu anomalies in the REE pattern. 

Evidences for this can often be found in the regular varia-

tions in Eu anomalies in the sulfides precipitated at different 

growth stages of chimneys under different temperature, Eh 

and pH conditions. For our samples TVG4-1 and TVG4-2, 

Eu anomalies varied irregularly along the profile across the 

chimney wall (Figure 8). Therefore, the influence of precip-

itation processes on the REE pattern of our sulfide samples 

may be limited and needs to be studied in detail in the fu-

ture.  

 

Figure 8  Varying patterns of δ Eu from TVG4-1 and TVG4-2. 

Secondly, the negative Eu anomalies of sulfides might be 

the results of complexity in hydrothermal fluids and water- 

rock interaction processes occurred in SWIR 49°39′E field. 

For example, due to the geological setting of the ultraslow- 

spreading ridge and mixed host rocks (basalt and ultramafic 

rock). Moreover, the REE patterns for hydrothermal fluids 

are not only dependent on the water-rock interaction, but 

also on the compositions and tectonic setting of the fluids. 

At the Pacmanus field in the Manus basin, the REE patterns 

of anhydrites are varied often with a weak or negative Eu 

anomaly [36], similar to the sulfides in our study area. Ac-

cording to Bach et al. [37], at the Pacmanus field, the main 

REE complexing ligands are F 

− and Cl− in the more oxida-

tive fluid because of the addition of gases like HF and SO2 

degassed from the mantle. This is different from the typical 

fields along MORs such as the TAG on the MAR, where 

REEs generally complex with Cl− and OH−. The distinct 

REE patterns for anhydrite can be attributed to the different 

complexation behavior, which is sensitive to conditions 

such as temperature, pressure, pH and Eh. The characteristic 

positive Eu anomaly for the most hydrothermal fluids 

should be attributed to the intense complexation of Eu2+ 

with Cl− at high temperatures. At lower temperatures, the 

similar complexation behavior of Eu with other REEs re-

sults in a flat pattern with the weak Eu anomalies for this 

study [36]. Due to lacking of data about the temperature of 

fluids or sulfide precipitating in this study area, we assume 

that similar model could be applied in our study area. 

However, more efforts are needed to find evidence for the 

influence of the temperature on the REE composition of 

sulfides in the field.  

4  Conclusions 

The spreading rate is known to influence the location, extent 

and features of sulfide deposits on MORs. This paper re-

ported our study on the first sulfide chimney samples ob-

tained from the SWIR 49°39′E field, which is the first one 

found on the ultraslow-spreading ridge. The main results of 

our studies on mineral and geochemical compositions of 
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sulfides are presented as follows. 

(1) The sulfide chimneys in the SWIR 49°39′E field con-

sist mainly of pyrite and chalcopyrite and are characterized 

by very high metal content. Average Cu and Fe contents are 

2.83% and 45.6% respectively. Concentrations of Au and 

Ag in the studied samples are about 2.0 ppm and 70.2 ppm 

respectively, higher than those find in other well known 

hydrothermal fields along the mid-ocean ridges. 

(2) The studied chimneys show a concentric mineral 

zoning around the axial channel. The interior consist mainly 

of chalcopyrite, with pyrite and sphalerite as minor minerals. 

In the intermediate portion, pyrite becomes the dominant 

mineral, with chalcopyrite and sphalerite as minor constitu-

ents. For the outer wall, the main sulfides are pyrite and 

sphalerite, with chalcopyriteas minor constituent. From the 

inner to the outer, the mineral grains become smaller, their 

crystal forms become imperfect and interstices among min-

erals become abundant. These features are similar to those 

chimney edifices found from EPR and MAR. 

(3) The REE geochemistry is characterized by LREE- 

enrichment and a weak, mostly negative, Eu anomaly. This 

is different from the sulfide recovered from typical fields 

along sediment-starved MORs. This might attribute to the 

distinct mineralization environment and fluid compositions 

in this area. 
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