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Abstract. The promises inherent in users coming together to form data
sharing network communities, bring to the foreground new problems for-
mulated over such dynamic, ever growing, computing, storage, and net-
working infrastructures. A key open challenge is to harness these highly
distributed resources toward the development of an ultra scalable, effi-
cient search engine. From a technical viewpoint, any acceptable solution
must fully exploit all available resources dictating the removal of any
centralized points of control, which can also readily lead to performance
bottlenecks and reliability/availability problems. Equally importantly,
however, a highly distributed solution can also facilitate pluralism in in-
forming users about internet content, which is crucial in order to preclude
the formation of information-resource monopolies and the biased visibil-
ity of content from economically-powerful sources. To meet these chal-
lenges, the work described here puts forward MINERVA∞, a novel search
engine architecture, designed for scalability and efficiency. MINERVA∞
encompasses a suite of novel algorithms, including algorithms for creating
data networks of interest, placing data on network nodes, load balancing,
top-k algorithms for retrieving data at query time, and replication algo-
rithms for expediting top-k query processing. We have implemented the
proposed architecture and we report on our extensive experiments with
real-world, web-crawled, and synthetic data and queries, showcasing the
scalability and efficiency traits of MINERVA∞.

1 Introduction

The peer-to-peer (P2P) approach facilitates the sharing of huge amounts of data
in a distributed and self-organizing way. These characteristics offer enormous
potential benefit for the development of internet-scale search engines, power-
ful in terms of scalability, efficiency, and resilience to failures and dynamics.
Additionally, such a search engine can potentially benefit from the intellectual
input (e.g., bookmarks, query logs, click streams, etc.) of a large user com-
munity participating in the sharing network. Finally, but perhaps even more
importantly, a P2P web search engine can also facilitate pluralism in informing
users about internet content, which is crucial in order to preclude the forma-
tion of information-resource monopolies and the biased visibility of content from
economically powerful sources.
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Our challenge therefore was to exploit P2P technology’s powerful tools for
efficient, reliable, large-scale content sharing and delivery to build a P2P web
search engine. We wish to leverage DHT technology and build highly distributed
algorithms and data infrastructures that can render P2P web searching feasible.

The crucial challenge in developing successful P2P Web search engines is
based on reconciling the following high-level, conflicting goals: on the one hand,
to respond to user search queries with high quality results with respect to preci-
sion/recall, by employing an efficient distributed top-k query algorithm, and, on
the other hand, to provide an infrastructure ensuring scalability and efficiency
in the presence of a very large peer population and the very large amounts of
data that must be communicated in order to meet the first goal.

Achieving ultra scalability is based on precluding the formation of central
points of control during the processing of search queries. This dictates a solution
that is highly distributed in both the data and computational dimensions. Such a
solution leads to facilitating a large number of nodes pulling together their compu-
tational (storage, processing, and communication) resources, in essence increasing
the total resources available for processing queries. At the same time, great care
must be exercised in order to ensure efficiency of operation; that is, ensure that en-
gaging greater numbers of peers does not lead to unnecessary high costs in terms
of query response times, bandwidth requirements, and local peer work.

With this work, we put forward MINERVA∞, a P2P web search engine
architecture, detailing its key design features, algorithms, and implementation.
MINERVA∞ features offer an infrastructure capable of attaining our scalability
and efficiency goals. We report on a detailed experimental performance study
of our implemented engine using real-world, web-crawled data collections and
queries, which showcases our engine’s efficiency and scalability. To the authors’
knowledge, this is the first work that offers a highly distributed (in both the
data dimension and the computational dimension), scalable and efficient solution
toward the development of internet-scale search engines.

2 Related Work

Recent research on structured P2P systems, such as Chord [17], CAN [13], Skip-
Nets [9] or Pastry [15] is typically based on various forms of distributed hash
tables (DHTs) and supports mappings from keys to locations in a decentralized
manner such that routing scales well with the number of peers in the system.
The original architectures of DHT-based P2P networks are typically limited to
exact-match queries on keys. More recently, the data management community
has focused on extending such architectures to support more complex queries
[10,8,7]. All this related work, however, is insufficient for text queries that con-
sist of a variable number of keywords, and it is absolutely inappropriate for
full-fledged Web search where keyword queries should return a ranked result list
of the most relevant approximate matches [3].

Within the field of P2P Web search, the following work is highly related to our
efforts. Galanx [21] is a P2P search engine implemented using the Apache HTTP
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server and BerkeleyDB. The Web site servers are the peers of this architecture;
pages are stored only where they originate from. In contrast, our approach leaves
it to the peers to what extent they want to crawl interesting fractions of the Web
and build their own local indexes, and defines appropriate networks, structures,
and algorithms for scalably and efficiently sharing this information.

PlanetP [4] is a pub/sub service for P2P communities, supporting content
ranking search. PlanetP distinguishes local indexes and a global index to describe
all peers and their shared information. The global index is replicated using a
gossiping algorithm. This system, however, appears to be limited to a relatively
small number of peers (e.g., a few thousand).

Odissea [18] assumes a two-layered search engine architecture with a global
index structure distributed over the nodes in the system. A single node holds the
complete, Web-scale, index for a given text term (i.e., keyword or word stem).
Query execution uses a distributed version of Fagin’s threshold algorithm [5].
The system appears to create scalability and performance bottlenecks at the
single-node where index lists are stored. Further, the presented query execution
method seems limited to queries with at most two keywords. The paper actually
advocates using a limited number of nodes, in the spirit of a server farm.

The system outlined in [14] uses a fully distributed inverted text index, in
which every participant is responsible for a specific subset of terms and man-
ages the respective index structures. Particular emphasis is put on minimizing
the bandwidth used during multi-keyword searches. [11] considers content-based
retrieval in hybrid P2P networks where a peer can either be a simple node or a
directory node. Directory nodes serve as super-peers, which may possibly limit
the scalability and self-organization of the overall system. The peer selection for
forwarding queries is based on the Kullback-Leibler divergence between peer-
specific statistical models of term distributions.

Complementary, recent research has also focused into distributed top-k query
algorithms [2,12] (and others mentioned in these papers which are straightfor-
ward distributed versions/extensions of traditional centralized top-k algorithms,
such as NRA [6]). Distributed top-k query algorithms are an important com-
ponent of our P2P web search engine. All these algorithms are concerned with
the efficiency of top-k query processing in environments where the index lists
for terms are distributed over a number of nodes, with index lists for each term
being stored in a single node, and are based on a per-query coordinator which
collects progressively data from the index lists. The existence of a single node
storing a complete index list for a term undoubtedly creates scalability and ef-
ficiency bottlenecks, as our experiments have showed. The relevant algorithms
of MINERVA∞ ensure high degrees of distribution for index lists’ data and
distributed processing, avoiding central bottlenecks and boosting scalability.

3 The Model

In general, we envision a widely distributed system, comprised of great numbers
of peers, forming a collection with great aggregate computing, communication,
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and storage capabilities. Our challenge is to fully exploit these resources in order
to develop an ultra scalable, efficient, internet-content search engine.

We expect that nodes will be conducting independent web crawls, discover-
ing documents and computing scores of documents, with each score reflecting
a document’s importance with respect to terms of interest. The result of such
activities is the formation of index lists, one for each term, containing relevant
documents and their score for a term. More formally, our network consists of a set
of nodes N , collectively storing a set D of documents, with each document having
a unique identifier docID, drawn from a sufficiently large name space (e.g., 160
bits long). Set T refers to the set of terms. The notation |S| denotes the cardi-
nality of set S. The basic data items in our model are triplets of the form (term,
docID, score). In general, nodes employ some function score(d, t) : D → (0, 1],
which for some term t, produces the score for document d. Typically, such a
scoring function utilizes tdf*idf style statistical metadata.

The model is based on two fundamental operations. The Post(t, d, s) op-
eration, with t ∈ T , d ∈ D, and s ∈ (0, 1], is responsible for identifying a
network node and store there the (t, d, s) triplet. The operation Query(Ti, k) :
return(Lk), with Ti ⊆ T , k an integer, and Lk = {(d, T otalScore(d)) : d ∈
D, TotalScore(d) ≥ RankKscore}, is a top-k query operation. TotalScore(d)
denotes the aggregate score for d with respect to terms in Ti. Although there
are several possibilities for the monotonic aggregate function to be used, we em-
ploy summation, for simplicity. Hence, TotalScore(d) =

∑
t∈Ti

score(d, t). For a
given term, RankKscore refers to the k-th highest TotalScore, smin (smax) refers
to the minimum (maximum) score value, and, given a score s, next(s) (prev(s))
refers to the score value immediately following (preceding) s.

All nodes are connected on a global network G. G is an overlay network,
modeled as a graph G = (N, E), where E denotes the communication links
connecting the nodes. E is explicitly defined by the choice of the overlay network;
for instance, for Chord, E consists of the successor, predecessor, and finger table
(i.e., routing table) links of each node.

In addition to the global network G, encompassing all nodes, our model
employs term-specific overlays, coined Term Index Networks (TINs). I(t) denotes
the TIN for term t and is used to store and maintain all (t, d, s) items. TIN I(t)
is defined as I(t) = (N(t), E(t)), N(t) ⊆ N . Note that nodes in N(t) have
in addition to the links for participating in G, links needed to connect them
to the I(t) network. The model itself is independent of any particular overlay
architecture.

I(t).n(si) defines the node responsible for storing all triplets (t, d, s) for which
score(d, t) = s = si. When the context is well understood, the same node is
simply denoted as n(s).

4 Design Overview and Rationale

The fundamental distinguishing feature of MINERVA∞ is its high distribu-
tion both in the data and computational dimensions. MINERVA∞ goes far
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beyond the state of the art in distributed top-k query processing algorithms,
which are based on having nodes storing complete index lists for terms and
running coordinator-based top-k algorithms [2,12]. From a data point of view,
the principle is that the data items needed by top-k queries are the triplets
(term, docID, score) for each queried term (and not the index lists containing
them). A proper distributed design for such systems then should appropriately
distribute these items controllably so to meet the goals of scalability and effi-
ciency. Thus, data distribution in MINERVA∞ is at the level of this, much finer
data grain. From a system’s point of view, the design principle we follow is to
organize the key computations to engage several different nodes, with each node
having to perform small (sub)tasks, as opposed to assigning single large task
to a single node. These design choices, we believe, will greatly boost scalability
(especially under skewed accesses).

Our approach to materializing this design relies on the employment of the
novel notion of Term Index Networks (TINs). TINs may be formed for every term
in our system, and they serve two roles: First, as an abstraction, encapsulating
the information specific to a term of interest, and second, as a physical mani-
festation of a distributed repository of the term-specific data items, facilitating
their efficient and scalable retrieval. A TIN can be conceptualized as a virtual
node storing a virtually global index list for a term, which is constructed by the
sorted merging of the separate complete index lists for the term computed at dif-
ferent nodes. Thus, TINs are comprised of nodes which collectively store different
horizontal partitions of this global index list. In practice, we expect TINs to be
employed only for the most popular terms (a few hundred to a few thousand)
whose accesses are expected to form scalability and performance bottlenecks.

We will exploit the underlying network G′s architecture and related algo-
rithms (e.g., for routing/lookup) to efficiently and scalably create and maintain
TINs and for retrieving TIN data items, from any node of G. In general, TINs
may form separate overlay networks, coexisting with the global overlay G1.

The MINERVA∞ algorithms are heavily influenced by the way the well-
known, efficient top-k query processing algorithms (e.g., [6]) operate, looking
for docIDs within certain ranges of score values. Thus, the networks’ lookup(s)
function, will be used using scores s as input, to locate the nodes storing docIDs
with scores s.

A key point to stress here, however, is that top-k queries Q({t1, ..., tr}, k)
can originate from any peer node p of G, which in general is not a member of
any I(ti), i = 1, ..., r and thus p does not have, nor can it easily acquire, the
necessary routing state needed to forward the query to the TINs for the query
terms. Our infrastructure, solves this by utilizing for each TIN a fairly small
number (relative to the total number of data items for a term) of nodes of G

1 In practice, it may not always be necessary or advisable to form full-fledged separate
overlays for TINs; instead, TINs will be formed as straightforward extensions of G:
in this case, when a node n of G joins a TIN, only two additional links are added to
the state of n linking it to its successor and predecessor nodes in the TIN. In this
case, a TIN is simply a (circular) doubly-linked list.
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which will be readily identifiable and accessible from any node of G and can act
as gateways between G and this TIN, being members of both networks.

Finally, in order for any highly distributed solution to be efficient, it is cru-
cial to keep as low as possible the time and bandwidth overheads involved in the
required communication between the various nodes. This is particularly challeng-
ing for solutions built over very large scale infrastructures. To achieve this, the
algorithms of MINERVA∞ follow the principles put forward by top-performing,
resource-efficient top-k query processing algorithms in traditional environments.
Specifically, the principles behind favoring sequential index-list accesses to ran-
dom accesses (in order to avoid high-cost random disk IOs) have been adapted in
our distributed algorithms to ensure that: (i) sequential accesses of the items in
the global, virtual index list dominate, (ii) they require either no communication,
or at most an one-hop communication between nodes, and (iii) random accesses
require at most O(log|N |) messages.

To ensure the at-most-one-hop communication requirement for successive se-
quential accesses of TIN data, the MINERVA∞ algorithms utilize an order pre-
serving hash function, first proposed for supporting range queries in DHT-based
data networks in [20]. An order preserving hash function hop() has the property
that for any two values v1, v2, if v1 > v2 then hop(v1) > hop(v2). This guarantees
that data items corresponding to successive score values of a term t are placed
either at the same or at neighboring nodes of I(t). Alternatively, similar func-
tionality can be provided by employing for each I(t) an overlay based on skip
graphs or skip nets [1,9]. Since both order preserving hashing and skip graphs
incur the danger for load imbalances when assigning data items to TIN nodes,
given the expected data skew of scores, load balancing solutions are needed.

The design outlined so far, leverages DHT technology to facilitate efficiency
and scalability in key aspects of the system’s operation. Specifically, posting (and
deleting) data items for a term from any node can be done in O(log|N |) time,
in terms of the number of messages. Similarly, during top-k query processing,
the TINs of the terms in the query can be also reached in O(log|N |) messages.
Furthermore, no single node is over-burdened with tasks which can either require
more resources than available, or exhaust its resources, or even stress its resources
for longer periods of time. In addition, as the top-k algorithm is processing
different data items for each queried term, this involves gradually different nodes
from each TIN, producing a highly distributed, scalable solution.

5 Term Index Networks

In this section we describe and analyze the algorithms for creating TINs and
populating them with data and nodes.

5.1 Beacons for Bootstrapping TINs

The creation of a TIN has these basic elements: posting data items, inserting
nodes, and maintaining the connectivity of nodes to ensure the efficiency/scalabi-
lity properties promised by the TIN overlay.
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As mentioned, a key issue to note is that any node p in G may need to post
(t, d, s) items for a term t. Since, in general, p is not a member of I(t) and does
not necessarily know members of I(t), efficiently and scalably posting items to
I(t) from any p becomes non-trivial. To overcome this, a bootstrapping process
for I(t) is employed which initializes an TIN I(t) for term t. The basic novelty
lies in the special role to be played by nodes coined beacons, which in essence
become gateways, allowing the flow of data and requests between the G and I(t)
networks.

In the bootstrap algorithm, a predefined number of “dummy” items of the
form (t, �, si) is generated in sequence for a set of predefined score values si,
i = 1, ..., u. Each such item will be associated with a node n in G, where it
will be stored. Finally, this node n of G will also be made a member of I(t) by
randomly choosing a previously inserted beacon node (i.e., for the one associated
with an already inserted score value sj , 1 ≤ j ≤ i − 1) as a gateway.

The following algorithm details the pseudocode for bootstrapping I(t). It
utilizes an order-preserving hash function hop() : T × (0, 1] → [m], where m is
the size of the identifiers in bits and [m] denotes the name space used for the
overlay (e.g., all 2160 ids, for 160-bit identifiers). In addition, a standard hash
function h() : (0, 1] → [m], (e.g. SHA-1) is used. The particulars of the order
preserving hash function to be employed will be detailed after the presentation
of the query processing algorithms which they affect. The bootstrap algorithm
selects u “dummy” score values, i/u, i = 1, ..., u, finds for each such score value
the node n in G where it should be placed (using hop()), stores this score there
and inserts n into the I(t) network as well. At first, the I(t) network contains
only the node with the dummy item with score zero. At each iteration, another
node of n is added to I(t) using as gateway the node of G which was added
in the previous iteration to I(t). For simplicity of presentation, the latter node

Algorithm 1. Bootstrap I(t)
1: input: u: the number of “dummy” items (t, �, si), i = 1, ..., u
2: input: t: the term for which the TIN is created
3: p = 1/u
4: for i = 1 to u do
5: s = i × p
6: lookup(n.s) = hop(t, s) { n.s in G will become the next beacon node of I(t) }
7: if s = p then
8: N(t) = {n.s}
9: E(t) = ∅ {Initialized I(t) with n.s with the first dummy item}

10: end if
11: if s �= p then
12: n1 = hop(t, s − p) {insert n(s) into I(t) using node n(s − p) as gateway}
13: call join(I(t), n1, s)
14: end if
15: store (t, �, s) at I(t).n(s)
16: end for
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can be found by simply hashing for the previous dummy value. A better choice
for distributing the load among the beacons is to select at random one of the
previously-inserted beacons and use it as a gateway.

Obviously, a single beacon per TIN suffices. The number u of beacon scores
is intended to introduce a number of gateways between G and I(t) so to avoid
potential bottlenecks during TIN creation. u will typically be a fairly small
number so the total beacon-related overhead involved in the TIN creation will
be kept small. Further, we emphasize that beacons are utilized by the algo-
rithm posting items to TINs. Post operations will in general be very rare com-
pared to query operations and query processing does not involve the use of
beacons.

Finally, note that the algorithm uses a join() routine that adds a node n(s)
storing score s into I(t) using a node n1 known to be in I(t) and thus, has the
required state. The new node n(s) must occupy a position in I(t) specified by the
value of hop(t, s). Note that this is ensured by using h(nodeID), as is typically
done in DHTs, since these node IDs were selected from the order-preserving
hash function. Besides the side-effect of ensuring the order-preserving position
for the nodes added to a TIN, the join routine is otherwise straightforward: if the
TIN is a full-fledged DHT overlay, join() is updating the predecessor/successor
pointers, the O(log|N |) routing state of the new node, and the routing state of
each I(t) node pointing to it, as dictated by the relevant DHT algorithm. If the
TIN is simply a doubly-linked list, then only predecessor/successor pointers are
the new node and its neighbors are adjusted.

5.2 Posting Data to TINs

The posting of data items is now made possible using the bootstrapped TINs.
Any node n1 of G wishing to post an item (t, d, s) first locates an appropriate
node of G, n2 that will store this item. Subsequently, it inserts node n2 into I(t).
To do this, it randomly selects a beacon score and associated beacon node, from
all available beacons. This is straightforward given the predefined beacon score
values and the hashing functions used. The chosen beacon node has been made
a member of I(t) during bootstrapping. Thus, it can “escort” n2 into I(t).

The following provides the pseudocode for the posting algorithm. By design,
the post algorithm results in a data placement which introduces two character-
istics, that will be crucial in ensuring efficient query processing. First, (as the
bootstrap algorithm does) the post algorithm utilizes the order-preserving hash
function. As a result, any two data items with consecutive score values for the
same term will be placed by definition in nodes of G which will become one-hop
neighbors in the TIN for the term, using the join() function explained earlier.
Note, that within each TIN, there are no ‘holes’. A node n becomes a member
of a TIN network if and only if a data item was posted, with the score value
for this item hashing to n. It is instructing here to emphasize that if TINs were
not formed and instead only the global network was present, in general, any
two successive score values could be falling in nodes which in G could be many
hops apart. With TINs, following successor (or predecessor) links always leads to
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Algorithm 2. Posting Data to I(t)
1: input: t, d, s: the item to be inserted by a node n1

2: n(s) = hop(t, s)
3: n1 sends (t, d, s) to n(s)
4: if n(s) /∈ N(t) then
5: n(s) selects randomly a beacon score sb

6: lookup(nb) = hop(t, sb) { nb is the beacon node storing beacon score sb }
7: n(s) calls join(I(t), nb, s)
8: end if
9: store ((t, d, s)

nodes where the next (or previous) segment of scores have been placed. This fea-
ture in essence ensures the at-most-one-hop communication requirement when
accessing items with successive scores in the global virtual index list for a term.

Second, the nodes of any I(t) become responsible for storing specific segments
(horizontal partitions) of the global virtual index list for t. In particular, an I(t)
node stores all items for t for a specific (range of) score value, posted by any
node of the underlying network G.

5.3 Complexity Analysis

The bootstrapping I(t) algorithm is responsible for inserting u beacon items. For
each beacon item score, the node n.s is located by applying the hop() function
and routing the request to that node (step 5). This will be done using G’s lookup
algorithm in O(log|N |) messages. The next key step is to locate the previously
inserted beacon node (step 11) (or any beacon node at random) and sending
it the request to join the TIN. Step 11 again involves O(log|N |) messages. The
actual join() routine will cost O(log2|N(t)|) messages, which is the standard
join() message complexity for any DHT of size N(t). Therefore, the total cost is
O(u × (log|N | + log2|N(t)|) messages.

The analysis for the posting algorithm is very similar. For each post(t, d, s)
operation, the node n where this data item should be stored is located and
the request is routed to it, costing O(log|N |) messages (step 3). Then a random
beacon node is located, costing O(log|N |) messages, and then the join() routine is
called from this node, costing O(log2|N(t)|) messages. Thus, each post operation
has a complexity of O(log|N |) + O(log2|N(t)|) messages.

Note that both of the above analysis assumed that each I(t) is a full-blown
DHT overlay. This permits a node to randomly select any beacon node to use
to join the TIN. Alternatively, if each I(t) is simply a (circular) doubly-linked
list, then a node can join a TIN using the beacon storing the beacon value that
is immediately preceding the posted score value. This requires O(log|N |) hops
to locate this beacon node. However, since in this case the routing state for each
node of a TIN consists of only the two (predecessor and successor) links, the cost
to join is in the worst case O(|N(t)|), since after locating the beacon node with
the previous beacon value, O(|N(t)|) successor pointers may need to be followed
in order to place the node in its proper order-preserving position. Thus, when
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TINs are simple doubly-linked lists, the complexity of both the bootstrap and
post algorithms are O(log|N | + |N(t)|) messages.

6 Load Balancing

6.1 Order-Preserving Hashing

The order preserving hash function to be employed is important for several rea-
sons. First, for simplicity, the function can be based on a simple linear transform.
Consider hashing a value f(s) : (0, 1] → I, where f(s) transforms a score s into
an integer; for instance, f(s) = 106 × s. Function hop() can be defined then as

hop(s) = (
f(s) − f(smin)

f(smax) − f(smin)
× 2m) mod 2m (1)

Although such a function is clearly order-preserving, it has the drawback that
it produces the same output for items of equal scores of different terms. This
leads to the same node storing for all terms all items having the same score. This
is undesirable since it cannot utilize all available resources (i.e., utilize different
sets of nodes to store items for different terms). To avoid this, hop() is refined
to take as input the term name, which provides the necessary functionality, as
follows.

hop(t, s) = (h(t) +
f(s) − f(smin)

f(smax) − f(smin)
× 2m) mod 2m (2)

The term h(t) adds a different random offset for different terms, initiating the
search for positions of term score values at different, random, offsets within the
namespace. Thus, by using the h(t) term in hop(t, s) the result is that any data
items having equal scores but for different terms are expected to be stored at
different nodes of G.

Another benefit stems from ameliorating the storage load imbalances that
result from the non-uniform distribution of score values. Assuming a uniform
placement of nodes in G, the expected non-uniform distribution of scores will
result in a non-uniform assignment of scores to nodes. Thus, when viewed from
the perspective of a single term t, the nodes of I(t) will exhibit possibly severe
storage load imbalances. However, assuming the existence of large numbers of
terms (e.g., a few thousand), and thus data items being posted for all these
terms over the same set of nodes in G, given the randomly selected starting
offsets for the placement of items, it is expected that the severe load imbalances
will disappear. Intuitively, overburdened nodes for the items of one term are
expected to be less burdened for the items of other terms and vice versa.

But even with the above hash function, very skewed score distributions will
lead to storage load imbalances. Expecting that exponential-like distributions
of score values will appear frequently, we developed a hash function that is
order-preserving and handles load imbalances by assigning score segments of
exponentially decreasing sizes to an exponentially increasing number of nodes.
For instance, the sparse top 1/2 of the scores distribution is to be assigned to a
single node, the next 1/4 of scores is to be assigned to 2 nodes, the next 1/8 of
scores to 4 nodes, etc. The details of this are omitted for space reasons.
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6.2 TIN Data Migration

Exploiting the key characteristics of our data, MINERVA∞ can ensure further
load balancing with small overheads. Specifically, index lists data entries are
small in size and are very rarely posted and/or updated. In this subsection we
outline our approach for improved load balancing.

We require that each peer posting index list entries, first computes a (equi-
width) histogram of its data with respect to its score distribution. Assuming a
targeted |N(t)| number of nodes for the TIN of term t, it can create |N(t)| equal-
size partitions, with lowscorei, highscorei denoting the score ranges associated
with partition i, i = 1, ..., |N(t)|. Then it can simply utilize the posting algorithm
shown earlier, posting using the lowscorei scores for each partition. The only
exception to the previously shown post algorithm is that the posting peer now
posts at each iteration a complete partition of its index list, instead of just a
single entry.

The above obviously can guarantee perfect load balancing. However, subse-
quent postings (typically by other peers) may create imbalances, since different
index lists may have different score distributions. Additionally, when ensuring
overall load balancing over multiple index lists being posting by several peers,
the order-preserving property of the placement must be guaranteed. Our ap-
proach for solving these problems is as follows. First, again the posting peer
is required to compute a histogram of its index list. Second, the histogram of
the TIN data (that is, the entries already posted) is stored at easily identifi-
able nodes. Third, the posting peer is required to retrieve this histogram and
‘merge’ it with his own. Fourth, the same peer identifies how the total data
must now be split into |N(t)|, equal-size partitions of consecutive scores. Fi-
nally, it identifies all data movements (from TIN peer to TIN peer) necessary to
redistribute the total TIN data so that load balancing and order preservation is
ensured.

Detailed presentation of the possible algorithms for this last step and their
respective comparison is beyond the scope of this paper. We simply mention
that total TIN data sizes is expected to be very small (in actual number of
bytes stored and moved). For example, even with several dozens of peers posting
different, even large, multi-million-entry, index lists, in total the complete TIN
data size will be a few hundred MBs, creating a total data transfer movement
equivalent to that of downloading a few dozen MP3 files. Further, index lists’
data posting to TINs is expected to be a very infrequent operation (compared
to search queries). As a result, ensuring load balancing across TIN nodes proves
to be relative inexpensive.

6.3 Discussion

The approaches to index lists’ data posting outlined in the previous two sections
can be used competitively or even be combined. When posting index lists with
exponential score distributions, by design the posting of data using the order-
preserving hash function of Section 5.1, will be adequately load balanced and
nothing else is required. Conversely, when histogram information is available and
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can be computed by posting peers, the TIN data migration approach will yield
load balanced data placement.

A more subtle issue is that posting with the order-preserving hash function
also facilitates random accesses of the TIN data, based on random score values.
That is, by hashing for any score, we can find the TIN node holding the entries
with this score. This becomes essential if the web search engine is to employ
top-k query algorithms which are based on random accesses of scores. In this
work, our top-k algorithms avoid random accesses, by design. However, the above
point should be kept in mind since there are recently-proposed distributed top-k
algorithms, relying on random accesses and more efficient algorithms may be
proposed in the future.

7 Top-k Query Processing

The algorithms in this section focus on how to exploit the infrastructure pre-
sented previously in order to efficiently process top-k queries. The main efficiency
metrics are query response times and network bandwidth requirements.

7.1 The Basic Algorithm

Consider a top-k query of the form Q({t1, ..., tr}, k) involving r terms that is
generated at some node ninit of G. Query processing is based on the following
ideas. It proceeds in phases, with each phase involving ‘vertical’ and ‘horizontal’
communication between the nodes within TINs and across TINs, respectively.
The vertical communications between the nodes of a TIN are occuring in parallel
across all r TINs named in the query, gathering a threshold number of data items
from each term. There is a moving coordinator node, that will be gathering the
data items from all r TINs that enable it to compute estimates of the top-k
result. Intermediate estimates of the top-k list will be passed around, as the
coordinator role moves from node to node in the next phase where the gathering
of more data items and the computation of the next top-k result estimate will
be computed.

The presentation shows separately the behavior of the query initiator, the
(moving) query coordinator, and the TIN nodes.

Query Initiator

The initiator calculates the set of start nodes, one for each term, where the
query processing will start within each TIN. Also, it randomly selects one of the
nodes (for one of the TINs) to be the initial coordinator. Finally, it passes on the
query and the coordinator ID to each of the start nodes, to initiate the parallel
vertical processing within TINs.

The following pseudocode details the behavior of the initiator.

Processing Within Each TIN

Processing within a TIN is always initiated by the start node. There is one start
node per communication phase of the query processing. In the first phase, the
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Algorithm 3. Top-k QP: Query Initiation at node G.ninit

1: input: Given query Q = {t1,.., tr}, k :
2: for i = 1 to r do
3: startNodei = I(ti).n(smax) = hop(ti, smax)
4: end for
5: Randomly select c from [1, ..., r]
6: coordID = I(tc).n(smax)
7: for i = 1 to r do
8: send to startNodei the data (Q, coordID)
9: end for

start node is the top node in the TIN which receives the query processing request
from the initiator. The start node then starts the gathering of data items for
the term by contacting enough nodes, following successor links, until a threshold
number γ (that is, a batch size) of items has been accumulated and sent to the
coordinator, along with an indication of the maximum score for this term which
has not been collected yet, which is actually either a locally stored score or the
maximum score of the next successor node. The latter information is critical for
the coordinator in order to intelligently decide when the top-k result list has
been computed and terminate the search. In addition, each start node sends to
the coordinator the ID of the node of this TIN to be the next start node, which is
simply the next successor node of the last accessed node of the TIN. Processing
within this TIN will be continued at the new start node when it receives the
next message from the coordinator starting the next data-gathering phase.

Algorithm 4 presents the pseudocode for TIN processing.

Algorithm 4. Top-k QP: Processing by a start node within a TIN
1: input: A message either from the initiator or the coordinator
2: tCollectioni = ∅
3: n = startNodei

4: while |tCollectioni| < γ do
5: while |tCollectioni| < γ AND more items exist locally do
6: define the set of local items L = {(ti, d, s) in n}
7: send to coordID : L
8: |tCollectioni| = |tCollectioni| + |L|
9: end while

10: n = succ(n)
11: end while
12: boundi = max score stored at node n
13: send to coordID : n and boundi

Recall, that because of the manner with which items and nodes have been
placed in a TIN, following succ() links, items are collected starting from the item
with the highest score posted for this term and proceeding in sorted descending
order based on scores.
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Moving Query Coordinator

Initially, the coordinator is randomly chosen by the initiator to be one of the
original start nodes. First, the coordinator uses the received collections and runs
a version of the NRA top-k processing algorithm, locally producing an estimate
of the top-k result. As is also the case with classical top-k algorithms, the exact
result is not available at this stage since only a portion of the required infor-
mation is available. Specifically, some documents with high enough TotalScore
to qualify for the top-k result are still missing. Additionally, some documents
may also be seen in only a subset of the collections received from the TINs so
far, and thus some of their scores are missing, yielding only a partially known
TotalScore.

A key to the efficiency of the overall query processing process is the ability
to prune the search and terminate the algorithm even in the presence of missing
documents and missing scores. To do this, the coordinator first computes an
estimate of the top-k result, which includes only documents whose TotalScores
are completely known, defining the RankKscore value (i.e. the smallest score in
the top-k list estimate). Then, it utilizes the boundi values received from each
start node. When a score for a document d is missing for term i, it can be
replaced with boundi to estimate the TotalScore(d). This is done for all such
d with missing scores. If RankKscore > TotalScore(d) for all d with missing
scores then there is no need to continue the process for finding the missing scores,
since the associated documents could never belong to the top-k result. Similarly,
if RankKscore >

∑
i=1,...,r boundi, then similarly there is no need to try to find

any other documents, since they could never belong to the top-k result. When
both of these conditions hold, the coordinator terminates the query processing
and returns the top-k result to the initiator.

If the processing must continue, the coordinator starts the next phase, send-
ing a message to the new start node for each term, whose ID was received in the
message containing the previous data collections. In this message the coordina-
tor also indicates the ID of the node which becomes the coordinator in this next
phase. The next coordinator is defined to be the node in the same TIN as the
previous coordinator whose data is to be collected next in the vertical processing
in this TIN (i.e., the next start node at the coordinator’s TIN). Alternatively,
any other start node can be randomly chosen as the coordinator.

Algorithm 5 details the behavior of the coordinator.

7.2 Complexity Analysis

The overall complexity has three main components: the cost incurred for (i) the
communication between the query initiator and the start nodes of the TINs, (ii)
the vertical communication within a TIN, and (iii) the horizontal communication
between the current coordinator and the current set of start nodes.

The query initiator needs to lookup the identity of the initial start nodes
for each one of the r query terms and route to them the query and the chosen
coordinator ID. Using the G network, this incurs a communication complexity of
O(r× log|N |) messages. Denoting with depth the average (or maximum) number
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Algorithm 5. Top-k QP: Coordination
1: input: For each i: tCollectioni and newstartNodei and boundi

2: tCollection =
⋃

i tCollectioni

3: compute a (new) top-k list estimate using tCollection, and RankKscore
4: candidates = {d|d /∈top-k list}
5: for all d ∈ candidates do
6: worstScore(d) is the partial TotalScore of d
7: bestScore(d) := worstScore(d) +

∑
j∈MT boundj {Where MT is the set of term

ids with missing scores }
8: if bestScore(d) < RankKscore then
9: remove d from candidates

10: end if
11: end for
12: if candidates is empty then
13: exit()
14: end if
15: if candidates is not empty then
16: coordIDnew = pred(n)
17: calculate new size threshold γ
18: for i = 1 to r do
19: send to startNodei the data (coordIDnew , γ)
20: end for
21: end if

of nodes accessed during the vertical processing of TINs, overall O(r × depth)
messages are incurred due to TIN processing, since subsequent accesses within a
TIN require, by design, one-hop communication. Each horizontal communication
in each phase of query processing between the coordinator and the r start nodes
requires O(r × log|N |) messages. Since such horizontal communication takes
place at every phase, this yields a total of O(phases × r × log|N |) messages.
Hence, the total communication cost complexity is

cost = O(phases × r × log|N | + r × log|N | + r × depth) (3)

This total cost is the worst case cost; we expect that the cost incurred in
most cases will be much smaller, since horizontal communication across TINs
can be much more efficient than O(log|N |), as follows. The query initiator can
first resolve the ID of the coordinator (by hashing and routing over G) and
then determine its actual physical address (i.e., its IP address), which is then
forwarded to each start node. In turn, each start node can forward this from
successor to successor in its TIN. In this way, at any phase of query processing,
the last node of a TIN visited during the vertical processing, can send the data
collection to the coordinator using the coordinator’s physical address. The cur-
rent coordinator also knows the physical address of the next coordinator (since
this was the last node visited in its own TIN from which it received a message
with the data collection for its term) and of the next start node for all terms
(since these are the last nodes visited during vertical processing of the TINs,
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from which it received a message). Thus, when sending the message to the next
start nodes to continue vertical processing, the physical addresses can be used.
The end result of this is that all horizontal communication requires one message,
instead of O(log|N |) messages. Hence, the total communication cost complexity
now becomes

cost = O(phases × r + r × log|N | + r × depth) (4)

As nodes are expected to be joining and leaving the underlying overlay network
G, occasionally, the physical addresses used to derive the cost of (4) will not be
valid. In this case, the reported errors will lead to nodes using the high-level IDs
instead of the physical addresses, in which case the cost is that given by (3).

8 Expediting Top-k Query Processing

In this section we develop optimizations that can further speedup the perfor-
mance of top-k query processing. These optimizations are centered on: (i) the
‘vertical’ replication of term-specific data among the nodes of a TIN, and (ii)
the ‘horizontal’ replication of data across TINs.

8.1 TIN Data Replication

There are two key characteristics of the data items in our model, which permit
their large-scale replication. First, data items are rarely posted and even more
rarely updated. Second, data items are very small in size (e.g. < 50 bytes each).
Hence, replication protocols will not cost significantly either in terms of replica
state maintenance, or in terms of storing the replicas.

Vertical Data Replication. The issue to be addressed here is how to appro-
priately replicate term data within TIN peers so to gain in efficiency. The basic
structure of the query processing algorithm presented earlier facilitates the easy
incorporation of a replication protocol into it. Recall, that in each TIN I(t),
query processing proceeds in phases, and in each phase a TIN node (the current
start node) is responsible for visiting a number of other TIN nodes, a successor
at a time, so that enough, (i.e., a batch size of) data items for t are collected.
The last visited node in each phase which collects all data items, can initiate
a ‘reverse’ vertical communication, in parallel to sending the collection to the
coordinator. With this reverse vertical communication thread, each node in the
reverse path sends to its predecessor only the data items its has not seen. In the
end, all nodes in the path from the start node to the last node visited will even-
tually receive a copy of all items collected during this phase, storing locally the
pair (lowestscore, highestscore), marking its lowest and highest locally stored
scores. Since this is straightforward, the pseudocode is omitted for space reasons.

Since a new posting involves all (or most) of the nodes in these paths, each
node knows when to initiate a new replication to account for the new items.
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Exploiting Replicas. The start node selected by the query initiator no longer
needs to perform a successor-at-a-time traversal of TIN in the first phase, since
the needed data (replicas) are stored locally. However, vertical communication
was also useful for producing the ID of the next start node for this TIN. A
subtle point to note here is that the coordinator can itself determine the new
start node for the next phase, even without receiving explicitly this ID at the end
of vertical communication. This can simply be done using the minimum score
value (boundi) it has received for term ti; the ID of the next start node is found
hashing for score prev(boundi).

Additionally, the query initiator can select as start nodes the nodes responsi-
ble for storing a random (expected to be high score) and not always the maximum
score, as it does up to now. Similarly, the coordinator when selecting the ID of
the next start node for the next batch retrieval for a term, it can choose to hash
for a score value that is lower than the score prev(boundi). Thus, random start
nodes within a TIN are selected at different phases and these gather the next
batch of data from the proper TIN nodes, using the TIN DHT infrastructure for
efficiency. The details of how this is done, are omitted for space reasons.

Horizontal Data Replication. TIN data may also be replicated horizontally.
The simplest strategy is to create replicated TINs for popular terms. This in-
volves the posting of data into all TIN replicas. The same algorithms can be
used as before for posting, except now when hashing, instead of using the term t
as input to the hash function, each replica of t must be specified (e.g., t.v, where
v stands for a version/replica number). Again, the same algorithms can be used
for processing queries, with the exception that each query can now select one of
the replicas of I(t), at random.

Overall, TIN data replication leads to savings in the number of messages and
response time speedups. Furthermore, several nodes are off-loaded since they
no longer have to partake in the query processing process. With replication,
therefore, the same number of nodes overall will be involved in processing a
number of user queries, except that each query will be employing a smaller set
of peers, yielding response time and bandwidth benefits. In essence, TIN data
replication increases the efficiency of the engine, without adversely affecting its
scalability. Finally, it should be stressed that such replication will also improve
the availability of data items and thus replication is imperative. Indirectly, for
the same reason the quality of the results with replication will be higher, since
lost items inevitably lead to errors in the top-k result.

9 Experimentation

9.1 Experimental Testbed

Our implementation was written in Java. Experiments were performed on 3GHz
Pentium PCs. Since deploying full-blown, large networks is not an option, we
opted for simulating large numbers of nodes as separate processes on the same
PC, executing the real MINERVA∞ code. A 10,000 node network was simulated.
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A real-world data collection was used in our experiments: GOV. The GOV
collection consists of the data of the TREC-12 Web Track and contains roughly
1.25 million (mostly HTML and PDF) documents obtained from a crawl of the
.gov Internet domain (with total index list size of 8 GB). The original 50 queries
from the Web Track’s distillation task were used. These are term queries, with
each query containing up to 4 terms. The index lists contained the original
document scores computed as tf * log idf. tf and idf were normalized by the
maximum tf value of each document and the maximum idf value in the corpus,
respectively. In addition, we employed an extended GOV (XGOV) setup, with a
larger number of query terms and associated index lists. The original 50 queries
were expanded by adding new terms from synonyms and glosses taken from
the WordNet thesaurus (http://www.cogsci.princeton.edu/∼wn). The expansion
yielded queries with, on average, twice as many terms, up to 18 terms.

9.2 Performance Tests and Metrics

Efficiency Experiments. The data (index list entries) for the terms to be
queried were first posted. Then, the GOV/XGOV benchmark queries were exe-
cuted in sequence. For simplicity, the query initiator node assumed the role of a
fixed coordinator. The experiments used the following metrics:

Bandwidth. This shows the number of bytes transferred between all the nodes
involved in processing the benchmarks’ queries. The benchmarks’ queries were
grouped based on the number of terms they involved. In essence, this grouping
created a number of smaller sub-benchmarks.

Query Response Time. This represents the elapsed, “wall-clock” time for
running the benchmark queries. We report on the wall-clock times per sub-
benchmark and for the whole GOV and XGOV benchmarks.

Hops. This reports the number of messages sent over our network infras-
tructures to process all queries. For communication over the global DHT G, the
number of hops was set to be log|N | (i.e., when the query initiator contacts the
first set of start nodes for each TIN). Communication between peers within a
TIN requires, by design, one hop at a time.

To avoid the overestimation of response times due to the competition be-
tween all processes for the PC’s disk and network resources, and in order to
produce reproducible and comparable results for tests ran at different times,
we opted for simulating disk IO latency and network latency. Specifically, each
random disk IO was modeled to incur a disk seek and rotational latency of 9
ms, plus a transfer delay dictated by a transfer rate of 8MB/s. For network la-
tency we utilized typical round trip times (RTTs) of packets and transfer rates
achieved for larger data transfers between widely distributed entities [16]. We
assumed a RTT of 100 ms. When peers simply forward the query to a next peer,
this is assumed to take roughly 1/3 of the RTT (since no ACKs are expected).
When peers sent more data, the additional latency was dictated by a “large”
data transfer rate of 800Kb/s, which includes the sender’s uplink bandwidth, the
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receivers downlink bandwidth, and the average internet bandwidth typically
witnessed.2

Scalability Experiments. The tested scenarios varied the query load to the
system, measuring the overall time required to complete the processing of all
queries in a queue of requests. Our experiments used a queue of identical queries
involving four terms, with varying index lists characteristics. Two of these terms
had small index lists (with over 22,000 and over 42,000 entries) and the other
two lists had sizes of over 420,000 entries. For each query the (different) query
initiating peer played the role of the coordinator.

The key here is to measure contention for resources and its limits on the pos-
sible parallelization of query processing. Each TIN peer uses his disk, his uplink
bandwidth to forward the query to his TIN successor, and to send data to the
coordinator. Uplink/downlink bandwidths were set to 256Kbps/1Mbps. Simi-
larly, the query initiator utilizes its downlink bandwidth to receive the batches
of data in each phase and its uplink bandwidth to send off the query to the
next TIN start nodes. These delays define the possible parallelization of query
execution. By involving the two terms with the largest index lists in the queries,
we ensured the worst possible parallelization (for our input data), since they
induced the largest batch size, requiring the most expensive disk reads and
communication.

9.3 Performance Results

Overall, each benchmark experiment required between 2 to 5 hours for its real-
time execution, a big portion of which was used up by the posting procedure.

Figures 1 and 2 show the bandwidth, response times, and hops results for
the GOV and XGOV group-query benchmarks. Note, that different query groups
have in general mutually-incomparable results, since they involve different index
lists with different characteristics (such as size, score distributions etc).

In XGOV the biggest overhead was introduced by the 8 7-term and 6 11-term
queries. Table 1 shows the total benchmark execution times, network bandwidth
consumption, as well as the number of hops for the GOV and XGOV benchmarks.

Generally, for each query, the number of terms and the size of the corre-
sponding index list data are the key factors. The central insight here is that
the choice of the NRA algorithm was the most important contributor to the
overhead. The adaptation of more efficient distributed top-k algorithms within
MINERVA∞ (such as our own [12], which also disallow random accesses) can
reduce this overhead by one to two orders of magnitude. This is due to the fact
that the top-k result can be produced without needing to delve deeply into the
index lists’ data, resulting in drastically fewer messages, bandwidth, and time
requirements.

2 This figure is the average throughput value measured (using one stream – one cpu
machines) in experiments conducted for measuring wide area network throughput
(sending 20MB files between SLAC nodes (Stanford’s Linear Accelerator Centre)
and nodes in Lyon France [16] using NLANR’s iPerf tool [19].
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Fig. 1. GOV Results: Bandwidth, Execution Time, and Hops
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Fig. 2. XGOV Results: Bandwidth, Execution Time, and Hops

Table 1. Total GOV and XGOV Results

Benchmark Hops Bandwidth(KB) Time(s)
GOV 22050 130189 2212

XGOV 146168 744700 10372

The 2-term queries introduced the biggest overheads. There are 29 2-term, 7
3-term, and 4 4-term queries in GOV.

Figure 3 shows the scalability experiment results. Query loads tested rep-
resent queue sizes of 10, 100, 1000, and 10000 identical queries simultaneously
arriving into the system. This figure also shows what the corresponding time
would be if the parallelization contributed by the MINERVA∞ architecture was
not possible; this would be the case, for example, in all related-work P2P search
architectures and also distributed top-k algorithms, where the complete index
lists at least for one query term are stored completely at one peer. The scala-
bility results show the high scalability achievable with MINERVA∞. It is due
to the “pipelining” that is introduced within each TIN during query process-
ing, where a query consumes small amounts of resources from each peer, pulling
together the resources of all (or most) peers in the TIN for its processing. For
comparison we also show the total execution time in an environment in which
each complete index list was stored in a peer. This is the case for most related
work on P2P search engines and on distributed top-k query algorithms. In this
case, the resources of the single peer storing a complete index list are required
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Fig. 3. Scalability Results

for the processing of all communication phases and for all queries in the queue.
In essence, this yields a total execution time that is equal to that of a sequen-
tial execution of all queries using the resources of the single peers storing the
index lists for the query terms. Using this as a base comparison, MINERVA∞ is
shown to enjoy approximately two orders of magnitude higher scalability. Since
in our experiments there are approximately 100 nodes per TIN, this defines the
maximum scalability gain.

10 Concluding Remarks

We have presented MINERVA∞, a novel architecture for a peer-to-peer web
search engine. The key distinguishing feature of MINERVA∞ is its high-levels
of distribution for both data and processing. The architecture consists of a suite
of novel algorithms, which can be classified into algorithms for creating Term
Index Networks, TINs, placing index list data on TINs and of top-k algorithms.
TIN creation is achieved using a bootstrapping algorithm and also depends on
how nodes are selected when index lists data is posted. The data posting algo-
rithm employs an order-preserving hash function and, for higher levels of load
balancing, MINERVA∞ engages data migration algorithms. Query processing
consists of a framework for highly distributed versions of top-k algorithms, rang-
ing from simple distributed top-k algorithms, to those utilizing vertical and/or
horizontal data replication. Collectively, these algorithms ensure efficiency and
scalability. Efficiency is ensured through the fast sequential accesses to index
lists’ data, which requires at most one hop communication and by algorithms
exploiting data replicas. Scalability is ensured by engaging a larger number of
TIN peers in every query, with each peer being assigned much smaller sub-
tasks, avoiding centralized points of control. We have implemented MINERVA∞
and conducted detailed performance studies showcasing its scalability and effi-
ciency.

Ongoing work includes the adaptation of recent distributed top-k algorithms
(e.g., [12]) into the MINERVA∞ architecture, which have proved one to two
orders of magnitude more efficient than the NRA top-k algorithm currently
employed, in terms of query response times, network bandwidth, and peer loads.
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