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Abstract This paper considers a class of constrained stochastic composite optimiza-
tion problems whose objective function is given by the summation of a differentiable
(possibly nonconvex) component, together with a certain non-differentiable (but con-
vex) component. In order to solve these problems, we propose a randomized stochastic
projected gradient (RSPG) algorithm, in which proper mini-batch of samples are taken
at each iteration depending on the total budget of stochastic samples allowed. The
RSPG algorithm also employs a general distance function to allow taking advantage
of the geometry of the feasible region. Complexity of this algorithm is established in
a unified setting, which shows nearly optimal complexity of the algorithm for convex
stochastic programming. A post-optimization phase is also proposed to significantly
reduce the variance of the solutions returned by the algorithm. In addition, based on the
RSPG algorithm, a stochastic gradient free algorithm, which only uses the stochastic
zeroth-order information, has been also discussed. Some preliminary numerical results
are also provided.
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1 Introduction

In this paper, we consider the following problem

Ψ ∗ := min
x∈X

{Ψ (x) := f (x) + h(x)} , (1.1)

where X is a closed convex set in Euclidean space R
n, f : X → R is continuously

differentiable, but possibly nonconvex, and h is a simple convex function with known
structure, but possibly nonsmooth [e.g., h(x) = ‖x‖1 or h(x) ≡ 0]. We also assume
that the gradient of f is L-Lipschitz continuous for some L > 0, i.e.,

‖∇ f (y) − ∇ f (x)‖ ≤ L‖y − x‖, for any x, y ∈ X, (1.2)

and Ψ is bounded below over X , i.e., Ψ ∗ is finite. Although f is Lipschitz continuously
differentiable, we assume that only the noisy gradient of f is available via subsequent
calls to a stochastic first-order oracle (SFO). Specifically, at the k-th call, k ≥ 1, for
the input xk ∈ X, SFO would output a stochastic gradient G(xk, ξk), where ξk is a
random variable whose distribution is supported on Ξk ⊆ R

d . Throughout the paper,
we make the following assumptions for the Borel functions G(xk, ξk).

A1 For any k ≥ 1, we have

a) [G(xk, ξk)] = ∇ f (xk), (1.3)

b)
[
‖G(xk, ξk) − ∇ f (xk)‖2

]
≤ σ 2, (1.4)

where σ > 0 is a constant. Note that part b) of A1 is slightly weaker than the usual
assumption that E[‖G(x, ξ)‖2] is bounded in general stochastic optimization. For
some examples which fit our setting, one may refer the problems in references [1,12,
13,16,17,23–25,34].

Stochastic programming (SP) problems have been the subject of intense studies for
more than 50 years. In the seminal 1951 paper, Robbins and Monro [32] proposed a
classical stochastic approximation (SA) algorithm for solving SP problems. Although
their method has “asymptotically optimal” rate of convergence for solving a class of
strongly convex SP problems, the practical performance of their method is often poor
(e.g., [36, Section 4.5.3]). Later, Polyak [30] and Polyak and Juditsky [31] proposed
important improvements to the classical SA algorithms, where larger stepsizes were
allowed in their methods. Recently, there have been some important developments of
SA algorithms for solving convex SP problems [i.e., Ψ in (1.1) is a convex function].
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Motivated by the complexity theory in convex optimization [27], these studies focus on
the convergence properties of SA-type algorithms in a finite number of iterations. For
example, Nemirovski et al. [26] presented a mirror descent SA approach for solving
general nonsmooth convex stochastic programming problems. They showed that the
mirror descent SA exhibits an optimal O(1/ε2) iteration complexity for solving these
problems with an essentially unimprovable constant factor. Lan [21] presented a uni-
fied optimal method for smooth, nonsmooth and stochastic optimization. This unified
optimal method also leads to optimal methods for strongly convex problems [14,15].
Duchi et al. [10] also presented modified mirror descent method for solving con-
vex stochastic composite problems. Recently, some stochastic gradient type methods
have been developed for solving (strongly) convex “finite-batch” problems which can
achieve faster convergence rates (see e.g., [35]). However, all of the above mentioned
methods need the convexity of the problem to establish their convergence and cannot
deal with the situations where the objective function is not necessarily convex.

When problem (1.1) is nonconvex, the research on SP algorithms so far is very
limited and still far from mature. For the deterministic case, i.e., σ = 0 in (1.4),
the complexity of the gradient descent method for solving problem (1.1) has been
studied in [6,28] (see also [37] for a proximal splitting algorithm for determinis-
tic nonconvex composite problems). Very recently, Ghadimi and Lan [16] proposed
an SA-type algorithm coupled with a randomization scheme, namely, a randomized
stochastic gradient (RSG) method, for solving the unconstrained nonconvex SP prob-
lem, i.e., problem (1.1) with h ≡ 0 and X = R

n . In their algorithm, a trajectory
{x1, . . . , xN } is generated by a stochastic gradient descent method, and a solution x̄ is
randomly selected from this trajectory according to a certain probability distribution.
They showed that the number of calls to the SFO required by this algorithm to find an
ε-solution, i.e., a point x̄ such that E[‖∇ f (x̄)‖2

2] ≤ ε, is bounded by O(σ 2/ε2). They
also presented a variant of the RSG algorithm, namely, a two-phase randomized sto-
chastic gradient (2-RSG) algorithm to improve the large-deviation results of the RSG
algorithm. Specifically, they showed that the complexity of the 2-RSG algorithm for
computing an (ε,Λ)-solution, i.e., a point x̄ satisfying Prob{‖∇ f (x̄)‖2

2 ≤ ε} ≥ 1−Λ,
for some ε > 0 and Λ ∈ (0, 1), can be bounded by

O
{

log (1/Λ) σ 2

ε

[
1

ε
+ log(1/Λ)

Λ

]}
.

They also specialized the RSG algorithm and presented a randomized stochastic gradi-
ent free (RSGF) algorithm for the situations where only noisy function values are avail-
able. It is shown that the expected complexity of this RSGF algorithm is O(nσ 2/ε2).

While the RSG algorithm and its variants can handle the unconstrained noncon-
vex SP problems, their convergence cannot be guaranteed for stochastic composite
optimization problems in (1.1) where X �= R

n and/or h(·) is non-differentiable. Our
contributions in this paper mainly consist of developing variants of the RSG algo-
rithm by taking a mini-batch of samples at each iteration of our algorithm to deal with
the constrained composite problems while preserving the complexity results. More
specifically, we first modify the scheme of the RSG algorithm to propose a random-
ized stochastic projected gradient (RSPG) algorithm to solve constrained nonconvex
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stochastic composite problems. Unlike the RSG algorithm, at each iteration of the
RSPG algorithm, we take multiple samples such that the total number of calls to the
SFO to find a solution x̄ ∈ X such that E[‖gX (x̄)‖2] ≤ ε, is still O(σ 2/ε2), where
gX (x̄) is a generalized projected gradient of Ψ at x̄ over X. In addition, our RSPG
algorithm is in a more general setting depending on a general distance function rather
than Euclidean distance [16]. This would be particularly useful for special structured
constrained set (e.g., X being a standard simplex). Secondly, we present a two-phase
randomized stochastic projected gradient (2-RSPG) algorithm, the RSPG algorithm
with a post-optimization phase, to improve the large-deviation results of the RSPG
algorithm. And we show that the complexity of this approach can be further improved
under a light-tail assumption about the SFO. Thirdly, under the assumption that the
gradient of f is also bounded on X , we specialize the RSPG algorithm to give a
randomized stochastic projected gradient free (RSPGF) algorithm, which only uses
the stochastic zeroth-order information. Finally, we present some numerical results to
show the effectiveness of the aforementioned randomized stochastic projected gradi-
ent algorithms, including the RSPG, 2-RSPG and RSPGF algorithms. Some practical
improvements of these algorithms are also discussed.

The remaining part of this paper is organized as follows. We first describe some
properties of the projection based on a general distance function in Sect. 2. In Sect. 3, a
deterministic first-order method for problem (1.1) is proposed, which mainly provides
a basis for our stochastic algorithms developed in later sections. Then, by incorporating
a randomized scheme, we present the RSPG and 2-RSPG algorithms for solving the SP
problem (1.1) in Sect. 4. In Sect. 5, we discuss how to generalize the RSPG algorithm
to the case when only zeroth-order information is available. Some numerical results
and discussions from implementing our algorithms are presented in Sect. 6. Finally,
in Sect. 7, we give some concluding remarks.

Notation We use ‖ · ‖ to denote a general norm without specific mention. Also, for
any p ≥ 1, ‖ · ‖p denote the standard p-norm in R

n , i.e.,

‖x‖p
p =

n∑
i=1

|xi |p, for any x ∈ R
n .

For any convex function h, ∂h(x) is the subdifferential set at x . Given any Ω ⊆ R
n ,

we say f ∈ C1,1
L (Ω), if f is Lipschitz continuously differentiable with Lipschitz

constant L > 0, i.e.,

‖∇ f (y) − ∇ f (x)‖ ≤ L‖y − x‖, for any x, y ∈ Ω, (1.5)

which clearly implies

| f (y) − f (x) − 〈∇ f (x), y − x〉 | ≤ L

2
‖y − x‖2, for any x, y ∈ Ω. (1.6)

For any real number r, �r� and �r� denote the nearest integer to r from above and
below, respectively. R+ denotes the set of nonnegative real numbers.
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2 Some properties of generalized projection

In this section, we review the concept of projection in a general sense as well as its
important properties. This section consists of two subsections. We first discuss the
concept of prox-function and its associated projection in Sect. 2.1. Then, in Sect. 2.2,
we present some important properties of the projection, which will play a critical role
for the proofs in our later sections.

2.1 Prox-function and projection

It is well-known that using a generalized distance generating function, instead of the
usual Euclidean distance function, would lead to algorithms that can be adjusted to the
geometry of the feasible set and/or efficient solutions of the projection [2,3,5,21,26,
38]. Hence, in this paper we would like to set up the projection based on the so-called
prox-function.

A function ω : X → R is said to be a distance generating function with modulus
α > 0 with respect to ‖ · ‖, if ω is continuously differentiable and strongly convex
satisfying

〈x − z,∇ω(x) − ∇ω(z)〉 ≥ α‖x − z‖2, ∀ x, z ∈ X. (2.1)

Then, the prox-function associated with ω is defined as

V (x, z) = ω(x) − [ω(z) + 〈∇ω(z), x − z〉] . (2.2)

In this paper, we assume that the prox-function V is chosen such that the generalized
projection problem given by

x+ = arg min
u∈X

{
〈g, u〉 + 1

γ
V (u, x) + h(u)

}
(2.3)

is easily solvable for any γ > 0, g ∈ R
n and x ∈ X . Apparently, different choices

of ω can be used in the definition of prox-function. One simple example would be
ω(x) = ‖x‖2

2/2, which gives V (x, z) = ‖x −z‖2
2/2. And in this case, if h(x) ≡ 0, x+

is just the usual Euclidean projection. Some less trivial examples can be found, e.g.,
in [2,4,8,19,27].

2.2 Properties of projection

In this subsection, we discuss some important properties of the generalized projection
defined in (2.3). Let us first define

PX (x, g, γ ) = 1

γ

(
x − x+) , (2.4)
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where x+ is given in (2.3). We can see that PX (x,∇ f (x), γ ) can be viewed as a
generalized projected gradient of Ψ at x . Indeed, if X = R

n and h vanishes, we would
have PX (x,∇ f (x), γ ) = ∇ f (x) = ∇Ψ (x).

The following lemma provides a bound for the size of PX (x, g, γ ).

Lemma 1 Let x+ be given in (2.3). Then, for any x ∈ X, g ∈ R
n and γ > 0, we

have

〈g, PX (x, g, γ )〉 ≥ α‖PX (x, g, γ )‖2 + 1

γ

[
h(x+) − h(x)

]
. (2.5)

Proof By the optimality condition of (2.3) and the definition of prox-function in (2.2),
there exists a p ∈ ∂h(x+) such that

〈g + 1

γ

[∇ω(x+) − ∇ω(x)
]+ p, u − x+〉 ≥ 0, for any u ∈ X.

Letting u = x in the above inequality, by the convexity of h and (2.1), we obtain

〈
g, x − x+〉 ≥ 1

γ

〈∇ω(x+) − ∇ω(x), x+ − x
〉+ 〈

p, x+ − x
〉

≥ α

γ
‖x+ − x‖2 + [

h(x+) − h(x)
]
,

which in the view of (2.4) and γ > 0 clearly imply (2.5).

It is well-known [33] that the Euclidean projection is Lipschitz continuous. Below,
we show that this property also holds for the general projection.

Lemma 2 Let x+
1 and x+

2 be given in (2.3) with g replaced by g1 and g2 respectively.
Then,

‖x+
2 − x+

1 ‖ ≤ γ

α
‖g2 − g1‖. (2.6)

Proof By the optimality condition of (2.3), for any u ∈ X , there exist p1 ∈ ∂h(x+
1 )

and p2 ∈ ∂h(x+
2 ) such that

〈
g1 + 1

γ

[∇ω(x+
1 ) − ∇ω(x)

]+ p1, u − x+
1

〉
≥ 0, (2.7)

and

〈
g2 + 1

γ

[∇ω(x+
2 ) − ∇ω(x)

]+ p2, u − x+
2

〉
≥ 0. (2.8)
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Letting u = x+
2 in (2.7), by the convexity of h, we have

〈
g1, x+

2 − x+
1

〉 ≥ 1

γ

〈∇ω(x) − ∇ω(x+
1 ), x+

2 − x+
1

〉

+ 〈
p1, x+

1 − x+
2

〉 ≥ 1

γ

〈∇ω(x+
2 ) − ∇ω(x+

1 ), x+
2 − x+

1

〉

+ 1

γ

〈∇ω(x) − ∇ω(x+
2 ), x+

2 − x+
1

〉+ h(x+
1 ) − h(x+

2 ). (2.9)

Similarly, letting u = x+
1 in (2.8), we have

〈
g2, x+

1 − x+
2

〉 ≥ 1

γ

〈∇ω(x) − ∇ω(x+
2 ), x+

1 − x+
2

〉+ 〈
p2, x+

2 − x+
1

〉

≥ 1

γ

〈∇ω(x) − ∇ω(x+
2 ), x+

1 − x+
2

〉+ h(x+
2 ) − h(x+

1 ). (2.10)

Summing up (2.9) and (2.10), by the strong convexity (2.1) of ω, we obtain

‖g1 − g2‖‖x+
2 − x+

1 ‖ ≥ 〈
g1 − g2, x+

2 − x+
1

〉 ≥ α

γ
‖x+

2 − x+
1 ‖2,

which gives (2.6).

As a consequence of the above lemma, we have PX (x, ·, γ ) is Lipschitz continuous.

Proposition 1 Let PX (x, g, γ ) be defined in (2.4). Then, for any g1 and g2 in R
n, we

have

‖PX (x, g1, γ ) − PX (x, g2, γ ) ‖ ≤ 1

α
‖g1 − g2‖. (2.11)

Proof Noticing (2.4), (2.7) and (2.8), we have

‖PX (x, g1, γ ) − PX (x, g2, γ )‖ = ‖ 1

γ

(
x − x+

1

)− 1

γ

(
x − x+

2

) ‖

= 1

γ
‖x+

2 − x+
1 ‖ ≤ 1

α
‖g1 − g2‖,

where the last inequality follows from (2.6).

The following lemma (see e.g., Lemma 1 of [21] and Lemma 2 of [14]) characterizes
the solution of the generalized projection.

Lemma 3 Let x+ be given in (2.3). Then, for any u ∈ X, we have

〈
g, x+〉+h(x+)+ 1

γ
V
(
x+, x

) ≤ 〈g, u〉+h(u)+ 1

γ

[
V (u, x) − V (u, x+)

]
. (2.12)
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3 Deterministic first-order methods

In this section, we consider the problem (1.1) with f ∈ C1,1
L (X), and for each input

xk ∈ X , we assume that the exact gradient ∇ f (xk) is available. Using the exact
gradient information, we give a deterministic projected gradient (PG) algorithm for
solving (1.1), which mainly provides a basis for us to develop the stochastic first-order
algorithms in the next section.
A projected gradient (PG) algorithm

Input: Given initial point x1 ∈ X , total number of iterations N , and the stepsizes
{γk} with γk > 0, k ≥ 1.
Step k = 1, . . . , N . Compute

xk+1 = arg min
u∈X

{
〈∇ f (xk), u〉 + 1

γk
V (u, xk) + h(u)

}
. (3.1)

Output: xR ∈ {xk, . . . , xN } such that

R = arg min
k∈{1,...,N }‖gX,k ‖, (3.2)

where the gX,k is given by

gX,k = PX (xk,∇ f (xk), γk) . (3.3)

We can see that the above algorithm outputs the iterate with the minimum norm
of the generalized projected gradients. In practice, one may choose the solution with
the minimum function value as the output of the algorithm. However, since f may
not be a convex function, we cannot provide theoretical performance guarantee for
such a selection of the output solution. In the above algorithm, we have not specified
the selection of the stepsizes {γk}. We will return to this issue after establishing the
following convergence results.

Theorem 1 Suppose that the stepsizes {γk} in the PG algorithm are chosen such that
0 < γk ≤ 2α/L with γk < 2α/L for at least one k. Then, we have

‖gX,R ‖2 ≤ L D2
Ψ∑N

k=1

(
αγk − Lγ 2

k /2
) , (3.4)

where

gX,R = PX (xR,∇ f (xR), γR) and DΨ :=
[
(Ψ (x1) − Ψ ∗)

L

] 1
2

. (3.5)
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Proof Since f ∈ C1,1
L (X), it follows from (1.6), (2.4), (3.1) and (3.3) that for any

k = 1, . . . , N , we have

f (xk+1) ≤ f (xk) + 〈∇ f (xk), xk+1 − xk〉 + L

2
‖xk+1 − xk‖2

= f (xk) − γk
〈∇ f (xk), gX,k

〉+ L

2
γ 2

k ‖gX,k ‖2. (3.6)

Then, by Lemma 1 with x = xk, γ = γk and g = ∇ f (xk), we obtain

f (xk+1) ≤ f (xk) −
[
αγk‖gX,k ‖2 + h(xk+1) − h(xk)

]
+ L

2
γ 2

k ‖gX,k ‖2,

which implies

Ψ (xk+1) ≤ Ψ (xk) −
(

αγk − L

2
γ 2

k

)
‖gX,k ‖2. (3.7)

Summing up the above inequalities for k = 1, . . . , N , by (3.2) and γk ≤ 2α/L , we
have

‖gX,R ‖2
N∑

k=1

(
αγk − L

2
γ 2

k

)
≤

N∑
k=1

(
αγk − L

2
γ 2

k

)
‖gX,k ‖2

≤ Ψ (x1) − Ψ (xk+1) ≤ Ψ (x1) − Ψ ∗. (3.8)

By our assumption,
∑N

k=1

(
αγk − Lγ 2

k /2
)

> 0. Hence, dividing both sides of the

above inequality by
∑N

k=1

(
αγk − Lγ 2

k /2
)
, we obtain (3.4).

The following corollary shows a specialized complexity result for the PG algorithm
with one proper constant stepsize policy.

Corollary 1 Suppose that in the PG algorithm the stepsizes γk = α/L for all k =
1, . . . , N. Then, we have

‖gX,R ‖2 ≤ 2L2 D2
Ψ

α2 N
. (3.9)

Proof With the constant stepsizes γk = α/L for all k = 1, . . . , N , we have

L D2
Ψ∑N

k=1

(
αγk − Lγ 2

k /2
) = 2L2 D2

Ψ

Nα2 , (3.10)

which together with (3.4), clearly imply (3.9).
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4 Stochastic first-order methods

In this section, we consider problem (1.1) with f ∈ C1,1
L (X), but its exact gradient

is not available. We assume that only noisy first-order information of f is available
via subsequent calls to the stochastic first-order oracle SFO. In particular, given the
k-th iteration xk ∈ X of our algorithm, the SFO will output the stochastic gradient
G(xk, ξk), where ξk is a random vector whose distribution is supported on Ξk ⊆ R

d .
We assume the stochastic gradient G(xk, ξk) satisfies Assumption A1.

This section also consists of two subsections. In Sect. 4.1, we present a stochastic
variant of the PG algorithm in Sect. 3 incorporated with a randomized stopping crite-
rion, called the RSPG algorithm. Then, in Sect. 4.2, we describe a two phase RSPG
algorithm, called the 2-RSPG algorithm, which can significantly reduce the large-
deviations resulted from the RSPG algorithm. We assume throughout this section that
the norm ‖ · ‖ is associated with the inner product 〈·, ·〉.

4.1 A randomized stochastic projected gradient method

Convexity of the objective function often plays an important role on establishing the
convergence results for the current SA algorithms [14,15,21,22,26]. In this subsection,
we give an SA-type algorithm which does not require the convexity of the objective
function. Moreover, this weaker requirement enables the algorithm to deal with the
case in which the random noises {ξk}, k ≥ 1 could depend on the iterates {xk}.
A randomized stochastic projected gradient (RSPG) algorithm

Input: Given initial point x1 ∈ X , iteration limit N , the stepsizes {γk} with
γk > 0, k ≥ 1, the batch sizes {mk} with mk > 0, k ≥ 1, and the probabil-
ity mass function PR supported on {1, . . . , N }.
Step 0. Let R be a random variable with probability mass function PR .
Step k = 1, . . . , R − 1. Call the SFO mk times to obtain G(xk, ξk,i ),

i = 1, . . . , mk , set

Gk = 1

mk

mk∑
i=1

G
(
xk, ξk,i

)
, (4.1)

and compute

xk+1 = arg min
u∈X

{
〈Gk, u〉 + 1

γk
V (u, xk) + h(u)

}
. (4.2)

Output: xR .

Unlike many SA algorithms, in the RSPG algorithm we use a randomized iteration
count to terminate the algorithm. In the RSPG algorithm, we also need to specify the
stepsizes {γk}, the batch sizes {mk} and probability mass function PR . We will again
address these issues after presenting some convergence results of the RSPG algorithm.
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Theorem 2 Suppose that the stepsizes {γk} in the RSPG algorithm are chosen such
that 0 < γk ≤ α/L with γk < α/L for at least one k, and the probability mass function
PR are chosen such that for any k = 1, . . . , N,

PR(k) := Prob{R = k} = αγk − Lγ 2
k∑N

k=1

(
αγk − Lγ 2

k

) . (4.3)

Then, under Assumption A1,

(a) for any N ≥ 1, we have

E

[
‖g̃X,R ‖2

]
≤ L D2

Ψ + (σ 2/α)
∑N

k=1(γk/mk)∑N
k=1

(
αγk − Lγ 2

k

) , (4.4)

where the expectation is taken with respect to R and ξ[N ] := (ξ1, . . . , ξN ), DΨ

is defined in (3.5), and the stochastic projected gradient

g̃X,k := PX (xk, Gk, γk) , (4.5)

with PX defined in (2.4);
(b) if, in addition, f in problem (1.1) is convex with an optimal solution x∗, and the

stepsizes {γk} are non-decreasing, i.e.,

0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γN ≤ α

L
, (4.6)

we have

E
[
Ψ (xR) − Ψ (x∗)

] ≤ (α − Lγ1) V (x∗, x1) + (σ 2/2)
∑N

k=1(γ
2
k /mk)∑N

k=1

(
αγk − Lγ 2

k

) , (4.7)

where the expectation is taken with respect to R and ξ[N ]. Similarly, if the stepsizes
{γk} are non-increasing, i.e.,

α

L
≥ γ1 ≥ γ2 ≥ · · · ≥ γN ≥ 0, (4.8)

we have

E
[
Ψ (xR) − Ψ (x∗)

] ≤ (α − LγN )V̄ (x∗) + (σ 2/2)
∑N

k=1(γ
2
k /mk)∑N

k=1

(
αγk − Lγ 2

k

) , (4.9)

where V̄ (x∗) := max
u∈X

V (x∗, u).
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Proof Let δk ≡ Gk −∇ f (xk), k ≥ 1. Since f ∈ C1,1
L (X), it follows from (1.6), (2.4),

(4.2) and (4.5) that, for any k = 1, . . . , N , we have

f (xk+1) ≤ f (xk) + 〈∇ f (xk), xk+1 − xk〉 + L

2
‖xk+1 − xk‖2

= f (xk) − γk
〈∇ f (xk), g̃X,k

〉+ L

2
γ 2

k ‖g̃X,k ‖2

= f (xk) − γk
〈
Gk, g̃X,k

〉+ L

2
γ 2

k ‖g̃X,k ‖2 + γk
〈
δk, g̃X,k

〉
. (4.10)

So, by Lemma 1 with x = xk, γ = γk and g = Gk , we obtain

f (xk+1) ≤ f (xk) −
[
αγk‖g̃X,k ‖2 + h(xk+1) − h(xk)

]
+ L

2
γ 2

k ‖g̃X,k ‖2

+ γk
〈
δk, gX,k

〉+ γk
〈
δk, g̃X,k − gX,k

〉
,

where the projected gradient gX,k is defined in (3.3). Then, from the above inequality,
(3.3) and (4.5), we obtain

Ψ (xk+1) ≤ Ψ (xk) −
(

αγk − L

2
γ 2

k

)
‖g̃X,k ‖2 + γk

〈
δk, gX,k

〉+ γk‖δk‖‖g̃X,k − gX,k ‖

≤ Ψ (xk) −
(

αγk − L

2
γ 2

k

)
‖g̃X,k ‖2 + γk

〈
δk, gX,k

〉+ γk

α
‖δk‖2,

where the last inequality follows from Proposition 1 with x = xk, γ = γk, g1 = Gk

and g2 = ∇ f (xk). Summing up the above inequalities for k = 1, . . . , N and noticing
that γk ≤ α/L , we obtain

N∑
k=1

(
αγk − Lγ 2

k

)
‖g̃X,k ‖2 ≤

N∑
k=1

(
αγk − L

2
γ 2

k

)
‖g̃X,k ‖2

≤ Ψ (x1) − Ψ (xk+1) +
N∑

k=1

{
γk
〈
δk, gX,k

〉+ γk

α
‖δk‖2

}

≤ Ψ (x1) − Ψ ∗ +
N∑

k=1

{
γk
〈
δk, gX,k

〉+ γk

α
‖δk‖2

}
. (4.11)

Notice that the iterate xk is a function of the history ξ[k−1] of the generated
random process and hence is random. By part a) of Assumption A1, we have
E[〈δk, gX,k 〉|ξ[k−1]] = 0. In addition, denoting δk,i ≡ G(xk, ξk,i ) − ∇ f (xk),

i = 1, . . . , mk, k = 1, . . . , N , S j = ∑ j
i=1 δk,i , j = 1, . . . , mk , and S0 = 0, and

noting that E[〈Si−1, δk,i 〉|Si−1] = 0 for all i = 1, . . . , mk , we have
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E

[
‖Smk ‖2

]
= E

[
‖Smk−1‖2 + 2〈Smk−1, δk,mk 〉 + ‖δk,mk ‖2

]

= E

[
‖Smk−1‖2

]
+ E

[
‖δk,mk ‖2

]
= · · · =

mk∑
i=1

E‖δk,i‖2,

which, in view of (4.1) and Assumption A1(b), then implies that

E

[
‖δk‖2

]
= E

⎡
⎣
∥∥∥∥∥

1

mk

mk∑
i=1

δk,i

∥∥∥∥∥
2
⎤
⎦ = 1

m2
k

E

[
‖Smk ‖2

]
= 1

m2
k

mk∑
i=1

E

[
‖δk,i‖2

]
≤ σ 2

mk
.

(4.12)

With these observations, now taking expectations with respect to ξ[N ] on both sides
of (4.11), we get

N∑
k=1

(
αγk − Lγ 2

k

)
E‖g̃X,k ‖2 ≤ Ψ (x1) − Ψ ∗ + (σ 2/α)

N∑
k=1

(γk/mk).

Then, since
∑N

k=1

(
αγk − Lγ 2

k

)
> 0 by our assumption, dividing both sides of the

above inequality by
∑N

k=1

(
αγk − Lγ 2

k

)
and noticing that

E

[
‖g̃X,R ‖2

]
=
∑N

k=1

(
αγk − Lγ 2

k

)
E‖g̃X,k ‖2

∑N
k=1

(
αγk − Lγ 2

k

) ,

we have (4.4) holds.
We now show part (b) of the theorem. By Lemma 3 with x = xk, γ = γk, g = Gk

and u = x∗, we have

〈Gk, xk+1〉 + h(xk+1) + 1

γk
V (xk+1, xk) ≤ 〈Gk, x∗〉 + h(x∗)

+ 1

γk

[
V (x∗, xk) − V

(
x∗, xk+1

)]
,

which together with (1.6) and definition of δk give

f (xk+1) + 〈∇ f (xk) + δk, xk+1〉 + h(xk+1) + 1

γk
V (xk+1, xk)

≤ f (xk) + 〈∇ f (xk), xk+1 − xk〉 + L

2
‖xk+1 − xk‖2

+ 〈∇ f (xk) + δk, x∗〉+ h(x∗) + 1

γk

[
V (x∗, xk) − V (x∗, xk+1)

]
.
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Simplifying the above inequality, we have

Ψ (xk+1) ≤ f (xk) + 〈∇ f (xk), x∗ − xk
〉+ h(x∗) + 〈

δk, x∗ − xk+1
〉+ L

2
‖xk+1−xk‖2

− 1

γk
V (xk+1, xk) + 1

γk

[
V (x∗, xk) − V (x∗, xk+1)

]
.

Then, it follows from the convexity of f , (2.1) and (2.2) that

Ψ (xk+1) ≤ f (x∗) + h(x∗) + 〈
δk, x∗ − xk+1

〉+
(

L

2
− α

2γk

)
‖xk+1 − xk‖2

+ 1

γk

[
V (x∗, xk) − V (x∗, xk+1)

]

= Ψ (x∗) + 〈
δk, x∗ − xk

〉+ 〈δk, xk − xk+1〉 + Lγk − α

2γk
‖xk+1 − xk‖2

+ 1

γk

[
V (x∗, xk) − V (x∗, xk+1)

]

≤ Ψ (x∗) + 〈
δk, x∗ − xk

〉+ ‖δk‖‖xk − xk+1‖ − α − Lγk

2γk
‖xk+1 − xk‖2

+ 1

γk

[
V (x∗, xk) − V (x∗, xk+1)

]

≤ Ψ (x∗)+〈δk, x∗−xk
〉+ γk

2(α−Lγk)
‖δk‖2+ 1

γk

[
V (x∗, xk)−V (x∗, xk+1)

]
,

where the last inequality follows from the fact that ax − bx2/2 ≤ a2/(2b). Noticing
γk ≤ α/L , multiplying both sides of the above inequality by (αγk−Lγ 2

k ) and summing
them up for k = 1, . . . , N , we obtain

N∑
k=1

(
αγk − Lγ 2

k

) [
Ψ (xk+1) − Ψ (x∗)

] ≤
N∑

k=1

(
αγk − Lγ 2

k

) 〈
δk, x∗ − xk

〉

+
N∑

k=1

γ 2
k

2
‖δk‖2 +

N∑
k=1

(α − Lγk)

× [
V (x∗, xk) − V (x∗, xk+1)

]
. (4.13)

Now, if the increasing stepsize condition (4.6) is satisfied, we have from V (x∗, xN+1)

≥ 0 that

N∑
k=1

(α − Lγk)
[
V (x∗, xk) − V (x∗, xk+1)

]

= (α − Lγ1)V (x∗, x1) +
N∑

k=2

(α − Lγk)V (x∗, xk) −
N∑

k=1

(α − Lγk)V (x∗, xk+1)
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≤ (α − Lγ1)V (x∗, x1) +
N∑

k=2

(α − Lγk−1)V (x∗, xk) −
N∑

k=1

(α−Lγk)V (x∗, xk+1)

= (α − Lγ1)V (x∗, x1) − (α − LγN )V (x∗, xN+1)

≤ (α − Lγ1)V (x∗, x1).

Taking expectation on both sides of (4.13) with respect to ξ[N ], again using the obser-
vations that E[‖δ2

k ‖] ≤ σ 2/mk and E[〈δk, gX,k 〉|ξ[k−1]] = 0, then it follows from the
above inequality that

N∑
k=1

(
αγk −Lγ 2

k

)
Eξ[N ]

[
Ψ (xk+1)−Ψ (x∗)

] ≤ (α−Lγ1)V (x∗, x1)+ σ 2

2

N∑
k=1

(γ 2
k /mk).

Finally, (4.7) follows from the above inequality and the arguments similar to the proof
in part (a). Now, if the decreasing stepsize condition (4.8) is satisfied, we have from
the definition V̄ (x∗) := maxu∈X V (x∗, u) ≥ 0 and V (x∗, xN+1) ≥ 0 that

N∑
k=1

(α − Lγk)
[
V (x∗, xk) − V (x∗, xk+1)

]

= (α−Lγ1)V (x∗, x1)+L
N−1∑
k=1

(γk −γk+1)V (x∗, xk+1)−(α−LγN )V (x∗, xN+1)

≤ (α − Lγ1)V̄ (x∗) + L
N−1∑
k=1

(γk − γk+1)V̄ (x∗) − (α − LγN )V (x∗, xN+1)

≤ (α − LγN )V̄ (x∗),

which together with (4.13) and similar arguments used above would give (4.9).

A few remarks about Theorem 2 are in place. Firstly, if f is convex and the batch
sizes mk = 1, then by properly choosing the stepsizes {γk} (e.g., γk = O(1/

√
k) for

k large), we can still guarantee a nearly optimal rate of convergence for the RSPG
algorithm (see (4.7) or (4.9), and [21,26]). However, if f is possibly nonconvex and
mk = 1, then the right hand side of (4.4) is bounded from below by

L D2
Ψ + (σ 2/α)

∑N
k=1 γk∑N

k=1

(
αγk − Lγ 2

k

) ≥ σ 2

α2 ,

which can not guarantee the convergence of the RSPG algorithm, no matter how the
stepsizes {γk} are specified. This is exactly the reason why we consider taking multiple
samples G(xk, ξk,i ), i = 1, . . . , mk , for some mk > 1 at each iteration of the RSPG
method.

Secondly, we need to estimate L to ensure the condition on the stepsize γk . In
Sect. 6, we describe how to do it by taking a small number of samples before running
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the algorithm. However, we do not need a very accurate estimation for L (see the
discussion after Corollary 2.2 in [16] for more details in the similar case).

Thirdly, from (4.11) in the proof of Theorem 2, we see that the stepsize policies
can be further relaxed to get a similar result as (4.4). More specifically, we can have
the following corollary.

Corollary 2 Suppose that the stepsizes {γk} in the RSPG algorithm are chosen such
that 0 < γk ≤ 2α/L with γk < 2α/L for at least one k, and the probability mass
function PR are chosen such that for any k = 1, . . . , N,

PR(k) := Prob{R = k} = αγk − Lγ 2
k /2∑N

k=1(αγk − Lγ 2
k /2)

. (4.14)

Then, under Assumption A1, we have

E

[
‖g̃X,R ‖2

]
≤ L D2

Ψ + (σ 2/α)
∑N

k=1(γk/mk)∑N
k=1(αγk − Lγ 2

k /2)
, (4.15)

where the expectation is taken with respect to R and ξ[N ] := (ξ1, . . . , ξN ).

Based on the Theorem 2, we can establish the following complexity results of the
RSPG algorithm with proper selection of stepsizes {γk} and batch sizes {mk} at each
iteration.

Corollary 3 Suppose that in the RSPG algorithm the stepsizes γk = α/(2L) for all
k = 1, . . . , N, and the probability mass function PR are chosen as (4.3). Also assume
that the batch sizes mk = m, k = 1, . . . , N, for some m ≥ 1. Then under Assumption
A1, we have

E

[
‖gX,R ‖2

]
≤ 8L2 D2

Ψ

α2 N
+ 6σ 2

α2m
and E

[
‖g̃X,R ‖2

]
≤ 4L2 D2

Ψ

α2 N
+ 2σ 2

α2m
, (4.16)

where gX,R and g̃X,R are defined in (3.3) and (4.5), respectively. If, in addition, f in
the problem (1.1) is convex with an optimal solution x∗, then

E
[
Ψ (xR) − Ψ (x∗)

] ≤ 2LV (x∗, x1)

Nα
+ σ 2

2Lm
. (4.17)

Proof By (4.4), we have

E

[
‖g̃X,R ‖2

]
≤ L D2

Ψ + σ 2

mα

∑N
k=1 γk∑N

k=1

(
αγk − Lγ 2

k

) ,

which together with γk = α/(2L) for all k = 1, . . . , N imply that

E

[
‖g̃X,R ‖2

]
= L D2

Ψ + σ 2 N
2mL

Nα2

4L

= 4L2 D2
Ψ

Nα2 + 2σ 2

mα2 .

123



Mini-batch stochastic approximation methods

Then, by Proposition 1 with x = xR, γ = γR, g1 = ∇ f (xR), g2 = Gk , we have from
the above inequality and 4.12 that

E

[
‖gX,R ‖2

]
≤ 2E

[
‖g̃X,R ‖2

]
+ 2E

[
‖gX,R − g̃X,R ‖2

]

≤ 2

(
4L2 D2

Ψ

Nα2 + 2σ 2

α2m

)
+ 2

α2 E

[
‖Gk − ∇ f (xR)‖2

]

≤ 8L2 D2
Ψ

Nα2 + 6σ 2

α2m
.

Moreover, since γk = α/(2L) for all k = 1, . . . , N , the stepsize conditions (4.6)
are satisfied. Hence, if the problem is convex, (4.17) can be derived in a similar way
as (4.7).

Note that all the bounds in the above corollary depend on m. Indeed, if m is set
to some fixed positive integer constant, then the second terms in the above results
will always majorize the first terms when N is sufficiently large. Hence, the appro-
priate choice of m should be balanced with the number of iterations N , which would
eventually depend on the total computational budget given by the user. The following
corollary shows an appropriate choice of m depending on the total number of calls to
the SFO.

Corollary 4 Suppose that all the conditions in Corollary 3 are satisfied. Given a fixed
total number of calls N̄ to the SFO, if the number of calls to the SFO (number of
samples) at each iteration of the RSPG algorithm is

m =
⌈

min

{
max

{
1,

σ
√

6N̄

4L D̃

}
, N̄

}⌉
, (4.18)

for some D̃ > 0, then we have (α2/L) E[‖gX,R ‖2] ≤ BN̄ , where

BN̄ := 16L D2
Ψ

N̄
+ 4

√
6σ√
N̄

(
D2

Ψ

D̃
+ D̃ max

{
1,

√
6σ

4L D̃
√

N̄

})
. (4.19)

If, in addition, f in problem (1.1) is convex, then E[Ψ (xR) − Ψ (x∗)] ≤ CN̄ , where
x∗ is an optimal solution and

CN̄ := 4LV (x∗, x1)

α N̄
+

√
6σ

α
√

N̄

(
V (x∗, x1)

D̃
+ α D̃

3
max

{
1,

√
6σ

4L D̃
√

N̄

})
.(4.20)

Proof Given the total number of calls to the stochastic first-order oracle N̄ and the
number m of calls to the SFO at each iteration, the RSPG algorithm can perform
at most N = �N̄/m� iterations. Obviously, N ≥ N̄/(2m). With this observation
and (4.16), we have
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E

[
‖gX,R ‖2

]
≤ 16mL2 D2

Ψ

α2 N̄
+ 6σ 2

α2m

≤ 16L2 D2
Ψ

α2 N̄

(
1 + σ

√
6N̄

4L D̃

)
+ max

{
4
√

6L D̃σ

α2
√

N̄
,

6σ 2

α2 N̄

}

= 16L2 D2
Ψ

α2 N̄
+ 4

√
6Lσ

α2
√

N̄

(
D2

Ψ

D̃
+ D̃ max

{
1,

√
6σ

4L D̃
√

N̄

})
, (4.21)

which gives (4.19). The bound (4.20) can be obtained in a similar way.

We now would like add a few remarks about the above results in Corollary 4.
Firstly, although we use the constant value for mk = m at each iteration, one can also
choose it adaptively during the execution of the RSPG algorithm while monitoring
the convergence. For example, in practice mk could adaptively depend on σ 2

k :=
E
[‖G(xk, ξk) − ∇ f (xk)‖2

]
. Another example is to choose growing batch sizes where

one uses a smaller number of samples in the beginning of the algorithm. In particular,
by setting

mk =
⌈

min

{
σ(k2 N̄ )

1
4

L D̃
, N̄

}⌉
,

we can easily see that the RSPG algorithm still achieves the same rates of convergence
as those obtained by using constant bath sizes in Corollary 4. Secondly, we need to
specify the parameter D̃ in (4.18). It can be seen from (4.19) and (4.20) that when N̄
is relatively large such that

max
{

1,
√

6σ/(4L D̃
√

N̄ )
}

= 1, i.e., N̄ ≥ 3σ 2/(8L2 D̃2), (4.22)

an optimal choice of D̃ would be DΨ and
√

3V (x∗, x1)/α for solving nonconvex and
convex SP problems, respectively. With this selection of D̃, the bounds in (4.19) and
(4.20), respectively, reduce to

α2

L
E

[
‖gX,R ‖2

]
≤ 16L D2

Ψ

N̄
+ 8

√
6DΨ σ√

N̄
(4.23)

and

E
[
Ψ (x∗) − Ψ (x1)

] ≤ 4LV (x∗, x1)

α N̄
+ 2

√
2V (x∗, x1)σ√

α N̄
. (4.24)

Thirdly, the stepsize policy in Corollary 3 and the probability mass function (4.3)
together with the number of samples (4.18) at each iteration of the RSPG algorithm
provide a unified strategy for solving both convex and nonconvex SP problems. In
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particular, the RSPG algorithm exhibits a nearly optimal rate of convergence for solv-
ing smooth convex SP problems, since the second term in (4.24) is unimprovable (see
e.g., [27]), while the first term in (4.24) can be considerably improved [21].

4.2 A two-phase randomized stochastic projected gradient method

In the previous subsection, we present the expected complexity results over many runs
of the RSPG algorithm. Indeed, we are also interested in the performance of a single
run of RSPG. In particular, we want to establish the complexity results for finding an
(ε,Λ)-solution of the problem (1.1), i.e., a point x ∈ X satisfying Prob{‖gX (x)‖2 ≤
ε} ≥ 1 − Λ, for some ε > 0 and Λ ∈ (0, 1). Noticing that by the Markov’s inequality
and (4.19), we can directly have

Prob

{
‖gX,R ‖2 ≥ λLBN̄

α2

}
≤ 1

λ
, for any λ > 0. (4.25)

This implies that the total number of calls to the SFO performed by the RSPG
algorithm for finding an (ε,Λ)-solution, after disregarding a few constant factors, can
be bounded by

O
{

1

Λε
+ σ 2

Λ2ε2

}
. (4.26)

In this subsection, we present a approach to improve the dependence of the above
bound on Λ. More specifically, we propose a variant of the RSPG algorithm which has
two phases: an optimization phase and a post-optimization phase. The optimization
phase consists of independent single runs of the RSPG algorithm to generate a list
of candidate solutions, and in the post-optimization phase, we choose a solution x∗
from these candidate solutions generated by the optimization phase. For the sake of
simplicity, we assume throughout this subsection that the norm ‖ · ‖ in R

n is the
standard Euclidean norm.
A two phase RSPG (2-RSPG) algorithm

Input: Given initial point x1 ∈ X , number of runs S, total N̄ of calls to the SFO
in each run of the RSPG algorithm, and sample size T in the post-optimization
phase.
Optimization phase:

For s = 1, . . . , S
Call the RSPG algorithm with initial point x1, iteration limit N = �N̄/m�
with m given by (4.18), stepsizes γk = α/(2L) for k = 1, . . . , N , batch sizes
mk = m, and probability mass function PR in (4.3).

Let x̄s = xRs , s = 1, . . . , S, be the outputs of this phase.
Post-optimization phase:

Choose a solution x̄∗ from the candidate list {x̄1, . . . , x̄S} such that

‖ḡX (x̄∗)‖ = min
s=1,...,S

‖ḡX (x̄s)‖, ḡX (x̄s) := PX (x̄s, ḠT (x̄s), γRs ), (4.27)
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where ḠT (x) = 1
T

∑T
k=1 G(x, ξk) and PX (x, g, γ ) is defined in (2.4).

Output: x̄∗.

In the 2-RSPG algorithm, the total number of calls of SFO in the optimization
phase and post-optimization phase is bounded by S× N̄ and S×T , respectively. In the
next theorem, we provide certain bounds of S, N̄ and T for finding an (ε,Λ)-solution
of problem (1.1).

We need the following well-known large deviation theorem of vector-valued mar-
tingales to derive the large deviation results of the 2-RSPG algorithm (see [18] for a
general result using possibly non-Euclidean norm).

Lemma 4 Assume that we are given a Polish space with Borel probability measure
μ and a sequence of F0 = {∅,Ω} ⊆ F1 ⊆ F2 ⊆ . . . of σ -sub-algebras of Borel
σ -algebra of Ω . Let ζi ∈ R

n, i = 1, . . . ,∞, be a martingale-difference sequence
of Borel functions on Ω such that ζi is Fi measurable and E[ζi |i − 1] = 0, where
E[·|i], i = 1, 2, . . ., denotes the conditional expectation w.r.t. Fi and E ≡ E[·|0] is
the expectation w.r.t. μ.

(a) If E[‖ζi‖2] ≤ σ 2
i for any i ≥ 1, then E[‖∑N

i=1 ζi‖2] ≤ ∑N
i=1 σ 2

i . As a conse-
quence, we have

∀N ≥ 1, λ ≥ 0 : Prob

{
‖

N∑
i=1

ζi‖2 ≥ λ

N∑
i=1

σ 2
i

}
≤ 1

λ
;

(b) If E
[
exp

(‖ζi‖2/σ 2
i

) |i − 1
] ≤ exp(1) almost surely for any i ≥ 1, then

∀N ≥ 1, λ ≥ 0 : Prob

⎧⎨
⎩‖

N∑
i=1

ζi‖ ≥ √
2(1 + λ)

√√√√ N∑
i=1

σ 2
i

⎫⎬
⎭ ≤ exp(−λ2/3).

We are now ready to state the main convergence properties for the 2-RSPG algo-
rithm.

Theorem 3 Under Assumption A1, the following statements hold for the 2-RSPG
algorithm applied to problem (1.1).

(a) Let BN̄ be defined in (4.19). Then, for all λ > 0

Prob

{
‖gX (x̄∗)‖2 ≥ 2

α2

(
4LBN̄ + 3λσ 2

T

)}
≤ S

λ
+ 2−S; (4.28)
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(b) Let ε > 0 and Λ ∈ (0, 1) be given. If the parameters (S, N̄ , T ) are set to

S(Λ) := ⌈
log2(2/Λ)

⌉
, (4.29)

N̄ (ε) :=
⎡
⎢⎢⎢

max

⎧⎨
⎩

512L2 D2
Ψ

α2ε
,

[(
D̃ + D2

Ψ

D̃

)
128

√
6Lσ

α2ε

]2

,
3σ 2

8L2 D̃2

⎫⎬
⎭

⎤
⎥⎥⎥

,

(4.30)

T (ε,Λ) :=
⌈

24S(Λ)σ 2

α2Λε

⌉
, (4.31)

then the 2-RSPG algorithm computes an (ε,Λ)-solution of the problem (1.1) after
taking at most

S(Λ)
[
N̄ (ε) + T (ε,Λ)

]
(4.32)

calls of the stochastic first order oracle.

Proof We first show part (a). Let gX (x̄s) = PX (x̄s,∇ f (x̄s), γRs ). Then, it follows
from the definition of x̄∗ in (4.27) that

‖ḡX (x̄∗)‖2 = min
s=1,...,S

‖ḡX (x̄s)‖2 = min
s=1,...,S

‖gX (x̄s) + ḡX (x̄s) − gX (x̄s)‖2

≤ min
s=1,...,S

{
2‖gX (x̄s)‖2 + 2‖ḡX (x̄s) − gX (x̄s)‖2

}

≤ 2 min
s=1,...,S

‖gX (x̄s)‖2 + 2 max
s=1,...,S

‖ḡX (x̄s) − gX (x̄s)‖2,

which implies that

‖gX (x̄∗)‖2 ≤ 2‖ḡX (x̄∗)‖2 + 2‖gX (x̄∗) − ḡX (x̄∗)‖2

≤ 4 min
s=1,...,S

‖gX (x̄s)‖2 + 4 max
s=1,...,S

‖ḡX (x̄s) − gX (x̄s)‖2

+2‖gX (x̄∗) − ḡX (x̄∗)‖2

≤ 4 min
s=1,...,S

‖gX (x̄s)‖2 + 6 max
s=1,...,S

‖ḡX (x̄s) − gX (x̄s)‖2. (4.33)

We now provide certain probabilistic bounds to the two terms in the right hand side
of the above inequality. Firstly, from the fact that x̄s, 1 ≤ s ≤ S, are independent and
(4.25) (with λ = 2), we have

Prob

{
min

s∈{1,2,...,S}‖gX (x̄s)‖2 ≥ 2LBN̄

α2

}
=

S∏
s=1

Prob

{
‖gX (x̄s)‖2 ≥ 2LBN̄

α2

}
≤ 2−S .

(4.34)
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Moreover, denoting δs,k = G(x̄s, ξk)−∇ f (x̄s), k = 1, . . . , T , by Proposition 1 with
x = x̄s, γ = γRs , g1 = ḠT (x̄s), g2 = ∇ f (x̄s), we have

‖ḡX (x̄s) − gX (x̄s)‖ ≤ 1

α
‖

T∑
k=1

δs,k/T ‖. (4.35)

From the above inequality, Assumption A1 and Lemma 4(a), for any λ > 0 and any
s = 1, . . . , S, we have

Prob

{
‖ḡX (x̄s) − gX (x̄s)‖2 ≥ λσ 2

α2T

}
≤ Prob

{
‖

T∑
k=1

δs,k‖2 ≥ λT σ 2

}
≤ 1

λ
,

which implies

Prob

{
max

s=1,...,S
‖ḡX (x̄s) − gX (x̄s)‖2 ≥ λσ 2

α2T

}
≤ S

λ
. (4.36)

Then, the conclusion (4.28) follows from (4.33), (4.34) and (4.36).
We now show part (b). With the settings in part (b), it is easy to count the total

number of calls of the SFO in the 2-RSPG algorithm is bounded up by (4.32). Hence,
we only need to show that the x̄∗ returned by the 2-RSPG algorithm is indeed an
(ε,Λ)-solution of the problem (1.1). With the choice of N̄ (ε) in (4.30), we can see
that (4.22) holds. So, we have from (4.19) and (4.30) that

BN̄ (ε) = 16L D2
Ψ

N̄ (ε)
+ 4

√
6σ√

N̄ (ε)

(
D̃ + D2

Ψ

D̃

)
≤ α2ε

32L
+ α2ε

32L
= α2ε

16L
.

By the above inequality and (4.31), setting λ = 2S/Λ in (4.28), we have

8LBN̄ (ε)

α2 + 6λσ 2

α2T (ε,Λ)
≤ ε

2
+ λΛε

4S
= ε,

which together with (4.28), (4.29) and λ = 2S/Λ imply

Prob
{
‖gX (x̄∗)‖2 ≥ ε

}
≤ Λ

2
+ 2−S ≤ Λ.

Hence,x̄∗ is an (ε,Λ)-solution of the problem (1.1).

Now, it is interesting to compare the complexity bound in (4.32) with the one in
(4.26). In view of (4.29), (4.30) and (4.31), the complexity bound in (4.32) for finding
an (ε,Λ)-solution, after discarding a few constant factors, is equivalent to

O
{

1

ε
log2

1

Λ
+ σ 2

ε2 log2
1

Λ
+ σ 2

Λε
log2

2
1

Λ

}
. (4.37)
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When the second terms are the dominating terms in both bounds, the above
bound (4.37) can be considerably smaller than the one in (4.26) up to a factor of
1/
[
Λ2 log2(1/Λ)

]
.

The following theorem shows that under a certain “light-tail” assumption:

A2 For any xk ∈ X , we have

E

[
exp

{
‖G(xk, ξk) − ∇ f (x)‖2/σ 2

}]
≤ exp{1}, (4.38)

the bound (4.32) in Theorem 3 can be further improved.

Corollary 5 Under Assumptions A1 and A2, the following statements hold for the
2-RSPG algorithm applied to problem (1.1).

(a) Let BN̄ is defined in (4.19). Then, for all λ > 0

Prob

{
‖gX (x̄∗)‖2 ≥

[
8LBN̄

α2 + 12(1 + λ)2σ 2

T α2

]}
≤ S exp

(
−λ2

3

)
+ 2−S;

(4.39)

(b) Let ε > 0 and Λ ∈ (0, 1) be given. If S and N̄ are set to S(Λ) and N̄ (ε) as in
(4.29) and (4.30), respectively, and the sample size T is set to

T ′(ε,Λ) := 24σ 2

α2ε

[
1 +

(
3 log2

2S(Λ)

Λ

) 1
2
]2

, (4.40)

then the 2-RSPG algorithm can compute an (ε,Λ)-solution of the problem (1.1)
after taking at most

S(Λ)
[
N̄ (ε) + T ′(ε,Λ)

]
(4.41)

calls to the stochastic first-order oracle.

Proof We only give a sketch of the proof for part (a). The proof of part (b) follows
from part (a) and similar arguments for proving (b) part of Theorem 3. Now, denoting
δs,k = G(x̄s, ξk) − ∇ f (x̄s), k = 1, . . . , T , again by Proposition 1, we have (4.35)
holds. Then, by Assumption A2 and Lemma 4(b), for any λ > 0 and any s = 1, . . . , S,
we have

Prob

{
‖ḡX (x̄s) − gX (x̄s)‖2 ≥ (1 + λ)2 2σ 2

α2T

}

≤ Prob

{
‖

T∑
k=1

δs,k‖ ≥ √
2T (1 + λ)σ

}
≤ exp

(
−λ2

3

)
,
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which implies that for any λ > 0

Prob

{
max

s=1,...,S
‖ḡX (x̄s) − gX (x̄s)‖2 ≥ (1 + λ)2 2σ 2

α2T

}
≤ S exp

(
−λ2

3

)
, (4.42)

Then, the conclusion (4.39) follows from (4.33), (4.34) and (4.42).

In view of (4.29), (4.30) and (4.40), the bound in (4.41), after discarding a few
constant factors, is equivalent to

O
{

1

ε
log2

1

Λ
+ σ 2

ε2 log2
1

Λ
+ σ 2

ε
log2

2
1

Λ

}
. (4.43)

Clearly, the third term of the above bound is smaller than the third term in (4.37)
by a factor of 1/Λ.

In the remaining part of this section, we briefly discuss another variant of the
2-RSPG algorithm, namely, 2-RSPG-V algorithm which can improve the practical
performance of the 2-RSPG algorithm (see Sect. 6). Similarly to the 2-RSPG algo-
rithm, this variant also consists of two phases. The only difference exists in that the
S runs of the RSPG algorithm in the optimization phase are not independent of each
other and the output of each run is used as the initial point of the next run, although the
post-optimization phase of the 2-RSPG-V algorithm is the same as that of the 2-RSPG
algorithm. We now formally state the optimization phase of the 2-RSPG-V algorithm
as follows.

Optimization phase of 2-RSPG-V algorithm:
For s = 1, . . . , S

Call the RSPG algorithm with initial point x̄s−1 where x̄0 = x1 and x̄s = xRs , s =
1, . . . , S, are the outputs of the s-th run of the RSPG algorithm, iteration limit
N = �N̄/m� with m given by (4.18), stepsizes γk = α/(2L) for k = 1, . . . , N ,
batch sizes mk = m, and probability mass function PR in (4.3).

As mentioned above, in the 2-RSPG-V algorithm, unlike the 2-RSPG algorithm,
the S candidate solutions are not independent and hence the analysis of Theorem 3
cannot be directly applied. However, by slightly modifying the proof of Theorem 3, we
can show that the above 2-RSPG-V algorithm exhibits similar convergence behavior
as the 2-RSPG algorithm under certain more restrictive conditions.

Corollary 6 Suppose that the feasible set X is bounded and Assumption A1 holds.
Then, the complexity of the 2-RSPG-V algorithm to find an (ε,Λ)-solution of problem
(1.1) is bounded by (4.37). If in addition, Assumption A2 holds, then this complexity
bound improves to (4.43).

Proof Denote Ψ̄ = maxx∈X Ψ (x) and let Es be the event that ‖gX (x̄s)‖2 ≥ 2LB̂N̄
α2

where

B̂N̄ := 16(Ψ̄ − Ψ ∗)
N̄

+ 4
√

6σ√
N̄

(
Ψ̄ − Ψ ∗

L D̃
+ D̃ max

{
1,

√
6σ

4L D̃
√

N̄

})
.
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Now note that due to the boundedness of X and continuity of f, Ψ̄ is finite and
therefore the bound B̂N̄ is valid. Also observe that by (4.25) (with λ = 2) together
with the fact that B̂N̄ ≥ BN̄ , we have

Prob

⎧⎨
⎩Es |

s−1⋂
j=1

E j

⎫⎬
⎭ ≤ 1

2
, s = 1, 2, . . . , S,

which consequently implies that

Prob

{
min

s∈{1,2,...,S}‖gX (x̄s)‖2 ≥ 2LB̂N̄

α2

}

= Prob

{
S⋂

s=1

Es

}
=

S∏
s=1

Prob

⎧⎨
⎩Es |

s−1⋂
j=1

E j

⎫⎬
⎭ ≤ 2−S .

Observing that the above inequality is similar to (4.34), the rest of proof is almost
identical to those of Theorem 3 and Corollary 5 and hence we skip the details.

5 Stochastic zeroth-order methods

In this section, we discuss how to specialize the RSPG algorithm to deal with the
situations where only noisy function values of the problem (1.1) are available. More
specifically, we assume that we can only access the noisy zeroth-order information
of f by a stochastic zeroth-order oracle (SZO). For any input xk and ξk , the SZO
would output a quantity F(xk, ξk), where xk is the k-th iterate of our algorithm and
ξk is a random variable whose distribution is supported on Ξ ∈ R

d (noting that Ξ

does not depend on xk). Throughout this section, we assume F(xk, ξk) is an unbiased
estimator of f (xk), that is

A3 For any k ≥ 1, we have

E [F(xk, ξk)] = f (xk). (5.1)

We are going to apply the randomized smoothing techniques (see e.g., [9,11,27,29])
to explore the zeroth-order information of f . Hence, throughout this section, we also
assume F(·, ξk) ∈ C1,1

L (Rn) almost surely with respect to ξk ∈ Ξ , which together

with Assumption A3 imply f ∈ C1,1
L (Rn). Also, throughout this section, we assume

that ‖ · ‖ is the standard Euclidean norm.

Suppose v is a random vector in R
n with density function ρ, a smooth approximation

of f is defined as

fμ(x) =
∫

f (x + μv)ρ(v)dv, (5.2)

123



S. Ghadimi et al.

where μ > 0 is the smoothing parameter. For different choices of smoothing dis-
tribution, the smoothed function fμ would have different properties. In this section,
we only consider the Gaussian smoothing distribution. That is we assume that v is a
n-dimensional standard Gaussian random vector and

fμ(x) = 1

(2π)
n
2

∫
f (x + μv)e− 1

2 ‖v‖2
dv = Ev[ f (x + μv)]. (5.3)

Nesterov [29] showed that the Gaussian smoothing approximation and fμ have the
following nice properties.

Lemma 5 If f ∈ C1,1
L (Rn), then

(a) fμ is also Lipschitz continuously differentiable with gradient Lipschitz constant
Lμ ≤ L and

∇ fμ(x) = 1

(2π)
n
2

∫
f (x + μv) − f (x)

μ
ve− 1

2 ‖v‖2
dv. (5.4)

(b) for any x ∈ R
n, we have

| fμ(x) − f (x)| ≤ μ2

2
Ln, (5.5)

‖∇ fμ(x) − ∇ f (x)‖ ≤ μ

2
L(n + 3)

3
2 , (5.6)

Ev

[∥∥∥∥
f (x + μv) − f (x)

μ
v

∥∥∥∥
2
]

≤ 2(n + 4)‖∇ f (x)‖2 + μ2

2
L2(n + 6)3.

(5.7)

(c) fμ is also convex provided f is convex.

In the following, let us define the approximated stochastic gradient of f at xk as

Gμ(xk, ξk, v) = F(xk + μv, ξk) − F(xk, ξk)

μ
v, (5.8)

and define G(xk, ξk) = ∇x F(xk, ξk). We assume the Assumption 1 holds for
G(xk, ξk). Then, by the Assumption A3 and Lemma 5(a), we directly get

Ev,ξk [Gμ(xk, ξk, v)] = ∇ fμ(xk), (5.9)

where the expectation is taken with respect to v and ξk .
Now based on the RSPG algorithm, we state an algorithm which only uses zeroth-

order information to solve problem (1.1).
A randomized stochastic projected gradient free (RSPGF) algorithm

123



Mini-batch stochastic approximation methods

Input: Given initial point x1 ∈ X , iteration limit N , the stepsizes {γk} with γk >

0, k ≥ 1, the batch sizes {mk} with mk > 0, k ≥ 1, and the probability mass
function PR supported on {1, . . . , N }.
Step 0. Let R be a random variable with probability mass function PR .
Step k = 1, . . . , R − 1. Call the SZO mk times to obtain Gμ(xk, ξk,i , vk,i ), i =
1, . . . , mk , set

Gμ,k = 1

mk

mk∑
i=1

Gμ(xk, ξk,i , vk,i ) (5.10)

and compute

xk+1 = arg min
u∈X

{
〈Gμ,k, u〉 + 1

γk
V (u, xk) + h(u)

}
. (5.11)

Output: xR .

Compared with RSPG algorithm, we can see at the k-th iteration, the RSPGF
algorithm simply replaces the stochastic gradient Gk by the approximated stochastic
gradient Gμ,k . By (5.9), Gμ,k can be simply viewed as an unbiased stochastic gradient
of the smoothed function fμ. However, to apply the results developed in the previous
section, we still need an estimation of the bound on the variations of the stochastic
gradient Gμ,k . In addition, the role that the smoothing parameter μ plays and the
proper selection of μ in the RSPGF algorithm are still not clear now. We answer these
questions in the following series of theorems and their corollaries.

Theorem 4 Suppose that the stepsizes {γk} in the RSPGF algorithm are chosen such
that 0 < γk ≤ α/L with γk < α/L for at least one k, and the probability mass function
PR are chosen as (4.3). If ‖∇ f (x)‖ ≤ M for all x ∈ X, then under Assumptions A1
and A3,

(a) for any N ≥ 1, we have

E

[
‖ḡ

μ,X,R ‖2
]

≤ L D2
Ψ + μ2 Ln + (σ̃ 2/α)

∑N
k=1(γk/mk)∑N

k=1

(
αγk − Lγ 2

k

) ,

(5.12)

where the expectation is taken with respect to R, ξ[N ] and v[N ] := (v1, . . . , vN ),

DΨ is defined in (3.5),

σ̃ 2 = 2(n + 4)
[

M2 + σ 2 + μ2L2(n + 4)2
]
, (5.13)

and

ḡ
μ,X,k = PX (xk, Gμ,k, γk), (5.14)

with PX defined in(2.4);
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(b) if, in addition, f in problem (1.1) is convex with an optimal solution x∗, and the
stepsizes {γk} are non-decreasing as (4.6), we have

E
[
Ψ (xR) − Ψ (x∗)

] ≤ (α−Lγ1)V (x∗, x1)+(σ̃ 2/2)
∑N

k=1(γ
2
k /mk)∑N

k=1(αγk − Lγ 2
k )

+ μ2Ln,

(5.15)

where the expectation is taken with respect to R, ξ[N ] and v[N ].

Proof By our assumption that F(·, ξk) ∈ C1,1
L (Rn) almost surely and (5.7) (applying

f = F(·, ξk)), we have

Evk ,ξk

[
‖Gμ(xk, ξk, vk)‖2

]
= Eξk

[
Evk

[
‖Gμ(xk, ξk, vk)‖2

]]

≤ 2(n + 4)[Eξk

[
‖G(xk, ξ)‖2

]
+ μ2

2
L2(n + 6)3

≤ 2(n + 4)
[
Eξk

[
‖∇ f (xk)‖2

]
+ σ 2

]
+ 2μ2 L2(n + 4)3,

where the last inequality follows from Assumption 1 with G(xk, ξk) = ∇x F(xk, ξk).
Then, from (5.9), the above inequality, and ‖∇ f (xk)‖ ≤ M , we have

Evk ,ξk

[
‖Gμ(xk, ξk, vk) − ∇ fμ(xk)‖2

]

= Evk ,ξk

[
‖Gμ(xk, ξk, vk)‖2 + ‖∇ fμ(xk)‖2 − 2〈Gμ(xk, ξk, vk),∇ fμ(xk)〉

]

= Evk ,ξk

[
‖Gμ(xk, ξk, vk)‖2

]
+ ‖∇ fμ(xk)‖2 − 2〈Evk ,ξk [Gμ(xk, ξk, vk)],∇ fμ(xk)〉

= Evk ,ξk

[
‖Gμ(xk, ξk, vk)‖2

]
+ ‖∇ fμ(xk)‖2 − 2‖∇ fμ(xk)‖2

≤ Evk ,ξk

[
‖Gμ(xk, ξk, vk)‖2

]
≤ 2(n + 4)[M2 + σ 2 + μ2L2(n + 4)2] = σ̃ 2.

(5.16)

Now let Ψμ(x) = fμ(x) + h(x) and Ψ ∗
μ = minx∈X Ψμ(x). We have from (5.5) that

|(Ψμ(x) − Ψ ∗
μ) − (Ψ (x) − Ψ ∗)| ≤ μ2 Ln. (5.17)

By Lemma 5(a), we have Lμ ≤ L and therefore fμ ∈ C1,1
L (Rn). With this observation,

noticing (5.9) and (5.16), viewing Gμ(xk, ξk, vk) as a stochastic gradient of fμ, then
by part (a) of Theorem 2 we can directly get

E

[
‖ḡ

μ,X,R ‖2
]

≤
L D2

Ψμ
+ (

σ̃ 2/α
)∑N

k=1(γk/mk)
∑N

k=1(αγk − Lγ 2
k )

,

where DΨμ = [(Ψμ(x1) − Ψ ∗
μ)/L]1/2 and the expectation is taken with respect to

R, ξ[N ] and v[N ]. Then, the conclusion (5.12) follows the above inequality and (5.17).
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We now show part (b). Since f is convex, by Lemma 5(c), fμ is also convex. Again
by (5.17), we have

E
[
Ψ (xR) − Ψ (x∗)

] ≤ E
[
Ψμ(xR) − Ψμ(x∗)

]+ μ2Ln.

Then, by this inequality and the convexity of fμ, it follows from part (b) of Theorem 2
and similar arguments in showing the part (a) of this theorem, the conclusion (5.15)
holds.

Using the previous Theorem 4, similar to the Corollary 3, we can give the following
corollary on the RSPGF algorithm with a certain constant stepsize and batch size at
each iteration.

Corollary 7 Suppose that in the RSPGF algorithm the stepsizes γk = α/(2L) for all
k = 1, . . . , N, the batch sizes mk = m for all k = 1, . . . , N, and the probability mass
function PR is set to (4.3).

Then under Assumptions A1 and A3, we have

E

[
‖ḡ

μ,X,R ‖2
]

≤ 4L2 D2
Ψ + 4μ2 L2n

α2 N
+ 2σ̃ 2

α2m
(5.18)

and

E

[
‖gX,R ‖2

]
≤ μ2L2(n + 3)2

2α2 + 16L2 D2
Ψ + 16μ2 L2n

α2 N
+ 12σ̃ 2

α2m
, (5.19)

where the expectation is taken with respect to R, ξ[N ] and v[N ], and σ̃ , ḡ
μ,X,R and

gX,R are defined in (5.13), (5.14) and (3.3), respectively.
If, in addition, f in the problem (1.1) is convex with an optimal solution x∗, then

E
[
Ψ (xR) − Ψ (x∗)

] ≤ 2LV (x∗, x1)

Nα
+ σ̃ 2

2Lm
+ μ2 Ln. (5.20)

Proof (5.18) immediately follows from (5.12) with γk = α/(2L) and mk = m for
all k = 1, . . . , N . Now let g

μ,X,R = PX (xR,∇ fμ(xR), γR), we have from (5.6) and
Proposition 1 with x = xR, γ = γR, g1 = ∇ f (xR) and g2 = ∇ fμ(xR) that

E

[
‖gX,R − g

μ,X,R ‖2
]

≤ μ2L2(n + 3)2

4α2 . (5.21)

Similarly, by Proposition 1 with x = xR, γ = γR, g1 = Ḡμ,k and g2 = ∇ fμ(xR),
we have

E

[
‖ḡ

μ,X,R − g
μ,X,R ‖2

]
≤ σ̃ 2

α2m
. (5.22)
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Then, it follows from (5.21), (5.22) and (5.18) that

E

[
‖gX,R ‖2

]
≤ 2E

[
‖gX,R − g

μ,X,R ‖2
]

+ 2E

[
‖g

μ,X,R ‖2
]

≤ μ2L2(n + 3)2

2α2 + 4E

[
‖g

μ,X,R − ḡ
μ,X,R ‖2

]
+ 4E

[
‖ḡ

μ,X,R ‖2
]

≤ μ2L2(n + 3)2

2α2 + 12σ̃ 2

α2m
+ 16L2 D2

Ψ + 16μ2 L2n

α2 N
.

Moreover, if f is convex, then (5.20) immediately follows from (5.15), and the
constant stepsizes γk = α/(2L) for all k = 1, . . . , N .

Similar to the Corollary 3 for the RSPG algorithm, the above results also depend on
the number of samples m at each iteration. In addition, the above results depend on the
smoothing parameter μ as well. The following corollary, analogous to the Corollary 4,
shows how to choose m and μ appropriately.

Corollary 8 Suppose that all the conditions in Corollary 7 are satisfied. Given a fixed
total number of calls to the SZO N̄ , if the smoothing parameter satisfies

μ ≤ DΨ√
(n + 4)N̄

, (5.23)

and the number of calls to the SZO at each iteration of the RSPGF method is

m =
⌈

min

{
max

{√
(n + 4)(M2 + σ 2)N̄

L D̃
, n + 4

}
, N̄

}⌉
, (5.24)

for some D̃ > 0, then we have (α2/L) E[‖gX,R ‖2] ≤ B̄N̄ , where

B̄N̄ := (24θ2 + 41)L D2
Ψ (n + 4)

N̄
+ 32

√
(n + 4)(M2 + σ 2)√

N̄

(
D2

Ψ

D̃
+ D̃θ1

)
,

(5.25)

and

θ1 = max

{
1,

√
(n + 4)(M2 + σ 2)

L D̃
√

N̄

}
and θ2 = max

{
1,

n + 4

N̄

}
. (5.26)

If, in addition, f in the problem (1.1) is convex and the smoothing parameter
satisfies

μ ≤
√

V (x∗, x1)

α(n + 4)N̄
, (5.27)
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then E[Ψ (xR) − Ψ (x∗)] ≤ C̄N̄ , where x∗ is an optimal solution and

C̄N̄ := (5+θ2)LV (x∗, x1)(n+4)

α N̄
+
√

(n + 4)(M2+σ 2)

α
√

N̄

(
4V (x∗, x1)

D̃
+α D̃θ1

)
.

(5.28)

Proof By the definitions of θ1 and θ2 in (5.26) and m in (5.24), we have

m =
⌈

max

{√
(n + 4)(M2 + σ 2)N̄

L D̃θ1
,

n + 4

θ2

}⌉
. (5.29)

Given the total number of calls to the SZO N̄ and the number m of calls to the SZO
at each iteration, the RSPGF algorithm can perform at most N = �N̄/m� iterations.
Obviously, N ≥ N̄/(2m). With this observation N̄ ≥ m, θ1 ≥ 1 and θ2 ≥ 1, by
(5.19), (5.23) and (5.29), we have

E

[
‖gX,R ‖2

]

≤ L2 D2
Ψ (n + 3)

2α2 N̄
+ 24(n + 4)(M2 + σ 2)

α2m
+ 24L2 D2

Ψ (n + 4)2

α2m N̄
+ 32L2 D2

Ψ m

α2 N̄(
1 + 1

N̄

)

≤ L2 D2
Ψ (n + 4)

2α2 N̄
+ 24θ1L D̃

√
(n + 4)(M2 + σ 2)

α2
√

N̄
+ 24θ2 L2 D2

Ψ (n + 4)

α2 N̄

+32L2 D2
Ψ

α2 N̄

(√
(n + 4)(M2 + σ 2)N̄

L D̃θ1
+ n + 4

θ2

)
+ 32L2 D2

Ψ

α2 N̄

≤ L2 D2
Ψ (n + 4)

2α2 N̄
+ 24θ1L D̃

√
(n + 4)(M2 + σ 2)

α2
√

N̄
+ 24θ2 L2 D2

Ψ (n + 4)

α2 N̄

+32L D2
Ψ

√
(n + 4)(M2 + σ 2)

α2 D̃
√

N̄
+ 32L2 D2

Ψ (n + 4)

α2 N̄
+ 32L2 D2

Ψ

α2 N̄
,

which after integrating the terms give (5.25). The conclusion (5.28) follows similarly
by (5.27) and (5.20).

We now would like to add a few remarks about the above the results in Corollary 8.
Firstly, the above complexity bounds are similar to those of the first-order RSPG
method in Corollary 4 in terms of their dependence on the total number of stochastic
oracle N̄ called by the algorithm. However, for the zeroth-order case, the complexity
in Corollary 8 also depends on the size of the gradient M and the problem dimension
n. Secondly, the value of D̃ has not been specified. It can be easily seen from (5.25)
and (5.28) that when N̄ is relatively large such that θ1 = 1 and θ2 = 1, i.e.,
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N̄ ≥ max

{
(n + 4)2(M2 + σ 2)

L2 D̃2
, n + 4

}
, (5.30)

the optimal choice of D̃ would be DΨ and 2
√

V (x∗, x1)/α for solving nonconvex and
convex SP problems, respectively. With this selection of D̃, the bounds in (5.25) and
(5.28), respectively, reduce to

α2

L
E

[
‖gX,R ‖2

]
≤ 65L D2

Ψ (n + 4)

N̄
+ 64

√
(n + 4)(M2 + σ 2)√

N̄
(5.31)

and

E
[
Ψ (xR) − Ψ (x∗)

] ≤ 6LV (x∗, x1)(n + 4)

α N̄
+ 4

√
V (x∗, x1)(n + 4)(M2 + σ 2)√

α N̄
.

(5.32)

Thirdly, the complexity result in (5.28) implies that when Ψ is convex, if ε sufficiently
small, then the number of calls to the SZO to find a solution x̄ such that E[Ψ (x̄) −
Ψ ∗] ≤ ε can be bounded by O(n/ε2), which is better than the complexity of O(n2/ε2)

established by Nesterov [29] to find such a solution for general convex SP problems.

6 Numerical results

In this section, we present the numerical results of our computational experiments
for solving two SP problems: a stochastic nonconvex semi-supervised support vector
machine problem and a simulation-based inventory optimization problem.

Algorithmic schemes We implement the RSPG algorithm and its two-phase variants
2-RSPG and 2-RSPG-V algorithms described in Section 4, where the prox-function
V (x, z) = ‖x − z‖2/2, the stepsizes γk = α/(2L) with α = 1 for all k ≥ 1, and
the probability mass function PR is set to (4.3). Also, in the optimization phase of the
2-RSPG (2-RSPG-V) algorithm, we take S = 5 independent (consecutive) runs of
the RSPG algorithm to compute 5 candidate solutions. Then, we use an i.i.d. sample
of size T = N̄/2 in the post-optimization phase to estimate the projected gradients
at these candidate solutions and then choose the best one, x̄∗, according to (4.27).
Finally, the solution quality at x̄∗ is evaluated by using another i.i.d. sample of size
K >> N̄ .
Estimation of parameters We use an initial i.i.d. sample of size N0 = 200 to estimate
the problem parameters, namely, L and σ . In particular, for the first problem in our
numerical experiments, we know the structure of the objective functions. Thus, we
compute l2-norm of the Hessian of the deterministic approximation of the objective
functions obtained by the SAA approach with 200 samples, as an estimation of L .
Using these sample, we also compute the stochastic gradients of the objective function
20 times at 10 randomly selected points and then take the average of the variances of
the stochastic gradients for each point as an estimation of σ 2.
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For the inventory problem, since we have no information about the objective func-
tion, we randomly generate 10 points and for each point, we call the stochastic oracle
20 times. Then, we estimate the stochastic gradients by (5.8) and take the average
of them for each point, say Ḡμ(xi ), i = 1, . . . 10, as an approximation of the true
gradient. Finally, we consider the average of ‖Ḡμ(xi ) − Ḡμ(x j )‖/‖xi − x j‖ for all
pairs of i and j as an estimation of L as well as the average of variances of the
stochastic gradients used for computing each Ḡμ(xi ), i = 1, . . . 10, as an estima-
tion of σ 2. We also estimate the parameter D̃ = DΨ by (3.5). More specifically,
since the problems considered in this section have nonnegative optimal values, i.e.,

Ψ ∗ ≥ 0, we have DΨ ≤ (Ψ (x1)/L)
1
2 , where x1 denotes the starting point of the

algorithms.
Since previously there do not exist SA type methods with guaranteed convergence

for solving nonconvex composite SP problems discussed in this paper, in practice one
might simply assume that these problems are convex and then apply some existing
convex SA methods to solve them. Hence, in our experiments, we also report the
solutions obtained by taking the average of the trajectory of running the RSPG method
for N iterations. This approach is essentially the mirror descent SA (MD-SA) method
in [21,22,26].
Notation in the tables

– N̄ S denotes the maximum number of calls to the stochastic oracle performed in
the optimization phase of the above algorithms. For example, N̄ S = 1,000 has
the following implications.

– For the RSPG algorithm, the number of samples per iteration m is com-
puted according to (4.18) with N̄ = 1,000 and the iteration limit N is set
to �1,000/m�;

– For the 2-RSPG and 2-RSPG-V algorithms, since S = 5, we set N̄ = 200.
The m and N are computed as mentioned above. In this case, total number of
calls to the stochastic oracle will be at most 1,000 (this does not include the
samples used in the post optimization phase);

– For the MD-SA method, after computing m according to (4.18) with N̄ =
1,000, we run the RSPG method for �1,000/m� iterations and take the average
of the iterates as the output.

– x̄∗ is the output solution of the above algorithms.
– Mean and Var. represent, respectively, the average and variance of the results

obtained over different runs of each algorithm.

6.1 Semi-supervised support vector machine problem

In the first experiment, we consider a binary classification problem. The training set is
divided to two types of data, which consists of labeled and unlabeled examples, respec-
tively. The linear semi-supervised support vector machine problem can be formulated
as follows [7]:
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min
b∈R, x∈Rn

Ψ (x, b) := λ1Eu1,v

[
max {0, 1 − v(〈x, u1〉 + b)}2

]

+ λ2Eu2

[
max {0, 1 − |〈x, u2〉 + b|}2

]
+ λ3

2
‖x‖2

2,

where (u1, v) and u2 are labeled and unlabeled examples, respectively. Clearly, the
above problem is nonsmooth, nonconvex, and does not fit the setting of the problem
(1.1). Using a smooth approximation of the above problem [7], we can reformulate it
as

min
(x,b)∈Rn+1

Ψ (x, b) := Eu1,u2,v

[
λ1 max {0, 1 − v(〈x, u1〉 + b)}2 + λ2e−5{〈x,u2〉+b}2

]

+ λ3

2
‖x‖2

2. (6.1)

Here, we assume that the feature vectors u1 and u2 are drawn from standard normal
distribution with approximately 5 % nonzero elements. Moreover, we assume that
label v ∈ {−1, 1} with v = sgn(〈x̄, u1〉 + b) for some x̄ ∈ R

n . The parameters are
set to λ1 = 0.5, λ2 = 0.5 and λ3 = 1 and also three different problem sizes with
n = 100, 500 and 1,000 are considered in this experiment.

We also want to determine the labels of unlabeled examples such that the ratio of
new positive labels is close to that of the already labeled examples. It is shown in [7]
that if the examples come from a distribution with zero mean, then, to have balanced
new labels, we can consider the following constraint

|b − 2r + 1| ≤ δ, (6.2)

where r is the ratio of positive labels in the already labeled examples and δ is a tolerance
setting to 0.1 in our experiment. We also consider the l2 regularization term as a simple
convex term in the objective function i.e., h(x) = λ3‖x‖2

2/2. Therefore, (6.1) together
with the constraint (6.2) is a constrained nonconvex composite problem, which fits
the setting of problem (1.1). Table 1 shows the mean and variance of the 2-norm of
the projected gradient at the solutions obtained by 20 runs of the RSPG algorithms,
and Fig. 1 gives the corresponding average objective values.

The following conclusions can be made from the numerical results. First, over
20 runs of the algorithm, the solutions of the RSPG algorithm have relatively large
variance. Second, 2-RSPG, 2-RSPG-V can significantly reduce the variance of the
RSPG algorithm for many instances. Third, for a given fixed N̄ S, the solution quality
of the 2-RSPG-V algorithm is significantly better than that of the 2-RSPG algorithm
when the problem size increases and N̄ S is small. The possible reason is that, unlike
the 2-RSPG algorithm, a candidate solution obtained in each run of the RSPG in the
optimization phase of the 2-RSPG-V algorithm is used to generate the next candidate
solution and hence the possibility of having better solution is increased. Finally, the
solution quality of the 2-RSPG algorithm is much better than that of the MD-SA
algorithm in almost all cases (see Table 1).
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Table 1 Estimated ‖gX (x̄∗)‖2 for the semi-supervised support vector machine problem (K = 75,000)

N̄ S RSPG 2-RSPG 2-RSPG-V MD-SA

n = 100

1,000 Mean 0.6364 0.0919 0.0824 0.2066

Var. 2.66e+000 1.48e−004 8.11e−005 1.77e−004

5,000 Mean 0.0490 0.0376 0.0368 0.0366

Var. 1.68e−002 1.60e−005 1.39e−005 4.84e−006

25,000 Mean 0.3665 0.0181 0.0173 0076

Var. 2.54e+000 5.69e−006 3.00e−006 1.72e−007

n = 500

1,000 Mean 10.0422 1.007 0.2001 1.9494

Var. 5.17e+002 1.83e+000 2.75e−004 1.41e−003

5,000 Mean 7.5432 0.0827 0.0777 0.3261

Var. 1.01e+003 1.31e−004 1.76e−005 3.17e−005

25,000 Mean 3.6799 0.0344 0.0339 0.0603

Var. 2.51e+002 5.10e−006 4.22e−006 6.04e−007

n = 1,000

1,000 Mean 55.7736 10.0097 0.4060 9.9998

Var. 6.33e+003 8.41e+001 7.60e−002 5.23e−003

5,000 Mean 7.1839 0.2753 0.1489 1.7826

Var. 9.60e+002 4.32e−002 2.98e−003 6.71e−005

25,000 Mean 1.0753 0.0633 0.0621 0.3286

Var. 2.13e+001 4.98e−006 4.33e−006 6.77e−006

6.2 Simulation-based inventory optimization problem

In the second experiment, we consider the classical (s, S) inventory problem. More
specifically, we consider the following simple case study in [20]. A Widgets company
carries inventory of one product. Customers arrive according to Poisson distribution
with mean 10 persons per day and they demand 1, 2, 3, and 4 items of this product with
probabilities 0.167, 0.333, 0.333 and 0.167, respectively, with back order permitted.

At the beginning of each day, the company checks the inventory level. If it is less
than s, an order is placed to replenish the inventory up to S. Also, the lead time (the
time between an order is placed and the ordered products arrive at the company) is
distributed uniformly between 0.5 and 1 day. There is a fixed order cost of $32 plus $3
per item ordered. Also, a holding cost of $1 per item per day and a shortage cost of $5
per item per day are incurred. The company needs to choose s and S appropriately to
minimize the total daily inventory cost. Since the inventory cost can only be evaluated
by using simulation, we consider the following simulation-based optimization problem
of

min
100≥S≥s≥0

E
[
daily inventory cost

]
. (6.3)
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(a)

(b)

(c)

Fig. 1 Average objective values at x̄∗, obtained in Table 1. a n = 100, b n = 500, c n = 1,000

We implement the RSPGF method as described in Sect. 5.
Moreover, we compute the value of the objective function in (6.3) by simulating

the inventory system over 100 days. The other zeroth-order methods are implemented
similarly to their corresponding first-order methods as described in the beginning of
this section. Also, the smoothing parameter μ satisfying (5.23) is set to 0.05 for all
these zeroth-order methods.
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Table 2 Estimated gradients ‖∇ fμ(x̄∗)‖2 for the inventory problem (K = 10, 000)

x1 = (s1, S1) N S RSPGF 2-RSPGF 2-RSPGF-V MD-SA-GF

(10, 100) 1,000 Mean 1.8179 0.0302 0.0306 2.2789

Var. 1.19e+001 1.13e−003 6.22e−004 1.41e+001

5,000 Mean 0.3167 0.0191 0.0187 0.0276

Var. 8.51e−001 1.20e−004 2.24e−004 4.16e−004

(50, 100) 1,000 mean 4.7312 1.2958 0.7973 3.6128

Var. 5.26e+001 1.64e+000 2.54e−002 2.99e+001

5,000 Mean 3.9971 0.7562 0.7607 0.9055

Var. 4.68e+001 1.68e−002 1.99e−002 1.75e−003

(10, 50) 1,000 Mean 2.5126 2.1447 1.1228 1.6830

Var. 1.21e+001 8.66e+000 1.86e−001 1.45e+000

5,000 Mean 2.2591 1.2505 0.7375 1.9244

Var. 1.09e+001 3.93e−001 2.96e−001 4.28e+000

Table 3 Average daily inventory costs

x1 = (s1, S1) N S RSPGF 2-RSPGF 2-RSPGF-V MD-SA-GF

(10, 100) 1,000 129.71 129.31 129.38 129.3315

5,000 129.16 129.32 129.09 129.4647

(50, 100) 1,000 137.04 137.66 137.40 137.0039

5,000 136.56 137.10 135.11 136.7674

(10, 50) 1,000 126.78 126.51 125.51 125.8781

5,000 124.28 125.46 123.43 125.5707

Table 2 reports the mean and variance of ‖gμ(x̄∗)‖2 over 10 runs of these meth-
ods with different initial solutions x1. Similar to the results for the nonconvex
semi-supervised support vector machine problem, the solution quality (in term of
‖gμ(x̄∗)‖2) of the RSPGF method is not as good as the 2-RSPGF method and, for a
given N̄ S, the 2-RSPGF-V method outperforms the 2-RSPGF method in many cases.
Moreover, in most cases the 2-RPSGF method has much better performance than the
MD-SA-GF method (i.e., the gradient free version of the MD-SA method described
in beginning of this section). Table 3 shows the corresponding average daily inventory
costs for the solutions, x̄∗, computed by these algorithms. The best solution given
by (s, S) = (20.05, 53.83) with an estimated average daily inventory cost $119.77
has been obtained by running the 2-RSPG-V method starting from the initial solution
(10, 50).

7 Conclusion

This paper proposes a new stochastic approximation algorithm with its variants for
solving a class of nonconvex stochastic composite optimization problems. This new
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randomized stochastic projected gradient (RSPG) algorithm uses mini-batch of sam-
ples at each iteration to handle the constraints. The proposed algorithm is set up in a
way that a more general gradient projection according to the geometry of the constraint
set could be used. The complexity bound of our algorithm is established in a unified
way, including both convex and nonconvex objective functions. Our results show that
the RSPG algorithm would automatically maintain a nearly optimal rate of conver-
gence for solving stochastic convex programming problems. To reduce the variance of
the RSPG algorithm, a two-phase RSPG algorithm is also proposed. It is shown that
with a special post-optimization phase, the variance of the solutions returned by the
RSPG algorithm could be significantly reduced, especially when a light tail condition
holds. Based on this RSPG algorithm, a stochastic projected gradient free algorithm,
which only uses the stochastic zeroth-order information, has been also proposed and
analyzed. Our preliminary numerical results show that our two-phase RSPG algo-
rithms, the 2-RSPG and its variant 2-RSPG-V algorithms, could be very effective and
stable for solving the aforementioned nonconvex stochastic composite optimization
problems.

It should be noted that in this paper we focus on the case when the regularization
term h in problem (1.1) is convex. In the future, it will be interesting to consider
nonconvex and nonsmooth regularization terms in the objective function, especially
due to the importance of these types of problems in a few application areas, such as
signal processing.
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