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Abstract— Lung ultrasound (US) imaging has the poten-
tial to be an effective point-of-care test for detection of
COVID-19, due to its ease of operation with minimal personal
protection equipment along with easy disinfection. The cur-
rent state-of-the-art deep learning models for detection of
COVID-19 are heavy models that may not be easy to deploy
in commonly utilized mobile platforms in point-of-care test-
ing. In this work, we develop a lightweight mobile friendly
efficient deep learning model for detection of COVID-19
using lung US images. Three different classes including
COVID-19, pneumonia, and healthy were included in this
task. The developed network, named as Mini-COVIDNet, was
bench-markedwith other lightweightneural network models
along with state-of-the-art heavy model. It was shown that
the proposed network can achieve the highest accuracy
of 83.2% and requires a training time of only 24 min. The
proposed Mini-COVIDNet has 4.39 times less number of
parameters in the network compared to its next best per-
forming network and requires a memory of only 51.29 MB,
making the point-of-care detection of COVID-19 using lung
US imaging plausible on a mobile platform. Deployment of
these lightweight networks on embedded platforms shows
that the proposed Mini-COVIDNet is highly versatile and
provides optimal performance in terms of being accurate as
well as having latency in the same order as other lightweight
networks. The developed lightweight models are available at
ht .tps://github.com/navchetan-awasthi/Mini-COVIDNet.
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I. INTRODUCTION

C
ORONAVIRUS disease (2019-nCov) is an illness which

is caused by the novel coronavirus, and generally known

as COVID-19. It is from the respiratory family of viruses,

including middle east respiratory syndrome (MERS) and

severe acute respiratory syndrome (SARS). The virus orig-

inated from Wuhan City from Hubei Province, China [1].

Human-to-human transmission via direct contact or droplets

is a known characteristic of this virus, having a basic repro-

duction number of 2.24–3.58 and an incubation period of

2–14 days [2]. Patients suffer from rhinorrhea, chest pain,

cough, muscle ache, shortness of breath, confusion, headache,

sore throat, diarrhea, fever, nausea, and vomiting according to

a study of 99 patients with COVID-19 [3]. The standard test

included for detection of COVID-19 is molecular diagnostic

test, i.e., a real-time reverse transcriptase-polymerase chain

reaction (RT-PCR) with near perfect specificity and high

analytical sensitivity for laboratory-based performance [4].

The performance of the same in clinical practice is severely

affected by factors such as specimen types, adequacy of

specimen, stage of infection, and specimen handling, includ-

ing sample acquisition time from the onset of COVID-19.

The rapid spread of COVID-19 has resulted in short-

age of reverse RT-PCR test kits for the detection of

COVID-19 and has led to the exploration of other options,

such as chest computed tomography (CT), chest X-ray

(CXR) and lung ultrasound (US) imaging for screening of

COVID-19.

X-ray and CT imaging modalities have seen wider applica-

bility for detection of COVID-19 as RT-PCR tests in the

clinical setting have low sensitivity and specificity [4]. Various

studies have shown the benefit of using CXR or CT and proven

to improve results for detection of COVID-19 in the clinical

scenario [5]–[9]. The low sensitivity of RT-PCR technique

requires repeated negative tests resulting in short supply or

unavailability of kits at various parts of the globe [5]. Also,

CT scans can result in false negatives when the infection is in

the early stages and requires time consuming detailed disin-

fection procedure. Although CT has the required promise for

becoming modality of choice for detection of COVID-19 [9],

lung US has got the attention recently due to US machines
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being widely available and are relatively cheaper with added

advantage of being safe and easy to disinfect.

US imaging is a noninvasive technique, it is already replac-

ing X-ray in diagnosis of lung related diseases [10]–[12].

Recently there has been a wide interest in point of care US

based on evidence-based and expert consensus [13], [14].

The benefits of point-of-care ultrasound (POCUS) lies with

being cost effective, easy to transport, and bedside accessibility

for care of patients. It is not widely used currently as it

lacked training pathways and also understanding of evidence

behind this modality. It was found that it improves traditional

examinations in diagnosis and the technology is expanding

rapidly. It was also proposed that POCUS should be integrated

into the acute and internal medicine curricula for widespread

utility [15].

Previous studies proposed that critical care ultrasound

(CCUS) can be utilized for monitoring the progression of the

COVID-19 pneumonia [16], [17]. Since the disease progres-

sion varies and US imaging is cheap, noninvasive, and nonra-

diating, it is the preferred modality of choice for widespread

use. The US imaging can be performed daily for patients

having severe infection of the lungs due to COVID-19 for

better management [16], [17]. The recent work [18] utilizes

POCUS for diagnosis of COVID-19 and was found to be

very effective for rapid screening as well as diagnosis of

COVID-19 in symptomatic patients. It was also concluded

that lung POCUS was not very accurate for patients having a

history of heart failure, severe emphysema, and interstitial lung

disease [18]. The availability and use of POCUS screening

helped in the identification of symptomatic patients having

COVID-19 and does not require performing the RT-PCR test

in the resource-constrained settings and during peak periods

of a surge in COVID-19 [18]. In [19], it was suggested

to use positive US signs as markers for identification of

persons having COVID-19 unless otherwise proven negative

by RT-PCR and suggested the possibility of a classification

system based on US images (US-COVID-CORADS). The

work presented here is an effort in the direction of building

a model for classification and assessment of the lung damage

although more analysis/efforts are required by capturing more

data with different acquisition schemes. Moreover, the models

that are part of this work will allow better triaging of patients

in busy centers with lung US.

This work was aimed at making point-of-care testing of

COVID-19 using lung US imaging a reality. Typical point-

of-care testing facilities does not have well trained clinical

personnel and even the computing infrastructure in these

settings is limited. This work provides a lightweight mobile

friendly deep learning models for automated detection of

COVID-19 based on lung US images. The aim here is that

these models should be trainable in less than half-an-hour and

deployable in mobile platforms and provide detection accuracy

of COVID-19 on par or better than a human expert. Three

different classes including COVID-19, Pneumonia, and healthy

were included in this detection task.

The main contributions of this work are as follows.

1) Efficient models, both in terms of the number of parame-

ters as well as memory, were proposed for the detection

of COVID-19 using lung US images to provide perfor-

mance on par or better than a human expert.

2) These models can be used in mobile or embedded appli-

cations making them universally appealing, especially in

the point of care setting.

3) The class imbalance problem was managed using the

focal loss as the loss function to reduce the bias toward

a particular class.

4) With parameters being less, these networks are eas-

ily trainable on smaller data set and can pro-

vide site/imaging protocol-specific models for wider

acceptance.

5) This work also benchmarks the state-of-the-art light-

weight networks that were proposed previously for com-

puter vision tasks to show their efficacy in detection of

COVID-19 using lung US images.

6) This work also provides a comparison of the proposed

as well as available lightweight networks in terms of

their training as well as inference on low-cost embedded

platforms to show the utility in a point of care setting.

II. RELATED WORKS

Lung imaging is found to be one of the techniques for

capturing the information content and detection of COVID-19.

The modalities that are currently being utilized for the diag-

nosis of the COVID-19 are the following ones and related

work utilizing the same has been summarized in the respective

subsections. A comparison of lung US and CXR imaging

modalities was also briefly presented for completeness.

A. CXR

CXR is currently most widely utilized imaging technique

for confirming the diagnosis of COVID-19. In [20], it was

shown that the vast majority of patients (566 out of 636) were

either having normal or mildly abnormal CXRs (89%) and

thus it was concluded that a CXR alone may not be effective

for detection of COVID-19. In [21], it was shown that the

CXR frequently showed the bilateral peripheral consolidation,

but the sensitivity was lower than the RT-PCR testing (69%

versus 91%, respectively). In [22], on a small data set, it was

found that the deep learning based detection model provided

an accuracy of 91.24% and the true positive rate of 0.7879 with

6.88% false positives. It also highlighted the importance of

having good resolution images, lack of large data set for

providing more generalizability. There were various studies

earlier to demonstrate the advantages of lung US imaging

for detection of pneumonia and other lung conditions as

in [23], the sensitivity of US was found to be better than the

radiography. In [24], it was shown that due to higher specificity

and sensitivity when compared to CXRs, US was proposed

for first-line examinations for acute pneumonia cases. In [25],

lung US was proven to be highly beneficial for diagnosing

the community-acquired pneumonia (CAP) in hospitalized

children. In [26], it was shown that due to a high negative

prediction value, US has the potential to replace X-rays for

excluding the lung consolidation in children and hence helps

in reducing the exposure of radiation in the population. In [27],
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it was shown that lung US performance was superior to CXR

for diagnosing pneumonia for those with frailty and advocated

to be widely utilized for management and detection of acute

respiratory symptoms in older patients.

B. CT

While CXR is one of the important modalities for the

detection of chest abnormalities, it was also shown that chest

CT is effective for the detection of abnormalities in the lung.

The effectiveness for detection of COVID-19 using chest

CT was also investigated earlier [28], [29]. A systematic

review was also provided in [30], in which a literature

search of various databases such as Google Scholar, PubMed,

Elsevier, and World Health Organization was performed to

provide an understanding of the follow-up CT and initial

characteristics of COVID-19. Chest CT was found to be

showing the greatest severity approximately after ten days

of initial symptoms onset in patients with severe respira-

tory distress during COVID-19 course [31]. It was found

that consolidation at chest imaging or bilateral ground-glass

opacities (GGOs) will be the main signatures in assisting the

radiologist for possible diagnosis as well as management of

COVID-19 [32]. Many deep learning based architectures were

proposed for detection of COVID including various pretrained

architectures (including ResNet-50, LSTM, DenseNet-201,

Location-attention etc. [9], [33]–[38]), architectures based on

attention networks, and hybrid architectures. The achieved

accuracy was as high as 98% even with number of samples

available for training the network being less. In previous

works, it was shown that the pretrained network-based archi-

tectures performed better as compared to training a network

from scratch [34]–[38]. The same strategy of the utilization of

pretrained networks coupled with utilization of smaller (light-

weight) models was deployed in this work. The problems

of infection control, limited CT availability in parts of the

world, CT room decontamination, and coupled with high

dose makes CT less attractive and portable chest radiogra-

phy (CXR) was proposed as an alternative in identification of

lung abnormalities [39].

C. US

A timeline of US findings and comparison with CT can be

found in [40]. The characteristics in chest CT images were

highly consistent with the lung US findings having irregular

pleural line, subpleural consolidates, multilobar B-lines and

decreased blood flow [41]–[43] and can be expected to follow

similar timeline as of CT [40], [43]. Moreover, when the

ratio of water, air, tissue is lower in the lung, it does not

manifest itself as a complete specular reflector and hence

various types of vertical artifacts will be present in the US

images [44]–[46]. COVID-19 was found to be associated with

pulmonary embolisms as well as cardiovascular complications

and the lung US can also be effective in the diagnosis, includ-

ing detection of pulmonary embolisms [47]. It was found that

the lung US is more beneficial because of radiation damage

absence, repeatability, safety, low cost, easy disinfection, and

point of care use. It was suggested that in case findings

Fig. 1. Example lung US images utilized in this work representing
classes (rowwise) of (a) healthy lung, (b) pneumonia infected lung, and
(c) lung infected with COVID-19 exhibiting pleural irregularities and small
subpleural consolidation.

of lung US were inconclusive then the chest CT to be uti-

lized [43]. The lung US can be effectively utilized to monitor

the progress, guide the position, making decisions when to

remove the patient from ventilation support and managing

extracorporeal membrane therapy [43]. Development of deep

learning model for diagnosis of COVID-19 using US images

was achieved by utilization of a VGG-Net architecture [48]

and these developments were also highlighted in the recent

survey [49]. Transfer learning was also utilized and it was

shown that the deeper models are difficult to train and provide

inconsistent performance over the different imaging modalities

with limited data training [50]. Comparisons of CT with US

imaging showed that they offer complementary information

and can be utilized depending on the need (case to case) basis.

While CT scan is more useful in case of severe clinical condi-

tion or for an initial assessment, lung US can be utilized as a

first-level examination technique in the emergency department

of low-risk patients and subsequent follow-ups [51]. An auto-

matic, unsupervised method was developed using Viterbi

algorithm and hidden Markov model (HMM) followed by

support vector machine (SVM) for localization and detection

of pleural lines in US imaging [52]. This technique achieved

an accuracy of 84% and 94% for convex and linear probes.

Another custom model based on deep learning was proposed

for the presence and absence of B-lines and gave a sensitivity

of 93% and specificity of 96%. This custom model was found

to be successful in distinguishing between B-line severity and

improved detection of presence and absence of B-lines and was

found to be easily integrated in the US system [53]. Another

recent work based on deep learning utilized spatial transformer

networks to provide a simultaneous prediction of severity score

and segmentation of abnormalities related to COVID-19 lung

US images [54] in a weakly supervised manner. The main

task in this work [54] was to provide pixel-level segmentation

of abnormalities pertaining to COVID-19 in lung US images.



2026 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 68, NO. 6, JUNE 2021

TABLE I

COMPARISON OF NUMBER OF SAMPLES (TRAINING AS WELL AS VALIDATION) PER CLASS IN EACH OF THE FOLD FOR COVID,

PNEUMONIA AND HEALTHY CLASSES

There have been some attempts to make lung US a choice

of imaging modality for detection of pneumonia and other

diseases related to lung utilizing deep learning [55].

III. DATA SET

The data set utilized in this work was the same one as given

in [48] and is explained briefly for completeness. The data

set consists of 64 videos of lung US with 11 of them being

belonging to healthy patients, 14 videos of pneumonia patients,

and 39 videos of COVID-19 patients. These 64 videos were

taken from different sources and hence differ in format and

illumination. The videos were assumed to be having a frame

rate of 3 Hz and a maximum of 30 frames per video to enable

the extraction of lung US images that form the basis of the

lung US image data set utilized in this work. This resulted in

a total of 1103 lung US images (182 healthy, 277 pneumonia,

and 678 COVID-19). Since the data set is small, we utilized

a fivefold validation for the classification of the data set into

the three classes. In fivefold cross validation, the data set was

divided into five subsets and the classification/detection task

was repeated five times. Each time, one of the subsets gets

utilized as the test set, while all remaining four subsets become

part of the training set. The advantage of performing this cross

validation is that irrespective of data set division during the

testing and the training, each data sample is present in the test

set exactly once and in the training set exactly four times. The

only disadvantage of this technique is that the model needs to

rerun five times, which means it takes five times as much

computation to make any evaluation [56]. As the developed

models here are lightweight and geared toward deploying

in a limited computing environment (mobile type), the total

computational time required for this fivefold validation is in

the same order as any other traditional deep learning models

that get trained for this purpose. Note that the data set splitting

into these five subsets are at the patient (available video) level

and not at the corresponding images level. So the fivefold cross

validation that was performed on a particular model was with

test data that the network has never seen at the patient level.

The data set was further augmented using rotation, horizontal

and vertical flip, width, and height scaling during training of

each network. The number of samples per class in each of the

five folds is chosen uniformly and exact sample numbers are

provided in Table I.

IV. METHODS

Various deep learning models have been developed for the

detection of COVID-19 using CT, CXR, and US images.

The detection of COVID-19 using lung US images has been

posed as a three-class problem, i.e., to accurately classify the

lung US images into healthy, pneumonia, and COVID-19 cases

(representative US images corresponding to each of these

classes are given in Fig. 1). As the main aim of this work is

to propose a COVID-19 detection algorithm based on point-

of-care US imaging, the emphasis has been on smaller (light-

weight) networks that can run on mobile or embedded systems

to provide bed-side and immediate detection without the

need for additional computing hardware. The computational

complexity of each of the deep learning [convolutional neural

network (CNN)] model can be known by the number of

floating-point operations (FLOPs) and the same was computed

using the TensorFlow built-in profiler. These models were

presented in detail in the following.

A. State of the Art Models

1) COVID-CAPS: This architecture has been previously

utilized for the identification of COVID-19 infected cases

using CXR images and gave high values of specificity and

sensitivity. It is an ultracompact model that utilizes spatial

correlation. It consists of four convolutional layers and three

capsule layers [57]. The initial layer is a convolutional layer

succeeded by batch normalization (BN). This layer was fol-

lowed by another convolutional layer superseded by average

pooling. Alike, the third and fourth layers are convolutional

layers, with the fourth layer being reshaped to obtain the

first capsule layer. Later, these three convolutional layers were

embedded in the COVID-CAPS for the subdue by agreement

process. The ultimate layer has the instantiation parameters

of three classes as the task at hand involves classifying lung

US images into three classes. The cross entropy loss function

was utilized with Adam [58] as an optimizer with an initial

learning rate set as 1e-4. The network parameter details as well

as memory required were provided in the first row of Table II.

For completeness, a scaled version in terms of matching the

number of parameters with the proposed Mini-COVIDNet of

the model was also included and the details of the same are

presented in the third row of Table II.

2) POCOVID-Net: Here a convolutional part of

VGG-16 [59], which was known to provide good performance

on a very large computer vision data set, was utilized for

detection of COVID-19 using lung US images [48]. It was

followed by a hidden layer having ReLU activation with

64 neurons, dropout of 0.5 [60] followed by BN [61]. This

was superseded with a softmax activated output layer. This

model was originally used on the ImageNet data set for
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TABLE II

COMPARISON OF VARIOUS LIGHTWEIGHT DEEP LEARNING MODELS UTILIZED IN THIS WORK IN TERMS OF PARAMETERS,

CORRESPONDING REQUIRED MEMORY (IN MB), AS WELL AS THE NUMBER OF FLOPS

extracting the features from images. The last three layers’

weights were fine-tuned during training. The weights of other

layers were frozen at the same time resulting in the number

of parameters as shown in the fifth row of Table II. The loss

function, in this case, was cross entropy and training was

performed with Adam [58] optimizer and initial learning rate

set as 1e-4.

3) ResNet: Here a convolutional part of ResNet50 [59],

which was known to provide good performance on very large

computer vision data set such as ImageNet database, was

utilized for detection of COVID-19 using lung US images [35].

It was followed by a hidden layer having ReLU activation with

64 neurons, dropout of 0.5 [60] followed by BN [61]. This was

superseded with softmax activated output layer. This model

was originally used on the ImageNet data set for extracting

the features from images. The last three layers’ weights were

fine-tuned during training. The weights of other layers were

frozen at the same time resulting in the number of parameters

as shown in the 13th row of Table II. The loss function in

this case was cross entropy and training was performed with

Adam [58] optimizer and initial learning rate set as 1e-4.

4) MOBILE-NET-V2: There has been a wide interest in

building smaller and efficient neural network models, that can

be used in mobile and embedded vision applications. The

most widely used one among these lightweight and efficient

CNN models is MobileNet. It was originally developed for

detecting the objects for mobile-based and embedded com-

puter vision applications [62]. Following this, many models

were developed using the same framework and for providing

improved accuracy. One such example is MobileNetV2, which

uses an inverted residual structure with shortcut connections

between bottleneck layers [63]. MOBILE-NET-V2 architec-

ture was shown in previous works to improve state-of-the-art

performance among lightweight deep learning models for

benchmarks and other multiple tasks [63]. It is based on an

invertible residual structure, where the thin bottleneck layers

have shortcut connections between them. The intermediate

expansion layer utilizes lightweight convolutions to filter

features and use those as a source of nonlinearity in the

model. Also, it was found that removing nonlinearities that

are present in the narrow layers was important to obtain the

representational power. This leads to improved performance

and provided an intuition leading to the design of this archi-

tecture. It was also shown that this approach allows decoupling

of the input–output domains providing an easy framework for

further analysis [63]. The details of this network, such as exact

number of parameters and the corresponding memory, were

listed in ninth row of Table II.
5) NASNetMOBILE: NASNetMOBILE architectures utilize

a new search space called as “NASNet search space” enabling

the transferability with a new regularization technique known

as “ScheduledDropPath"’ to provide more generalizability of

the model [64]. These models have been shown to provide

better performance especially for classification tasks and hence

have been utilized here and compared with other lightweight

architectures. In this architecture, the search was performed

for the best convolutional layer on CIFAR-10 data set and

then applied this layer to the ImageNet data set by stacking

copies of this layer to design a NASNet architecture [64]. The

details of this network, such as the exact number of parameters

and the corresponding memory, were listed in the 11th row of

Table II.

B. Proposed Model

1) Mini-COVIDNet: The MobileNet based models have been

shown to be very competent due to the fewer number of

parameters, less model size (memory), and low latency of the

model. They gave the benefit of choosing a smaller network

that match the latency and size restrictions for a specific

application. Generally, the smaller models focus on only the

size of the model but do not give much consideration to the

speed.

In this work, we propose a modified MobileNet model

combined with focal loss, naming it as Mini-COVIDNet for

improving the accuracy of the detection of COVID-19. This

network utilizes depthwise separable convolutions and point-

wise convolutions for a reduction in size [62]. Here, we have

utilized the focal loss for MobileNet first time for the US data

sets and compared it with other lightweight architectures. The

comparison included a study to know the effect of utilization

of focal loss on these architectures [65]. Since MobileNet

has been trained on the ImageNet data set, we wanted to
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utilize the weights of the pretrained model for the US data

set. Hence, the original model with the original weights was

utilized with final layers being modified. The original model

was appended by a hidden layer having ReLU activation with

64 neurons, dropout of 0.5 [60] followed by BN [61]. This was

superseded with a softmax activated output layer. This model

was originally deployed on ImageNet data set for extracting

the features from images. The last three layers weights were

fine-tuned during training for the problem at hand.

The benefits of using the MobileNet based architectures are

as follows.

1) Because of their low size, they can be used for mobile

and embedded vision applications and can be trained

easily with minimal computing hardware requirement.

2) Generalize well because of having less number of para-

meters as compared to using very large networks.

The details of this network/architecture are presented in the

following in detail.

Suppose the input has a size of DF × DF × M with DF

being the height and width of the input and the number of

input channels being represented by M . Assuming the filter

has a shape of DK × DK × N with DK being the height

and width of the filter. The number of filters is represented

by N , application of the same on the input results in a

size of DG × DG × N , where DG is the height and width

of the output and the number of channels in the output is

being represented by N . The computational cost of a regular

convolution is

DK · DK · M · N · DG · DG . (1)

The depthwise separable convolution for the same input of the

same size can be computed in two steps.

1) Depthwise Convolution: Each input channel gets con-

volved by a filter of size DK × DK × 1 for producing

DG × DG × M sized output. The cost of computation is

DK · DK · M · DG · DG . (2)

2) Pointwise Convolution: A filter of size 1 × 1 × N was

applied to the depthwise convolution output for produc-

ing an output of DG × DG × N . The cost of computa-

tion is

DG · DG · N · M. (3)

The total cost can be written as the sum of both costs, resulting

in

M · D2
G · D2

K · +N · D2
G · M. (4)

The computational cost is reduced for depthwise separable

convolution as compared to regular convolution and is given

as

M · D2
G · D2

K · +N · D2
G · M

D2
K · M · N · D2

G

=
1

N
+

1

D2
K

. (5)

Thus, if a 3 × 3 convolution is performed using the depthwise

separable convolution, it has nine to eight times less com-

putational complexity as compared to the regular convolution

operation owing to a negligible decrease in the accuracy of

Fig. 2. Steps involved in (a) traditional convolution and conversion of
the same into (b) depthwise separable convolution. Here BN refers to
batch normalization.

the model. Fig. 2 shows how a regular convolution can be

factorized into a pointwise and a depthwise convolution. The

summary of this model along with layerwise details were

presented in Table III.

Initially, we trained the network using the cross entropy

based metric and realized that since the data set was imbal-

anced, we needed scaling of the data set. Hence, we utilized

a focal loss based strategy for training the network to provide

improved performance [66], [67]. The focal loss was explained

in detail in the following text. If we denote the actual class

by y ∈ {±1} and pe to denote the estimated probability. The

posterior probability pt then becomes

pt =

{

pe if y = 1

1 − pe if y = −1
. (6)

Here, pe was computed using pe = sigmoid(x). The binary

cross entropy loss can be written as

�BCE(pt) = − log(pt) (7)

d�BCE(pt)

dx
= y(pt − 1). (8)

Note that the gradient will be overshadowed by easily

classified negative examples especially when the network was

trained using the binary cross entropy loss due to existence of

class imbalance. The focal loss can be described as a dynamic

scaled version of cross entropy loss with its definition being

�FL(pt) = −(1 − pt)
γ log(pt) (9)

d�FL(pt)

dx
= y(1 − pt)

γ (γ pt log(pt) + pt − 1). (10)

The focal loss helps in down weighting the well classified

examples and hence improves the accuracy of the classification

scheme. The hyperparameter γ helps tuning of weight of dif-

ferent samples. If γ = 0, it represents the binary cross entropy
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TABLE III

MINI-COVIDNET ARCHITECTURE UTILIZED IN THIS WORK DETAILING

EACH LAYER TYPE AND ITS CORRESPONDING OUTPUT SIZE. EACH

CONVOLUTIONAL LAYER WAS SUPERSEDED BY A BN LAYER

AND A RELU LAYER. NOTATION WISE, CONV REFERS TO

CONVOLUTION, PW: POINTWISE, AND DW: DEPTHWISE

loss, while with a larger value of γ fewer easily classified

samples contribute to the training loss, and the samples which

are less in number are given more weight. Previous works

have introduced hyperparameters to balance the losses from

negative and positive samples or by normalizing the negative

and positive loss by frequency of corresponding samples.

However, it cannot handle the gradient saliency when there are

hard negative samples tough to classify. Here, dynamic scaling

with the posterior probability pt is used and a weighted focal

loss can be utilized for handling the different classes having

a different number of samples utilizing the following form of

the focal loss:

�FL(pt) = −λ(1 − pt)
γ log(pt). (11)

Here, λ introduces the weight for different classes. The cross

entropy loss function was used with Adam [58] optimizer with

initial learning rate set as 1e-4. As with the earlier models,

the exact number of parameters as well as memory required

for the network were given in the seventh row of Table II.

Note that except POCOVID-Net, the rest models were never

deployed in the detection/classification of COVID-19 lung US

images. Moreover, only COVID-CAPS was utilized earlier for

the COVID-19 detection task using CXRs. To summarize,

we have retrained four new networks in this work on lung

US images and showed a systematic comparison of the same.

To handle the class imbalance problem, the utilization of

focal loss was implemented in the mini-COVIDNet. Results

pertaining to the same were presented as a separate method to

show the improvement achieved due to focal loss. Note that all

networks except the COVID-CAPS utilized in this work have

an addition of a 64 neurons hidden layer with ReLU activation,

dropout of 0.5, superseded by BN. This was followed by an

output layer for three classes on top of these existing models

to perform the task at hand. All networks were trained for

50 epochs to be consistent for comparison and converged

before reaching 50 epochs. The time taken for 50 epochs as

well as the training time has been shown in Tables VII and IX.

All computations in this work were performed on a Linux

workstation consisting of a Intel Xeon Silver 4110 CPU with

2.10-GHz clock speed, 128-GB RAM and a Nvidia Titan RTX

GPU with 24-GB memory.

V. FIGURES OF MERIT

For quantitative comparison of the performance of the

discussed deep learning methods for detection of COVID-19

(along with the other two classes), the following figures of

merit were utilized.

A. Sensitivity/Recall

This is also known as the true positive rate or recall and

can be defined as the proportion of actual positive cases that

are correctly classified [68]. It can be written as

Sensitivity/Recall =
TP

TP + FN
(12)

where TP denotes the true positives, while FN denotes the

false negatives.

B. Specificity

It is also called as the true negative rate and defined as the

proportion of actual negatives that are correctly identified [68].

It can be computed using

Specificity =
TN

TN + FP
(13)

where TN denotes the true negatives, while FP denotes the

false positives.

C. Precision

Precision is a measure of the ability of a model not to label

a negative sample as positive one [69]. It can be defined as

Precision =
TP

TP + FP
. (14)

D. F1-Score

It is a measure of an accuracy and provides an easy

comparison among different models for the same task [70].

It is given as

F1-Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(15)

where recall is the same as sensitivity defined in Section V-A.



2030 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 68, NO. 6, JUNE 2021

TABLE IV

COMPARISON OF PERFORMANCE OF DISCUSSED MODELS (SECTION IV) USING FIVEFOLD CROSS VALIDATION FOR THE COVID

CLASS IN TERMS OF FIGURES OF MERIT DISCUSSED IN SECTION V

TABLE V

COMPARISON OF PERFORMANCE OF DISCUSSED MODELS (SECTION IV) USING FIVEFOLD CROSS VALIDATION FOR THE PNEUMONIA

CLASS IN TERMS OF FIGURES OF MERIT DISCUSSED IN SECTION V

TABLE VI

COMPARISON OF PERFORMANCE OF DISCUSSED MODELS (SECTION IV) USING FIVEFOLD CROSS VALIDATION FOR THE HEALTHY

CLASS IN TERMS OF FIGURES OF MERIT DISCUSSED IN SECTION V

E. Accuracy

Accuracy was defined as the number of images/frames

correctly classified and given as

Accuracy =
TP + TN

TP + TN + FP + FN
. (16)

This figure of merit is for all three classes combined and

represented as one number to provide quantitative comparison

of discussed models.

Note that the value of above discussed figures of merit will

be between 0 to 1 and in all cases, the higher value (close

to 1) indicates better performance of a model. These values

(except accuracy) will be specific to a particular class (in here

the number of classes being three).

VI. HARDWARE IMPLEMENTATION

All models were deployed on two embedded low-cost

hardware devices that are attractive in the point of care settings
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TABLE VII

COMPARISON OF VARIOUS CLASSIFICATION MODELS DISCUSSED IN

SECTION IV USING FIVEFOLD CROSS VALIDATION IN TERMS OF

ACCURACY ACROSS ALL CLASSES. THE LAST COLUMN OF

THE TABLE SHOWS TRAINING TIME (IN MINUTES)

REQUIRED FOR EACH MODEL

TABLE VIII

ABLATION STUDY OF VARIOUS CLASSIFICATION MODELS DISCUSSED

IN SECTION IV USING FIVEFOLD CROSS VALIDATION IN TERMS OF

ACCURACY ACROSS ALL CLASSES

(low-cost), namely Raspberry Pi 4 Model B and Nvidia Jetson

AGX Xavier developer kit, which are also easy to integrate

into the existing US scanner setup.

Raspberry Pi 4 Model B is the latest microprocessor

released by Raspberry Pi Foundation. It is a cost-effective

embedded system with a total cost of only $35. It also provides

improved connectivity, memory capacity, and processor speed,

when compared with its predecessor Raspberry Pi 3 Model

B+. To deploy the models on the embedded system, they

must first be converted from Tensorflow to Tensorflow Lite

version. Tensorflow Lite is developed by Tensorflow and works

as an accelerator to reduce inference time of the deployed

models. Tensorflow Lite has been used to deploy several deep

learning models on mobile, IoT and embedded systems. All

the proposed models were converted into the Tensorflow Lite

version and were compared based on their inference time

and memory size as shown in Table IX. The entire hardware

setup of Raspberry Pi 4 Model B is shown in Fig. 3(a).

It is important to note that Raspberry Pi can be considered

equal to the mobile platform as the hardware specifications

are similar to what is available in a typical smart phone

(e.g., being 2-GB RAM). The cost specification is provided

in Table X.

Next, the models were also deployed on Nvidia Jetson AGX

Xavier developer kit, the latest version in the Jetson family

released by Nvidia. Nvidia Jetson AGX Xavier developer kit

is a deep learning model accelerator with an 8-core ARM

CPU processor and a 512-core Volta GPU with Tensor cores,

offering ten times better energy efficiency and 20 times

better performance than its predecessor Nvidia Jetson TX2.

The models were deployed in both the Tensorflow version

and the Tensorflow Lite version and the comparison based

on inference time can be seen in Table IX. The complete

hardware setup of Nvidia Jetson AGX Xavier developer

kit is shown in Fig. 3(b). As Nvidia Jetson also has the

Volta GPU, this was also deployed for training and the

required training time for each model has also been provided

in Table IX.

Results in Table IX shows that the minimum latency

was obtained for the MOBILE-Net-V2 models with the

Mini-COVIDNet model being second lowest in the observed

latency and hence gives better performance as compared to

the other models. The latency was also obtained for the

Nvidia Jetson AGX Xavier platform using the Tensorflow

as well as Tensorflow Lite models. Again, the minimum

latency was obtained for the MOBILE-Net-V2 models with the

Mini-COVIDNet models being second lowest in the latency as

observed with Raspberry Pi. The memory of the Tensorflow

Lite model was also compared and shown in Table IX. It can

be seen that memory requirements for the Mini-COVIDNet

models are far less as compared to the POCOVID-Net and

ResNet50 models and hence can be easily deployed on a

hardware platform. The training time is also shown for the

models on the Nvidia Jetson AGX Xavier platform and

Mini-COVIDNet has 26.20 min as the training time on this

system. Given that the proposed Mini-COVIDNet has better

accuracy compared to MOBILE-Net-V2 (Table VII), a mar-

ginal increase in the latency as well as the training time

including memory makes it worthwhile for deployment on

hardware platforms.

VII. RESULTS AND DISCUSSION

The results obtained in terms of figures of merit utilizing

the discussed models in Section IV including mini-COVIDNet

and POCOVID-Net have been shown in Tables IV–VI for

the COVID-19, pneumonia, and healthy classes, respectively.

The model size with the number of parameters have been

summarized in Table II for all discussed models in this work.

The memory size requirement of COVID-CAPS is very less

as compared to the other models, but the performance of

the same in terms of precision and F1-Score was poor com-

pared to other models. POCOVID-Net performance is similar

to Mini-COVIDNet while the number of parameters in the

Mini-COVIDNet are lesser by 4.39 times, which results in a

smaller model and hence can be deployed in a real embedded

system (including mobile platforms) for preliminary detection

of COVID-19. This makes Mini-COVIDNet attractive in the

point-of-care setting, where the computing power is limited.

The proposed model saves 173.75-MB memory for a single

model. Since the amount of data used is less and cross
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TABLE IX

COMPARISON OF VARIOUS LIGHTWEIGHT DEEP LEARNING MODELS UTILIZED IN THIS WORK IN TERMS OF LATENCY (IN SECONDS), TRAINING

TIME ON NVIDIA JETSON AGX XAVIER AS WELL AS CORRESPONDING REQUIRED MEMORY (IN MB).

validation is performed using five different models. Here,

we utilized five different models (five times cross validation)

for the classification of the US into the different classes.

Hence, the memory saved is 173.75 × 5 = 868.75 MB which

will be saved if the compressed models based on MOBILE-Net

were utilized for deployment. The results are similar to the

POCOVID-Net with an added advantage of proposed model

providing the same accuracy with very less memory foot

print as well as requiring lesser training time (Tables VII

and IX). Here, we have trained the data obtained using the

linear transducer, but when the transducer or the US machine

becomes different, the sample images will have different

properties, thus requiring the retraining of the network. Thus,

having the training time being less is an advantage for these

cases and as shown even on embedded platforms the training

time is less than 30 min.

Generally, the medical images such as PET, CT, MRI,

or US lack standardization in terms of imaging protocols

and vary in terms of quality across different machines at

different imaging centers [71]. This is not a problem when

routine identification of features was performed in clinical

setting by the clinicians. The lung US imaging protocol in

the point-of-care setting is often tailored for a site and adds

variation even in terms of image feature set. When these

images are analyzed numerically for extracting meaningful

features or using deep learning models, these imaging features

that distinguish different pathologies may not be consistent

across sites [71]. Thus, having a model which can be trained

in less time for extracting these features is more suitable in

these settings. Another area where these models can be utilized

is in the continual/lifelong learning scenarios [72]. The ability

of a model to learn continuously as well as retain the previ-

ously learned knowledge is termed as continual/lifelong learn-

ing [73], [74]. This also has the disadvantage of catastrophic

forgetting/interference where the model learns on new samples

while forgetting the previously learned information and hence

a decrease in performance of the model is observed [75], [76].

The proposed model is a lightweight one with the possibility

for training in less time, making it ideal for continual/lifelong

learning.

The probes required for the acquisition of US images can be

linear or curved. A model trained with one type of probe may

not be able to perform well with other. Similarly, when the US

system characteristics or imaging protocol changes, the model

needs to be retrained again. To avoid catastrophic forgetting,

the model can be easily trained with the whole data since it can

be trained easily in less time. This has not been explored here

and will be taken up in future work. Also, the recent emphasis

is also on designing of various energy-efficient processors

both for training as well as testing of these deep learning

models. This work focused on more efficient and accurate

models without worrying about the energy consumption of

the models, which is also an important factor. Some of the

models, deployed here, have high computational requirements,

memory requirements, high computing power as they need to

be trained on large data sets. The energy consumption of the

MobileNet, Inception-3 and DenseNet model are given in [77].

The energy consumption is enormous if we include the model

tuning, hyper-parameter optimizations into effect as it involves

a lot of trial and error. Energy consumption is also an active

area of research and has not been discussed herein much detail,

the approaches for faster training will definitely help in less

energy consumption and hence being very beneficial for the

community [77].

Results specific to COVID-19 class were presented in

Table IV. The COVID-CAPS technique gave a higher value

of sensitivity, but the specificity, precision, and F1-score were

less for the detection of COVID-19 class. POCOVID-Net

gave better figures of merit, but at the cost of a large

number of parameters and a higher memory requirement.

Mini-COVIDNet has improved sensitivity as compared to the

POCOVID-Net and requires less parameters and memory size.

Similar trend was observed for the Pneumonia class (Table V).

The results for the healthy class (Table VI) showed improved

performance for the Mini-COVIDNet with focal loss compared

to all other models. In [54], the model produces an output
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Fig. 3. Hardware setup of (a) Raspberry Pi 4 Model B and (b) Nvidia Jetson AGX Xavier developer kit.

matrix of size 2 × 3 as the model trains the network by

minimizing the loss which consists of Soft ORDinal regression

(SORD) [78], consistency loss and prior on the parameters

of the transformations. Since, any change in the architecture

will change the model, thus, we have not performed the

comparisons of this model with the proposed one.

The accuracy of the discussed models was given in

Table VII. From the results the Mini-COVIDNet with focal

loss performance is marginally improved compared to the

POCOVID-Net in terms of accuracy, while the accuracy

of other models is much lower than these. The corre-

sponding confusion matrix was provided in Fig. 4 for the

Mini-COVIDNet with focal loss. From this, it is clear that

only two samples of pneumonia class fall into healthy class

and only five samples of the healthy class fall into pneumonia

class giving high values of specificity for both these classes.

The Mini-COVIDNet with focal loss model specificity for

pneumonia and healthy class were 0.97 and 0.96, respectively,

as seen from Tables V and VI. The focal loss provides an

active way of handling the class imbalance. In some cases,

the focal loss did not give better performance as compared to

the cross entropy loss [79], [80]. Similarly, for the problem

at hand in some scenarios, the cross entropy gives better

performance. Other techniques such as oversampling or under-

sampling can be utilized along with focal loss for improving

the accuracy, but have not been explored in here. Table VIII

shows the ablation study in terms of accuracy across all classes

for the cross entropy loss and focal loss for the fivefold

cross validation. The focal loss, in general, provided improved

accuracy for the proposed model as well as its immediate

competitor POCOVID-Net.

The training time for each of the discussed models is pro-

vided in Table VII. It is possible to train a network and again

TABLE X

COMPARISON AMONG THE DIFFERENT HARDWARE DEVICES USED

FOR DEPLOYING DIFFERENT MODELS UTILIZED IN THIS WORK IN

TERMS OF COST AND AVAILABLE MEMORY

use pruning [81] and quantization [82] to reduce the size of the

model. The accuracy obtained using the ResNet50 architecture

was less as compared to the other mobile architectures and

hence pruning and quantization are not performed further

on this architecture. The ResNet50 model had the largest

number of trainable parameters and performs poorly on the

test data and with focal loss it clearly shows an improve-

ment over the basic ResNet50 model. Since the original

COVID-CAPS model has less parameters as compared to

the proposed Mini-COVIDNet, we have also implemented a

modified COVID-CAPS Scaled model to increase the number

of parameters to make it comparable to Mini-COVIDNet.

The rest of the networks training times are in proportion to

the number of trainable parameters (except for COVID-CAPS,

which takes more training time due to depth convolution) and

overall the training time is in the order of tens of minutes for

the discussed lightweight networks. To distangle the perfor-

mance based on the loss used for the training, all models were

trained again utilizing the focal loss as a loss function. The

results are shown in Tables IV–VII. Except for COVID-CAPS,

COVID-CAPS Scaled, and MOBILE-Net-V2, the rest models
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Fig. 4. Confusion Matrix of Mini-COVIDNet with focal loss after the
fivefold cross validation for the three classes of lung US images.

perform better when the focal loss was utilized for training

the models in terms of accuracy as seen in Table VII.

The comparison of various lightweight deep learning models

utilized in this work in terms of latency (in seconds), training

time on Nvidia Jetson AGX Xavier as well as corresponding

required memory (in MB) has been shown in Table IX. The

comparison among the different hardware devices used for

deploying the different architectures in terms of cost and

available memory is shown in Table X. The Raspberry Pi

4 has the minimum cost and is equal to mobile platform in

terms of deployment and hence can be easily deployed along

with a clinical US scanner in a clinical setting.

The visualization of what the model is actually learning

is also very important for the purpose of understanding

the model. Here, gradient-weighted class activation mapping

(Grad-CAM) [83] was utilized which is class-discriminative

for different classes. It highlights the important regions of the

image helping in making decision for each of the possible

classes. Fig. 5 shows the visualizations obtained utilizing the

Grad-CAM model for Covid, pneumonia as well as healthy

lung US. As evident, from the figure, the model activates

different regions of the input image for different classes

for learning the properties and hence classifying using this

information. The different regions used for classification are

shown and are used inherently in the model. It is also shown

that since the activations in the image area are different for

different images of the same type of diseased or healthy lung,

they can be further improved by utilizing more data sets for

the same. The healthy lungs are marked with regular pleural

and A-lines [51]. Visualizations given in Fig. 5(a) capture the

pleural and A lines, but failed to capture them for all cases.

The pleural consolidations are present in the Pneumonia cases

as can be seen from Fig. 5(b), similar to what is reported

in [47] and [51]. Recent works [47], [51]–[53] confirm that

the characteristics of the lung US with COVID-19 infection

include irregular pleural lines with vertical artifacts. Fig. 5(c)

Fig. 5. Example lung US images after the visualization using the
Grad-CAM utilized in this work representing classes (rowwise) of
(a) healthy lung, (b) pneumonia infected lung, and (c) lung infected
with COVID-19 exhibiting pleural irregularities and small subpleural
consolidation.

shows the lungs infected with COVID-19 and it is clear

that the proposed networks are targeting the region near the

pleural lines in classifying them into COVID-19 class. This

analysis also asserts that the model developed here can rapidly

recognize those patients who have significant lung changes (for

example, the peripheral distribution of GGOs) manifesting as

B-lines, allowing better triaging of COVID-19 patients.

It is also important to note that the lung US may not

be capable to detect deep lesions within the lung and may

not have discerning ability for the diagnosis of COVID19.

The current method is sensitive to the damage to the pleural

surface of the lung, which has been proven to have prognostic

value, commonly observed in intensive care unit–admitted and

deceased patients [84]. The results from the developed model

have to be interpreted in the clinical and epidemiological

context of the patient. The developed model will have better

utility in the context of a massive COVID-19 pandemic,

where it can better triage patients with pulmonary symptoms

(suspected of infection).

The human/expert classification accuracy of lung US images

for the COVID-19 has been only about 0.67 [54]. The results

presented in this work (especially in Table VII) indicate that

these lightweight models have larger utility due to less number

of parameters and less size in memory and can easily perform

on par or better than an expert. Even training times being in

the order of tens of minutes, makes them highly attractive for a

clinical setting. As these deep learning models are lightweight,

the run times are in the order of seconds (even in mobile

platforms) and can be easily executed to give the first line of

detection of COVID-19 as a rapid point-of-care test using lung

US images.

The final predictions currently come from a single frame

of the video. Since there are five different models trained,
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every test image frame will be able to give us five values of

prediction probabilities. These prediction probabilities can be

combined differently to get a single value which will decide

the class of the frame. There are mainly two basic methods of

combining these.
1) Majority Voting: Selecting the classification output

on the basis of highest probability among the five

models [85].

2) Averaging: Selecting the classification output by averag-

ing the output probabilities from the five models [86].
In this work, we have only performed the averaging for overall

accuracy. The other advanced methods will be explored in

future for improving overall accuracy.

As lung US imaging protocols vary significantly across

imaging centers [87], developing a universally applicable

model will be a challenge across all imaging conditions.

The work presented in here specifically provides a solution

to this challenge with the utilization of these lightweight

CNNs requiring very less training time (Table VII) without

compromising the accuracy of the detection, making them

attractive as well as easy to deploy in the point-of-care

setting, where US was aimed. These types of methods are

essential for making deep learning methods more appealing

for point-of-care COVID-19 detection studies. The developed

lightweight models were made available as an open-source

for enthusiastic users at ht.tps://github.com/navchetan-awasthi/

Mini-COVIDNet.

VIII. CONCLUSION

US imaging has been known to be an effective point-

of-care test for diagnosis of pneumonia and is proven to be as

competent as CXR. This work showed that lung US imaging

can be utilized as a point-of-care test for COVID-19 with the

deployment of lightweight deep neural networks. This work

utilized deep learning models that can easily run on mobile

platforms for end-to-end detection of COVID-19 using lung

US images, truly making it a point-of-care test. As US is com-

paratively less infection-prone (easy to disinfect), the bed-side

detection based on the developed models has been shown to be

a reality. The presented lightweight networks, including Mini-

COVIDNet, have trainable parameters in the order 2–3 million

and can be trained in less than thirty minutes to provide

an effective detection models, whose performance is on

par with a human expert (>68%). The other advantage of

Mini-COVIDNet is that the total number of parameters is

4.39 times lower compared to its counterpart, making it highly

versatile to deploy in mobile platforms and is also shown

to provide a highest accuracy of 83.2% in the detection of

COVID-19. The deployment results on the embedded plat-

forms like Raspberry Pi and Nvidia Jetson makes the proposed

Mini-COVIDNet very attractive to be utilized in point of care

setting allowing better triaging of COVID-19 patients.
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