
Mini-languages: a way to learn
programming principles
PETER BRUSILOVSKY
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,
USA.
E-mail: plb@cs.cmu.edu

EDUARDO CALABRESE
Dipartimento di Ingegneria deli’ Informazione, University of Parma, 43100 Parma,
Italy.
E-mail: educal@ce.unipr.it

JOZEF HVORECKY
University of Economics, 83220 Bratislava, Slovakia.
E-mail: hvorecky@vseba.sk

ANATOLY KOUCHNIRENKO
Department of Mathematics, Penn State University, University Park, PA 16802,
USA
E-mail: agk@math.psu.edu

PHILIP MILLER
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,
USA.
E-mail: plm@cs.cmu.edu

Mini-languages are a visually intuitive, simple and powerful way to introduce
students to programming. They are a good foundation for general computer science
instruction, provide insight into programming for the general population, and
teach algorithmic thinking. The goal of the paper is to provide an extensive review
of the mini-language approach to teaching programming. For different audiences
and in different countries, the authors have extensive experience in design and
application of mini-languages. We outline the problems that motivate the
application of this approach, present a brief history, review several existing mini-
languages, and provide discussion of lessons learned. In particular, we discuss how
to choose a mini-language for a particular group of students and list some require-
ments for a successful application of a mini-language. We conclude with a dis-
cussion of possible future directions of the mini-language approach development.

KEYWORDS: secondary education; higher education; informatics; languages; logo;
programming.

Education and Information Technologies 2 65–83 (1997)

1360–2357 # 1997 Chapman & Hall



INTRODUCTION

There have been many efforts to develop special languages for supporting the
initial steps in programming education as an ‘easy start’ for novices (Mendelson
et al., 1990). Genuine insight was given by the ‘turtle graphics’ of Logo (Papert,
1980). The success of Logo in general and turtle graphics in particular stimulated
the development of the mini-language approach to teaching the principles of
programming.

The idea of the mini-language approach is to design a small and simple
language to support the first steps in learning programming. In most of the
existing mini-languages a student learns what programming is by studying
how to control an actor, which can be a turtle, a robot or any other active
entity, acting in a microworld. Although an actor can be a physical device,
the student usually deals with a program model of such a device and
observes the behaviour of the executive on a screen. The actor can perform a
small set of commands and answer several value-returning queries. Usually
the student controls the actor, first by giving isolated commands and then
by writing small programs in a special miniature programming language.
This miniature language includes commands and queries of the actor and
several control structures. Most mini-languages include all basic control
structures (conditional execution, looping, recursion, etc.) and a mechanism for
creating new instructions (or other kind of subprograms). In this paper we use
the term mini-language to name a combination of an actor with a language to
control it.

There are multiple worthwhile objectives for teaching mini-languages. Mini-
languages can provide a solid foundation for learning a general purpose language,
such as Pascal, C or LISP. Mini-languages also provide a sound basis for
systematic problem solving for people who will program only to customize
their spreadsheet, database or CAD package, or another application program.
Mini-languages open a door to new educational opportunities. Regardless of
the student’s eventual penetration into programming and regardless of the age
of the student, there is a positive residue of the study of a mini-language. It
is the acquisition of algorithmic thinking as an explicit, familiar and powerful
tool.

This paper provides a review of the mini-language approach. We outline the
problems that motivate the application of this approach, present a brief history
of the approach and a review of existing mini-languages and provide an extensive
discussion of lessons learned. In particular, we discuss how to choose a mini-
language for a particular group of students and list some requirements to a
successful mini-language. All authors have a deep, positive experience in the
design and application of mini-languages for different audiences in different
countries. Our suggestions are based on experiences of teaching hundreds and
thousands of real students. We conclude with a discussion of possible future
directions of the approach development.

66 Brusilovsky et al.



DISCUSSION

Drawbacks of the standard approach

Nowadays, most of the students who start to learn the principles of programming
are taught by the old classic approach. This approach is based on using a general-
purpose programming language, such as Pascal, Modula-2, LISP or C, a professional
programming environment for the chosen language, and a set of problems from the
area of number processing and symbol processing. We believe that the effective-
ness of the classic approach is quite low in general, and the younger the students
the worse the classic approach works. In particular, using general-purpose lan-
guages creates the following three kinds of obstacles for novice programmers:

(1) General-purpose languages are too big and too idiosyncratic. The
conceptual basis of the language together with the main principles of
programming combine to form a large amount of material. This volume
alone makes it difficult to understand the material properly, thereby failing
to form a strong cognitive infrastructure. Instead of emphasing funda-
mental principles, the languages evoke secondary notions that reflect the
subtleties of the given language and its implementation.

(2) General-purpose languages provide little leverage for understanding their
basic actions and control structures. The languages are not visual and
their basic functions are carried out behind an opaque barrier. Professional
programming environments do not usually provide any visualization
capabilities. With the process of program execution hidden, the student
develops an input–output orientated understanding. In this way the
absence of visual feedback hampers mastery of language semantics.

(3) Since general-purpose programming languages are orientated on number
and symbol processing, the first possible problems used in teaching the
language are far from the students’ everyday experiences and are not
attractive for them. Developing applications that are both informative and
interesting requires learning a considerable language subset and writing
quite big programs, and this introduces another distraction–the need to
master the programming environment. As a result, the first difficult steps
in learning to program are usually neither well motivated nor supported by
work on the computer.

The mini-language alternative

There are two reasons why mini-languages are a good alternative. One is that they
provide a good foundation for general computer science instruction. The other is
that they open a door onto new educational opportunities. We believe that princi-
ples of computer programming is a topic that should be learned starting at the early
stages of school. It provides the basis for logical and abstract reasoning that is
fundamental to the learning process.

The first advantage of mini-languages is, as the name suggests, that they are
small. Mini-languages have a small syntax and simple semantics. A student, even

Mini-languages: learning programming principles 67



a very young one, can thus come to grips with the entire mini-language and
employ it with interesting results. In the words of Papert (1980), students can
‘expropriate’ the mini-language, making it their property. The time required to
master a mini-language itself is small, so the students can spend most of their
efforts on more important issues: mastering algorithm development and program
design in a university setting or understanding the principles of programming for
a more general audience.

A second important advantage is that mini-languages are built on metaphors that
are intrinsically engaging and visually appealing. It is possible to create rich sets
of problems that both cover the fundamental ideas and dovetail with the
students’ life experiences. This causes students to want to expropriate a mini-
language.

The operations performed by the actor are always visible, revealing the
semantics of language construction. Visual queues enable the novice to
understand semantics of introduced constructs, elucidate principles of program
structure and execution, protecting them from developing misconceptions.
Visibility provides a feedback for exploratory learning and problem solving.
Visual metaphors make it easier to develop interesting problems for important
concepts. Problems that achieve visible and meaningful results aid concept
mastery by reinforcing them with problem solving activities.

Another important advantage is that the designer of a mini-language is not
restricted to the syntax and semantics of any ‘big’ language, which may not be
suitable for novices. As a language designed especially for an educational
purpose and for a well-defined audience, a mini-language can take advantage of
the narrow definition of the class of its users by using students’ native languages
for keywords and providing only data types and control structures essential for
these students. In the same way, the designer of a programming environment for
a mini-language can take advantage of the small sizes and known audiences of
the languages and design a highly attractive and effective environment.

A brief history of mini-languages

The development of the mini-language approach was seriously influenced by the
turtle graphics of Logo (Papert, 1980). In some sense, the turtle-graphics set can be
considered the first example of a mini-language. Logo was not designed especially
for the purpose of teaching programming, but the ‘turtle subset’ appears to be a
good tool for introducing programming to novices, and it strongly contributes to
the overall incredible success of Logo. Logo provides genuine insight for further
development of mini-languages; however, Logo turtle graphics is not the best exam-
ple of a mini-language. Note that unlike most of the actors of mini-languages de-
scribed below, the turtle of Logo is ‘blind’, it cannot check its microworld. The
‘turtle subset’ also does not support such classic control structures as Pascal-like if
and while. To introduce these constructs the language needs to contain some predi-
cates that provide feedback when controlling the actor.

68 Brusilovsky et al.



The first and still the most popular real mini-language ‘Karel the Robot’ was
designed by Pattis as a ‘gentle introduction’ to Pascal for university students
taking their introductory programming course. Karel the Robot was completely
described in a book with the same name (Pattis, 1981) written by Pattis, who
also designed the first programming environment for Karel. Karel contains all
important Pascal-like control structures and teaches the basic concepts of the
notions of sequential execution, procedural abstraction, conditional execution
and repetition. The overhead of full high-level programming languages is reduced
as there are no variables, types or expressions in Karel. The actor, robot Karel,
performs tasks in a world that consists of intersecting streets and avenues, walls
and beepers (Fig. 1). Karel can also carry some beepers in his ‘bag’. The main
actions of Karel are move, turn left, pick beeper and put beeper. A set of 18
predicates allows Karel to check the state of his microworld. For example, Karel
can determine the presence of nearby walls, if there are any beepers in his bag
or at his location, and the direction he is facing. By writing programs that cause
Karel to perform carefully selected tasks, students gain experience with the
fundamentals while using a pleasant and persuasive metaphor.

Figure 1. Karel the Robot

Mini-languages: learning programming principles 69



Karel the Robot has been very important both as a mini-language and in
stimulating other work. The following are several mini-languages that were
directly inspired by Karel and use some of its features: Martino (Olimpo et al.,
1985) and Marta (Calabrese, 1989) in Italy, Darel (Kay and Tyler, 1993) in
Australia and Karel-3D (Hvorecky, 1992) in Slovakia. The original Karel the Robot
is now in use in many universities and colleges in the USA. A new edition of the
Karel the Robot book has been issued recently (Pattis et al., 1995).

Karel-3D
Karel-3D (Hvorecky, 1992) is an extension of the idea of Karel the Robot. Karel-3D
(Fig. 2) expands the original Karel into several directions to make it more
suitable for special audiences, such as pre-school students or secondary school
pupils.

• The robot can move in the three-dimensional space displayed in a separate
window. Other windows are used for typing programs, for menus and for
context-sensitive help.

• The robot can lay a brick, stand on it and (as a result of repeated actions)
move up and down. Thus, the movement of the robot is also ‘three-
dimensional’.

Figure 2. Karel-3D

70 Brusilovsky et al.



• The robot obeys either pressing keys (in a steering or navigation mode) or
commands (in a programming mode). A family of languages is created in this
way. Small children use steering, older ones start with programming.

Many Czech and Slovak schools use Karel-3D as their first (and sometimes
the only) programming language. Karel-3D is supported by a textbook
(Gasparovicova and Hvorecky, 1991).

Marta
Marta (Calabrese, 1989) is a screen robot based on Logo and is similar to the
robot Karel. It can be used as a soft introduction to programming from pre-school
age to adults. Being written in Logo, Marta offers the following advantages over
Karel:

• Marta can be driven in navigation mode with single keystrokes, which makes
it suitable even for pre-school children.

• Marta can build her world, as she can put or remove walls.
• Marta can be driven in the dark where the obstacles and beepers are not

visible, although they are still there.
• New commands and operations can easily be defined by writing Logo

procedures.
• Several levels of programming are available: one-line programs, multiple-line

programs and Logo procedures.

The only limitations with respect to Karel and that Marta’s world is bounded to a
7 3 15 grid and that she cannot put down more than four beepers at an intersec-
tion.

Josef the robot
Some mini-languages were designed independently of Karel, but with some influence
of Logo. One example is Josef the Robot (Tomek, 1982; 1983). Josef was designed at
the same time as Karel and its philosophy is a combination of Logo and the ideas
used in Karel, namely the idea of a rich microworld of Logo and the idea of prepar-
ing the user for programming constructs of conventional languages as in Karel. Josef
provides a relatively rich microworld–a robot living on the screen and capable of
graphics and other operations, particularly in a simulated real world represented
by a map. It uses constructs similar to conventional languages and advanced con-
cepts such as interrupts. One of the features intended to avoid syntactic difficulties
that obscure the essential concepts of problem solving by programming is that vari-
ables and procedure arguments are untyped.

Other languages
Several mini-languages were designed and used widely in the USSR where the book
by Pattis was not available, e.g. Wayfarer, Turingal and Tortoise. For more informa-
tion about Russian mini-languages see Brusilovsky (1990).

Wayfarer. Wayfarer was suggested in 1980 to support a new course on programming
for the students of the Mechanics and Mathematics Department of the Moscow

Mini-languages: learning programming principles 71



State University (Kouchnirenko and Kouchnirenko, 1988). The goal was to challenge
the students, from the first lesson, with a set of interesting problems. This set of
problems concentrated on the task of controlling a simple actor ‘Wayfarer’ moving
on a checked field with walls. The solutions were written in a simple mini-language
called MINI containing if–then–else and while–do statements, procedures without
parameters, commands and queries to an actor. Several years of experience proved
that four–six weeks of work with Wayfarer gave the student a solid ground for the
study of general notions of programming.

Turingal. The mini-language Turingal (Brusilovsky, 1991) was designed in 1983 for
computer science students of the Moscow State University. This language provides
control of the well-known basis of algorithmic theory–the Turing machine, which
works with a tape of symbols. The elementary operations of the mini-language are
simple and visual; the movement left and right along the tape and typing the
symbols on the tape. To control the machine, Turingal offers a set of control
stuctures (conditional statement, loops, case) and subroutines, with syntax and
semantics similar to the structures of PASCAL (Turingal � TURING machine �
pascAL). One of the main reasons for presenting the mini-language is to bring the
student to the mastery of the semantics of these well-known stuctures before
starting to learn Pascal.

Tortoise. The Tortoise mini-language was designed to support a part of the
computer literacy course for 14–15 year-old students in Russian schools
(Brusilovsky, 1994). It is similar to the Turingal, but adds some features that make it
attractive for younger students. For example, the tape of symbols was substituted
by a two-dimensional field of symbols.

Lessons learned

After more than ten years from the appearance of mini-languages the time is now
suitable to summarize some lessons learned. The authors of this paper have had
positive experiences using different mini-languages for different audiences in differ-
ent countries. Comparing and analysing our experiences provides some generaliza-
tions and the following sections discuss several aspects of mini-language
development and application.

Intended audience
The mini-languages used by the authors of this paper are designed for different age
groups, ranging from elementary school students (Marta and Karel-3D), through
secondary school ages (Tortoise and advanced version of Karel-3D) to college fresh-
men (Wayfarer, Turingal and Karel). All authors reported success in engaging their
audiences and in teaching problem solving and fundamental principles. In this
sense the mini-language approach is a kind of ‘silver bullet’ that gives good results
in teaching the principles of programming for different audiences.

At the same time there is no ‘right’ or perfect mini-language. There are different
mini-languages and they suit different needs, because the type of actor and the

72 Brusilovsky et al.



set of mini-language control structures depend on the age, background, interests
and learning goals of the student. For example, when one of the authors tried to
redesign the Turingal mini-language environment used previously in the
university for school students who were three years younger, he had to redesign
the executive and the microworld as well. The Turing machine executive with a
one-dimensional tape microworld that was used in the Turingal mini-language
does not seem to be interesting for the majority of 14 year-old students who
never had a course on the theory of algorithms. The new mini-language called
Tortoise adds two-dimensional world, colour and sound to the classic Turing
machine to make the microworld attractive for these students.

Another example shows that an actor can be extended to accommodate the
extended learning goals. Several years ago the paradigm of actor–executive,
supported originally by the Wayfarer, was applied in a secondary school course
‘Foundations of Computer Science and Technology’ (Kouchnirenko et al., 1993).
The main idea was to use executives to motivate the introduction of variables,
arrays and simple calculation procedures. To support it the Wayfarer was
replaced by a more powerful executive Robot in a richer microworld. For
example, Robot can measure the ‘temperature’ and ‘radiation level’ at the current
position of the field.

The audience can differ in the overall goal of using the mini-language. There are
two main reasons to apply the mini-language approach. The first reason is to
support an introductory computer science course in a university setting. Here a
mini-language can be used to provide a ‘gentle introduction’ into one of the
general purpose programming languages (Pattis, 1981) and to support mastering
such general skills as algorithm development, program design and program
debugging (Comar and Pintelas, 1989; Ferguson, 1978; Kay and Tyler, 1993). The
second reason is to support the language-independent learning of the principles
of programming and algorithmic reasoning (Brusilovsky, 1991; Gasparovicova and
Hvorecky, 1991; Olimpo et al., 1985). In the early stages of mini-language
application, the first goal dominated. At present, the second goal has become
more important as the principles of computer programming is a topic that
should be learned widely (and probably at the early stages of school), because it
provides the basis for logical and abstract reasoning that is important in any
learning process and everyday life.

Note that the application of a mini-language is never the goal itself, but a method
of mastering a set of notions and skills. If this set contains not only programming
concepts, but also some concepts from another domain, a mini-language might
be useful to learn this domain (as Logo is used to learn geometry). There is for
instance the mini-language SOLO aimed at the student of psychology (Eisenstadt,
1983).

Important features of a mini-language
Some features of mini-languages are important for success. The mini-language
should be simple in both its syntax and semantics. Simplicity is essential–see the

Mini-languages: learning programming principles 73



classic paper by du Boulay et al. (1981) for a discussion of simplicity. The mini-
language should be naturally visible most operations performed by the actor should
make visible changes in the microworld represented on the screen. The mini-lan-
guage should be attractive and meaningful for the intended category of students. A
good example for it is the Japanese Algo-Arena (Kato and Ide, 1993) mini-language
system applying the metaphor of Sumo wrestling, which is meaningful and appeal-
ing for young Japanese students, or another system (Comar and Pintelas, 1989) ap-
plying the metaphor of shopping in a supermarket. The above requirements stem
from the very idea of a mini-language. Other desired features are not so obvious and
stem from experience. The mini-language should be conversational like Basic or
Logo. It means that any mini-language command can be executed in both navigation
mode (single command execution) and programming mode (complete program ex-
ecution). Our experience shows that immediate execution and navigation modes
are important for a young audience. The original Karel did not support a navigation
mode, but both extensions of Karel for primary and secondary school students, Kar-
el-3D and Marta, add this feature.

A mini-language should be a modular language. It should contain a mechanism for
creating abstract instructions (procedures). All the procedures should be
independent units. Such a procedure can be considered as a new command of
the actor, which can be used in both navigation and programming mode.

The procedures designed for a particular problem can be later re-used for
solving subsequent problems. Logo, Karel, Josef and Wayfarer provide good
examples of modular languages.

The role of programming environment
An important lesson is that selecting a mini-language approach is not enough for
successful teaching of the principles of programming. The learning should be sup-
ported by a good programming environment. Such an environment should keep
both the microworld and the student program visible on the screen. The program
should typically be executed one instruction at a time, while the interpreter high-
lights programming constructs in the source code as they are being executed and
the effect is simultaneously shown in the microworld. This makes the connection
between a mini-language command or construct and its effect on the microworld
obvious. The interpreter should also provide visualization for those concepts of the
language that are not visualized by the microworld. Important features include vi-
sualization of variables and the stack of subroutine calls.

The environment should also provide a structure editor, to increase student
productivity, and enable the student to concentrate on the more important parts
of problem-solving. The strucutre editor protects the student from making most
syntax errors and provides immediate diagnostics for the remaining ones.
Providing menus or hot keys, the structure editor also solves the contradiction
between the requirements to enter the constructs easily and to give them
meaningful names. A related useful component of the environment is a graphical

74 Brusilovsky et al.



program design tool. Such a tool makes the program stucture visible and
understandable for the student.

A good example of a mini-language programming environment with all the
desired features is provided by Karel Genie (Miller et al., 1994) a novice
programming environment for the Karel mini-language.

To support the novice programmer, the Karel Genie provides a set of specially
designed tools (Fig. 3), which include a structure editor, a program decomposi-
tion view for both looking at and editing programs, and a run-time system with
advanced visualization tools. The Karel Genie is an integrated programming
environment. Editing the program, executing the program and taking a high level
view of the call structure are all presented within a single user-interface, allowing
students to move from one activity to another with little cognitive overhead. The
Karel Genie stucture editor provides maximum support to the novice program-
mer, because program construction can be conducted entirely through menu
interaction. As novices develop expertise they begin to exploit Karel Genie’s text
edit features. The Karel Genie graphical program design tool lets students
decompose a problem into simpler sub-problems by dragging the mouse from
the program root.

Karel Genie is highly visual and successfully uses multiple representations. This
is clearly illustrated in Karel Genie’s run-time system. The code is highlighted as
it is executed. At the moment a ‘move’ is executed in the code window, a Karel
icon moves in the world. Selection, repetition and recursion are similarly visually
reinforced. This is extremely valuable in teaching basic concepts as well as in
introducing powerful and ‘advanced’ concepts, such as loop invariance. Karel
programs can be single stepped and run either forward or backward. The run-
time environment also has a visual call stack. This makes procedure invocation
and return clear.

The Karel Genie has been in use in secondary schools and universities
throughout the USA for nearly ten years. In addition to Carnegie Mellon
University it has been used in computer science classes at Harvard University,
New York University, Stanford University, Swarthmore College, Ohio State and a
number of other institutions.

Thus a good mini-language is important, but not enough for success. A
programming environment is very important too. In particular, just applying
the Logo language with its famous Turtle graphics for teaching programming is
often not enough. In recent papers, Logo authorities argue the importance of
extended programming environments for Logo with variable visualization,
stepwise execution and even a program design tool (da Rocha, 1993; De Corte,
1993). We should note that most of the recent successful mini-language
environments (Karel-3D, Tortoise, KuMir) include both a structure editor and a
run-time system with extended visualization. For example, in Karel-3D the text of
any program can be created as a combination of commands and tests taken from

Mini-languages: learning programming principles 75



Figure 3. Karel Genie: editor and design view used and run time with tracing call stack

76 Brusilovsky et al.



menus. Problems that children have with typing are avoided this way. The
programming mode contains various debugging and visualization tools. The
execution of a program can be slowed down or speeded up, if necessary. The
executed commands can be highlighted.

The role of the problem set
A good mini-language should be complemented with a good set of attractive and
meaningful problems for students to solve. Problem solving is the most effective
way of mastering the mini-language and, consequently, supporting important con-
cepts. The set of problems must contain problems of various complexity (be ready
also to challenge the top 10% of your students with attractive but difficult pro-
blems) and cover all important concepts. These problems must be interesting for
the student both from the point of the goal to be achieved, and the process of solu-
tion development. Sometimes these problems look like a puzzle rather than a ‘ser-
ious’ programming task and the problem-solving activity becomes a kind of a game.
We recommend keeping a set of attractive problems in mind when designing a mini-
language. A mini-language that looks very attractive but for which an insufficient
number of problems are available loses its attractiveness very quickly. Often the
choice of an actor is driven by the goal of making the set of problems the student is
expected to solve attractive and meaningful. Compare, for instance, two problems:

(1) For a given matrix, A, find some pair, i, j, such that Ai, j � 0;
(2) Move Robot to some position where the radiation level is equal to zero.

A mini-language augmented with a good set of problems can support problem-dri-
ven learning: when the student is presented with a new meaningful problem, a new
language construct is then introduced that helps to solve the problem. This ap-
proach has been used fruitfully in textbooks (Kouchnirenko and Kouchnirenko,
1988; Kouchnirenko et al., 1993).

The above considerations concern traditional mini-languages that can be
described as ‘one microworld–many problems’. There is, however, an opposite
approach ‘one microworld–one problem’, where the microworld is orientated on
solving one, though difficult, problem, like finding an exit from a labyrinth. Two
good examples of this are the TRAPS system (Witschital et al., 1989) where the
task is to move an actor through a playing board filled with various obstacles,
and Algo-Arena (Kato and Ide, 1993) where the task is to control a Sumo wrestler.
Here the student learns to program by solving more and more complex sub-
problems of the problem, or solving the problem for more and more complex
microworld configurations (as in TRAPS), or designing more and more complex
and better program solutions (as in Algo-Arena). A limited set of problems in
these systems is compensated by an attractive and meaningful microworld. We
think that systems of this kind can be suitable to support a small course on the
principles of programming for a young audience.

Using several microworlds
Several mini-languages with different actors can be used sequentially or simulta-
neously in an introductory programming=design course for computer science uni-

Mini-languages: learning programming principles 77



versity students. The course can comprise several regular mini-languages
(Kouchnirenko and Kouchnirenko, 1988) or several one-problem mini-languages as
suggested in (Comar and Pintelas, 1989; Ferguson, 1987). Different microworlds can
be used to stress different aspects of the subject (for example floating point num-
bers) or to teach different parts. Here the problem is that understanding a new
mini-language requires a considerable amount of time and mental effort. The appli-
cation of any additional mini-language should be justified. Two lessons learned from
the experience are:

(1) having started to use a mini-language the student expected to use it for a
considerable amount of time, and

(2) the miniature languages used to control different actors should be similar
(at least they should have the same control stuctures).

Mini-languages and sub-languages
An approach very similar to the mini-language approach is the sub-language ap-
proach. The idea of the sub-language approach is to design a special starting subset
of the full language containing several ‘easy to visualize’ operations. Such a subset
can support the first steps of the learning programming and helps later in intro-
ducing more complex programming concepts. The sub-language approach was also
influenced by the turtle graphics of Logo. A set of four ‘turtle’ commands of Logo
provides the first example of a sub-language. Usually the sub-language approach ap-
plies the same idea of an actor in a microworld, and the starting subset is really a
set of commands and queries performed by the actor. Moreover, the same kind of
actor can be controlled by a mini-language, or by a sub-language.

The sub-language approach differs from the mini-language approach in one
important feature. While the mini-language approach uses a special miniature
language with its own commands and control structures, the sub-language
approach provides only a set of commands and queries as an extension of
some ‘big’ programming language. These commands and queries are used in
combination with standard control structures of the ‘big’ language. Good
experience in designing sub-languages has been accumulated in Russia. The
programming environment KuMir, which supports the Russian secondary school
course on ‘Foundations of Computer Science and Technology’ (Kouchnirenko
et al., 1993) applies several interesting actors (each one can be considered as a
sub-language) within the same educational programming language (E-language).

KuMir is an integrated educational environment, combining a text editor with a
zero-response-time incremental compiler and a simple debugger. The basic
philosophy that governs KuMir is that the language has a compact core that can
be dynamically extended by loading one or more separately prepared modules,
i.e. executives providing new microworlds and actors, or even new numerical
packages and abstract types of data. This approach allows easy customization of
the system. The school teacher can start with one of the traditional actors, like
Robot, then add more sophisticated options (Kouchnirenko et al., 1993). At the
university level, special packages like complex and rational numbers or plane

78 Brusilovsky et al.



geometry can be added. During the last three years KuMir has been used at the
Department of Mathematics of Moscow State University in support of under-
graduate courses of mathematics.

We think that the sub-language approach is often better when the student’s
direct goal is to learn a particular big language. The student can learn most of
the control structures and operators of the language more easily with the help of
the visible subset. However, if the goal is not to learn a particular language but
to learn the principles of problem solving by programming, which can later be
followed by learning a ‘real’ language, the mini-language approach is better. Using
sub-languages can be recommended for university introductory programming
courses. Here the sub-language approach can be successfully combined with
several actors for different purposes (as in KuMir).

FURTHER SCOPE

Supporting other paradigms

This paper discusses only the approaches related to teaching procedural paradigm
languages. The mini-language approach, however, can be applied successfully with
other paradigms. An example of applying the mini-language approach for teaching
parallel programming paradigms is the Robot Brothers project (Olimpo, 1988).
Three good examples of mini-languages designed to support object orientated para-
digm are Playground (Fenton and Beck, 1989), Gravitas, (Sellman, 1992), and KidSim
(Smith et al., 1994). The latter mini-language can also serve as an example of learn-
ing some physics concepts (laws of gravitation) along with the principles of pro-
gramming, and as an example of how to design an attractive mini-language for a
particular category of students. Several authors consider object-orientated mini-lan-
guages as the most natural and suitable way to teach introductory programming
and ‘control technology’ to younger students (Kato and Ide, 1993; Resnick, 1990;
Whalley, 1992).

Real world mini-languages

When teaching the principles of programming for a very young audience of seven–
nine years old, special attention should be paid to the attractiveness of an actor. A
good way to make an actor attractive for young students is to use a real world ac-
tor–some real computer-controlled device as the first ‘real turtle’ of Logo. A good
step towards real world actors is done by robotic toys such as Lego–Logo. Robotic
toys can provide good motivation for learning for a very young audience. The
authors think this is an area that should receive more attention. Special work has to
be done to make real world actors not only attractive, but also really useful in learn-
ing general concepts. In particular, robotic toys can be naturally applied to support
learning the object-orientated paradigm. Some encouraging results in this area were
reported recently (Whalley, 1992). Another example is the use of robotic toys by a
concurrent extension of Logo called MultiLogo to teach the principles of concurrent
programming (Resnick, 1990). Interesting results in making ‘real world programs’,

Mini-languages: learning programming principles 79



i.e. constructing a program as a real world artefact assembled from modules, are re-
ported in (Kato and Suzuki, 1993). Real world actors and real world programs are
not only more attractive, but also support collaborative problem solving activity.

Advanced mini-language environments

A promising way of further development of mini-language programming environ-
ments is to extend them with an intelligent tutoring component and a hypermedia
component. Intelligent tutors have shown impressive results in mathematics and
programming. By connecting intelligent tutoring to mini-languages it is conceivable
that learning can be improved by an order of magnitude. Intelligent computer tutors
can decrease the amount of non-creative work of the human tutor and reserve the
teachers time to work with students who have special needs. Intelligent tutoring
components provide the required amount of guidance: suggest the next concept to
learn or the problem to solve according to the student’s current knowledge, assist
the student in the problem solving process, diagnose the student’s solution. First
examples of creating intelligent tutors for mini-languages were reported in
(Brusilovsky, 1992; Dion and Lelouche, 1988; Witschital et al., 1989). The hyperme-
dia component extends the space of exploratory learning, providing student-driven
access to conceptual knowledge and examples. Recently, a hypertext component
was designed for the KuMir programming environment and a hypertext electronic
version of the textbook (Kouchnirenko et al., 1993) is now under development.
Some ideas about integration of a programming environment, a hypermedia com-
ponent and intelligent tutoring systems into a single system can be found in
Brusilovsky (1993).

CONCLUSIONS

All the authors of the paper, i.e. five university teachers, representing four different
nations, using similar, but distinct mini-languages, report positive results from using
mini-languages. However, all our findings and recommendations are results of ex-
perience rather than rigorous empirical evaluation. It is time to investigate such
claims empirically and report the findings. There are very few papers at present that
report any results of classroom studies or special experiments with mini-languages.
For example, there were special empirical evaluations to study (a) how skills
learned in Karel were transferred to other problem solving settings (Scheftic and
Goldenson, 1986), and (b) how the visual nature of the Tortoise mini-language
helped students in debugging their programs (Brusilovsky, 1994). We believe
it would be of great value to the larger educational community to study the mini-
languages in a rigorous and repeatable way.

Promoting the mini-language experience

Much research and development work has been done in the field of teaching intro-
ductory programming and a number of powerful environments have been created.
Teaching programming to beginners was often used as a testbed to apply new crea-
tive ideas about how programming should be taught. It is time now to transfer these

80 Brusilovsky et al.



ideas and experiences to ‘real life’ in the following two senses. First, these excellent
novice programming environments should leave laboratories and universities
where they have been developed and find their way to schools, universities and
homes. Here the role of software companies is important. Good examples are the
Karel Genie and KuMir, which are both used widely outside the place where they
were developed. But even here additional efforts are needed to turn these environ-
ments into programming products that can be bought in a store. Second, current
‘big’ programming environments, such as Borland Pascal, should learn some les-
sons from the best novice environment experience. Although current programming
environments provide debuggers operating at the source code level and capable of
step-by-step execution with display of current data values, they still lack many use-
ful features that exist in the environments we have described above. Good examples
of programming environments for professional languages that have most of the re-
quired features discussed above are Pascal Genie (Miller et al., 1994) from Carnegie
Mellon University and PascalMir and FortranMir from Moscow State University.

REFERENCES

Brusilovsky, P. (1990) Languages for teaching the principles of programming (in Russian).
Informatika i Obrasovanije (Informatics and Education) 5 (2), 3–9.

Brusilovsky, P. L. (1991) Turingal – the language for teaching the principles of
programming. In Proceedings of the Third European Logo Conference, E. Calabrese
(ed.), Parma, 27–30 August 1991, pp. 423–32.

Brusilovsky, P. L. (1992) Intelligent tutor, environment and manual for introductory
programming. Educational and Training Technology International 29 (1) 26–34.

Brusilovsky, P. (1994) Program visualisation as a debugging tool for novices. In Pro-
ceedings of INTERCHI’93 (Adjunct proceedings) Amsterdam, 24–9 April 1993, pp. 29–30.

Brusilovsky, P. (1993) Explanatory visualization in an educational programming environ-
ment: connecting examples with general knowledge. In Human-Computer Interaction,
Proceedings of Fourth International Conference on Human-Computer Interaction, EWH-
CI’94, Lecture Notes in Computer Science. B. Blumenthal, J. Garnastaev and C. Unger
(eds), Berlin, Springer-Verlag, 876, 202–12.

Calabrese, E. (1989) Marta – the ‘intelligent turtle’. In Proceedings of the Second European
Logo Conference, G. Schuyten and M. Valcke (eds), Ghent, Belgium, 30 August–
1 September 1989, pp. 111–27.

Comar, C. and Pintelas, P. (1989) An environment for teaching ‘program design’ by
exercises. Microprocessing and Microprogramming 28, 259–64.

da Rocha, H. V. (1993) The use of computational representation in the teaching and
learning of programming concepts. In Proceedings of the Fourth European Logo
Conference, Athens, Greece, 28–31 August 1993, P. Georgiadis, G. Gyftodimos, Y.
Kotsanis and C. Kynigos (eds), pp. 153–9.

De Corte, E. (1993) Towards embedding enriched Logo-based learning environments in the
school curriculum: retrospect and prospect. In Proceedings of the Fourth Logo
Conference, Athens, Greece, 28–31 August 1993, P. Georgiadis, G. Gyftodimos, Y.
Kotsanis and C. Kynigos (eds), pp. 335–49.

Dion, P. and Lelouche, R. (1988) Architecture of an intelligent system to teach introductory
programming. In Proceedings of ITS’88, International Conference on Intelligent Tutoring
Systems, C. Frasson (ed.), Montreal, 1–3 June 1988, pp. 387–94.

du Boulay, J. B. H., O’Shea, T. and Monk, J. (1981) The black box inside the glass box.

Mini-languages: learning programming principles 81



Presenting computing concepts to novices. International Journal on the Man–Machine
Studies 14 (3), 237–49.

Eisenstadt, M. (1983) A user-friendly software environment for the novice programmer.
Communications of the Association for Computing Machinery 20 (12), 1058–64.

Fenton, J. and Beck, K. (1989) Playground: An object-oriented simulation system with agent
rules for children of all ages. In Proceedings of OOPSLA’89 Object-oriented Programming:
Systems, Languages, Applications, New Orleans, LA, 2–6 October 1989, N. Meyrowitz
(ed), pp. 123–37.

Ferguson, D. L. (1987) The design of algorithms. Machine Mediated Learning 2 (1, 2), 67–82.
Gasparovicova, L. and Hvorecky, J. (1991) Kamarati Robota Karla (Friends of Karel the

Robot, in Slovak, Bratislava, Mlade leta.
Hvorecky, J. (1992) Karel the Robot for PC. In Proceedings of the East–West Conference on

Emerging Computer Technologies in Education, P. Brusilovsky and V. Stefanuk (eds),
Moscow, 6–9 April 1992, pp. 157–60.

Kato, H. and Ide, A. (1993) Algo Arena: A system for learning programming through
social interactions. In Proceedings of the Fourth European Logo Conference, Athens,
Greece, 28–31 August 1993, P. Georgiadis, G. Gyftodimos, Y. Kotsanis and C. Kynigos
(eds), pp. 111–22.

Kato, H. and Suzuki, H. (1993) AlgoBlock: A tangible programming language. In Proceedings
of the Fourth European Logo Conference, Athens, Greece, 28–31 August 1993, P.
Georgiadis, G. Gyftodimos, Y. Kotsanis and C. Kynigos (eds), pp. 123–33.

Kay, J. and Tyler, P. (1993) A microworld for developing learning design strategies.
Computer Science Education 3 (1), 111–22.

Kouchnirenko, A. G., Lebedev, G. V. and Svoren, R. A. (1993) Foundation of Computer
Science and Technology (in Russian). Moscow, Prosvecshenie.

Kouchnirenko, A. and Kouchnirenko, G. L. (1988) Programming for Mathematicians (in
Russian). Moscow, Nauka.

Mendelson, P., Green, T. R. G. and Brna, P. (1990) Programming languages in education:
the search for an easy start. In J.-M. Hoc, T. R. G. Green, D. Gilmore and R. Samway
(eds) Psychology of Programming, pp. 175–200, London; Academic Press.

Miller, P., Pane, J., Meter, G. and Vorthmann, S. R. (1994) Evolution of novice programming
environments: The structure editors of Carnegie Mellon University. Interactive Learning
Environments 4 (2), 140–58.

Olimpo, G. (1988) The Robot Brothers: An environment for learning parallel programming
oriented to computer education. Computers and Education 12 (1), 113–18.

Olimpo, G., Persico, D., Sarti, L. and Tavella, M. (1985) An experiment in introducing the
basic concepts of informatics. In Proceedings of the Fourth World Conference on
Computers in Education, WCCE’85. K. Dunkan and D. Harris (eds), Amsterdam, pp. 31–8.

Papert, S. (1980) Mindstorms, Children, Computers and Powerful Ideas. New York, Basic
Books.

Pattis, R. E. (1981) Karel – The Robot, A Gentle Introduction to the Art of Programming.
London, Wiley.

Pattis, R. E., Roberts, J. and Stehlik, M. (1995) Karel – The Robot, A Gentle Introduction to
the Art of Programming. 2nd edn. New York, Wiley.

Resnick, M. (1990) MultiLogo: a study of children and concurrent programming. Interactive
Learning Environments 1 (3), 153–70.

Scheftic, C. and Goldenson, D. (1986) Teaching programming methods and problem
solving: the role of programming environments based on structure editors. In
Proceedings of the National Educational Computing Conference, pp. 231–6.

Sellman, R. (1992) Gravitas: An object-oriented discovery learning environment for
Newtonian gravitation. In Proceedings of the East–West International Conference on

82 Brusilovsky et al.



Human-Computer Interaction. J. Gornostaev (ed.), St Petersburg, 4–8 August 1992,
pp. 31–41.

Smith, D. C., Cypher, A. and Spohrer, J. (1994) KidSim: programming agents without a
programming language. Communications of the Association for Computing Machinery
37(7), 54–67.

Tomek, I. (1982) Josef, the robot. Computers and Education 6 (3), 287–93.
Tomek, I. (1983) The First Book of Josef. Englewood Cliffs, Prentice-Hall.
Whalley, P. (1992) An alternative metaphor for teaching control technology. In Proceedings

of the East–West Conference on Emerging Computer Technologies in Education.
P. Brusilovsky and V. Stefanuk (eds), Moscow, 6–9 April 1992, pp. 328–31.

Witschital, P., Stiepe, G. and Kuehme, T. (1989) Experiencing programming language
constructs with TRAPS. In Computer Assisted Learning, proceedings of the Second
International Conference, ICCAL’89, Lecture notes in Computer Science, Vol. 360, H.
Maurer (ed), pp. 591–602. Berlin: Springer-Verlag.

Mini-languages: learning programming principles 83


	INTRODUCTION
	DISCUSSION
	FURTHER SCOPE
	CONCLUSIONS
	REFERENCES

