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Summary

Within the wealth of molecules constituting marine

dissolved organic matter, carbohydrates make up the

largest coherent and quantifiable fraction. Their main

sources are from primary producers, which release

large amounts of photosynthetic products – mainly

polysaccharides – directly into the surrounding water

via passive and active exudation. The organic carbon

and other nutrients derived from these photosyn-

thates enrich the ‘phycosphere’ and attract heterotro-

phic bacteria. The rapid uptake and remineralization

of dissolved free monosaccharides by heterotrophic

bacteria account for the barely detectable levels of

these compounds. By contrast, dissolved combined

polysaccharides can reach high concentrations,

especially during phytoplankton blooms. Polysaccha-

rides are too large to be taken up directly by hetero-

trophic bacteria, instead requiring hydrolytic

cleavage to smaller oligo- or monomers by bacteria

with a suitable set of exoenzymes. The release of

diverse polysaccharides by various phytoplankton

taxa is generally interpreted as the deposition of

excess organic material. However, these molecules

likely also fulfil distinct, yet not fully understood

functions, as inferred from their active modulation in

terms of quality and quantity when phytoplankton

becomes nutrient limited or is exposed to heterotro-

phic bacteria. This minireview summarizes current

knowledge regarding the exudation and composition

of phytoplankton-derived exopolysaccharides and

acquisition of these compounds by heterotrophic

bacteria.

Introduction

Marine primary producers are responsible for the accu-

mulation of vast amounts of biomass. Net primary pro-

duction (NPP) in oligotrophic oceans alone is comparable

to that in all of the world’s tropical rainforests (Field,

1998). Zooplankton grazing, viral lysis, the decay of

aging phytoplankton cells and the active/passive release

of photosynthetic products give rise to two distinct oce-

anic carbon pools: particulate and dissolved organic mat-

ter (POM and DOM respectively), with the latter defined

as the < 0.2-μm fraction (Jiao et al., 2010). Oceanic DOM

comprises an enormous carbon pool of 662 Pg, which

renders it ‘the largest ocean reservoir of reduced carbon’

(Hansell et al., 2009). DOM represents more ‘than

200 times the carbon inventory of marine biomass’

(Hansell et al., 2009) and thus harbours similar amounts

of carbon as the atmospheric CO2 pool (Hedges, 1992).

Consequently, marine DOM is the major carbon source

for heterotrophic bacteria in the world’s oceans (Azam

et al., 1983).

Phytoplankton usually sequesters excess carbon in the

form of storage polysaccharides, such as chrysolaminarin

in diatoms (Beattie et al., 1961) and glycogen in cyano-

bacteria (Ball and Morell, 2003). These polymers also

constitute the main fraction of phytoplankton exudates,

exceeding the concentrations of free monosaccharides or

amino acids by as much as 100-fold (Myklestad, 1995;

Granum et al., 2002; Grossart et al., 2007; Grossart and

Simon, 2007; Hahnke et al., 2013; Sarmento et al.,

2013). Proteins are another significant component of

algal exudates, whereas the contributions of lipids and

acetate are small (Aluwihare et al., 1997; Meon and

Kirchman, 2001; Grossart et al., 2006; Grossart and

Simon, 2007; Grossart et al., 2007; Haas and

Wild, 2010).

Using tangential flow filtration, Aluwihare and Repeta

(1999) found that up to 37% of the dissolved organic
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carbon (DOC) originating from phytoplankton consists of

high-molecular-weight (HMW, > 1 kDa) components,

mainly hydrolyzable carbohydrates. Early studies of iso-

lated oceanic HMW-DOM obtained from different sam-

pling sites over a wide range of depths showed that

polysaccharides represent the largest fraction of HMW-

DOM, with about 50% relative abundance of the DOC in

surface waters and about 25% in deeper samples

(Benner et al., 1992). On the lower end of that scale were

North Atlantic samples, as also reported in recent studies

of the Northeast Atlantic (~ 11% of DOC, Engel et al.,

2012), the Norwegian Sea (~ 14.8% of DOC, Myklestad

and Børsheim, 2007) and the North Pacific (~ 10.1% of

DOC, Sannigrahi et al., 2005). However, it should be kept

in mind that a share of the complex mixture of polymeric

and unspecified compounds referred to as marine DOC

can be of terrestrial origin (Opsahl et al., 1999).

Dissolved combined amino acids and proteins, about

which much less is known, usually do not accumulate due

to their preferential microbial utilization (e.g., Rosenstock

and Simon, 2001) and hence occur at relatively low con-

centrations (e.g., Keil and Kirchman, 1999). The same

holds true for dissolved free monosaccharides, which are

generally present at low (nanomolar) concentrations

although produced by phytoplankton at high rates

(Kirchman et al., 2001 and references therein; Myklestad

and Børsheim, 2007; Skoog et al., 1999). By contrast, poly-

saccharides are less rapidly metabolized by heterotrophic

bacteria (e.g., Meon and Kirchman, 2001) and their stand-

ing stock is therefore larger. These molecules comprise a

well-studied fraction within the otherwise highly complex

mixture of polymeric and unspecified compounds that

make up marine DOC (Aluwihare et al., 1997). Neverthe-

less, exudation of high and low molecular weight com-

pounds in phytoplankton blooms also depends on the

stage of the bloom, presence of bacteria and abiotic

parameters (Fernández-Gómez et al., 2013; Thornton,

2014). The chemical composition of this DOC matrix is

being slowly revealed by the application of traditional as

well as modern methods, including ultra-high-resolution

techniques (e.g., Dittmar and Paeng, 2009; Osterholz

et al., 2015, 2016).

Exudation of DOM by phytoplankton can be grouped

into passive leakage by diffusion through the cell mem-

brane and active exudation. Yet, why phytoplankton cells

actively exude a portion of their photosynthates is not

fully understood (Fig. 1). Diatoms, for example, release

roughly 5% of their primary production as DOC (Wetz

Fig. 1. Schematic on the influence of phytoplankton-derived polysaccharides and high-molecular-weight-dissolved organic matter (HMW-DOM)
on heterotrophic bacteria. (1) Phytoplankton (diatoms, green algae and cyanobacteria as representatives for phytoplankton) specifically control
their exopolysaccharide quantity depending on the bacterial strain. Polysaccharides are displayed as twisted tubes, and different bacterial strains
are indicated by different colours. (2) The diffusion of DOM and polysaccharides (twisted tubes) is related to the molecular size of exudates and
attracts motile bacteria toward the ‘phycosphere’. Increasing distance to the phytoplankton is illustrated with dashed semi circles. (3) The
restricted diffusivity of larger polymers creates microbial hotspots at the phycosphere. (4) Phytoplankton-derived HMW-DOM generated under
nutrient stress conditions impacts the usage by heterotrophic bacteria. (5) The exometabolome of phytoplankton differs in its quantity and quality
according to the growth phase and especially in the case of exopolysaccharides. (6) The exometabolome of phytoplankton has a distinct impact
on bacterial community composition (different bacteria are illustrated by different colours). (7) Nutrient limitation and different environmental
stressors increase the quantity of phytoplankton exudates. [Colour figure can be viewed at wileyonlinelibrary.com]
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and Wheeler, 2007), even though this imposes a major

metabolic cost for the alga. Recognition of this seemingly

wasteful use of carbon quickly raised speculation con-

cerning its true purpose (Sharp, 1977; Bjørrisen, 1988).

For example, it was proposed that in return for the meta-

bolic costs of actively exported exudates, specific func-

tions beneficial to the phytoplankton would be fulfilled:

the removal of toxic metabolites, the excretion of signal-

ling molecules (Amin et al., 2012), resource acquisition of

trace metals (such as iron), grazing, density reduction

and host defence (reviewed by Thornton, 2014; Decho

and Gutierrez, 2017). In addition, similar to the functions

of dimethylsulphoniopropionate (DMSP) (Karsten et al.,

1996), exuded compounds may act as osmolytes and

cryoprotectants (Aslam et al., 2012). Despite the plethora

of their hypothesized roles, the majority of compounds in

phytoplankton-derived DOM have no known function

(Thornton, 2014). Neither the reasons underlying the

active release of large quantities of DOM nor the role

of these substances in organism interactions are fully

understood (Myklestad, 1995). Azam et al. (1983) were

the first to report that 50% of the DOC released by phyto-

plankton is used by bacteria, which in turn plays a central

role for microbial loop processes (Goldman et al., 1987).

Thornton (2014) suggested that active algal exudation

might also act as an overflow mechanism to prevent cell

damage under stress conditions. Other authors observed

that polysaccharides are an important factor influencing

the community of heterotrophic bacteria that accom-

panies living phytoplankton (Grossart et al., 2005), both

of which exhibit distinct seasonal succession patterns

(Teeling et al., 2012). The abovementioned mechanisms

are not mutually exclusive, but may depend on phyto-

plankton species, growth phase and abiotic conditions.

Here, we review the composition of phytoplankton exo-

polysaccharides and the possible reasons why phyto-

plankton actively releases large amounts of these

carbohydrates. We also explore the potential role of algal

exopolysaccharides in mediating and shaping

phytoplankton–heterotrophic bacteria dynamics and

hence in oceanic carbon cycling.

Phytoplankton exopolysaccharide composition

In oceanic DOM C:N and C:P ratios are considerably

higher compared with the ambient surface water

(Thornton, 2014). The specific ratios of C:N:P in

phytoplankton-derived DOM depend on the phylogeny as

well as on the physiological status of the phytoplankton

cells (Thornton, 2014) and C:N and C:P ratios of

phytoplakton-derived DOM increase if nutrient limitation

occurrs (Saad et al., 2016). Nevertheless, the

phytoplankton-derived DOM, exhibits lower C:N and C:P

ratios compared with the ambient surface ocean DOM,

and thus supports the preferential consumption of labile

and nutrient rich phytoplankton-derived DOM by bacteria

(Saad et al., 2016). The largest fraction of phytoplankton-

derived, dissolved (< 0.2 μm) exudates is made up of

polysaccharides (up to 90%) (Myklestad, 1995; Under-

wood et al., 2010), and consist of up to 10 different

monomers (Rossi and De Philippis, 2016). These are

mainly the neutral monosaccharides glucose, mannose,

fucose, arabinose, xylose, rhamnose and galactose

(Mopper et al., 1992; Meon and Kirchman, 2001; Gros-

sart et al., 2007; Engel and Händel, 2011). In early

spring, with the onset of photosynthetic activity

(Kirchman et al., 2001), or during phytoplankton blooms

(Ittekkot et al., 1981; Sperling et al., 2017), the most

abundant monomer detected in exopolysaccharides is

glucose, but this also depends on the phytoplankton spe-

cies. For example, while glucose is one of the main neu-

tral sugars in diatoms (Magaletti et al., 2004; Grossart

et al., 2006; Grossart and Simon, 2007; Grossart et al.,

2007; Bellinger et al., 2009; Gügi et al., 2015), arabinose

makes up a greater share in both a coccolithophore and

a prymnesiophyte (Hahnke et al., 2013).

Exopolysaccharides also include amino-sugars, such

as galactosamine and glucosamine, as well as acidic

sugars, such as galacturonic acid, glucuronic acid and

muramic acid (Benner and Kaiser, 2003; Bhaskar et al.,

2005; Engel et al., 2012; Borchard and Engel, 2015;

Sperling et al., 2017) and chitin, a polymer of acetylgluco-

samin (Durkin et al., 2009). Acidic sugar monomers are

important constituents of transparent exopolymer parti-

cles (TEP) but also colloidal exopolymer particles, both of

which can be well characterized by acidic Alcian Blue

staining (Alldredge et al., 1993; Passow, 2002). More-

over, the exopolysaccharides in diatoms can be sulfated

(Dodgson and Price, 1962; Bhaskar et al., 2005; Helbert,

2017) and possess various combinations of monomer

linkages, which gives them an enormous diversity that

may be species-specific (summarized by Gügi et al.,

2015, table 3). For example, chrysolaminarin, a storage

polysaccharide mainly found in diatoms and most likely

exuded, consists of β1 ! 3- and ß1 ! 6 linked glucose

units in a ratio of 11:1 (Beattie et al., 1961). It does not

contain mannitol residues and has a total length of 12 glu-

cose monomers branching on average on C6 of every

glucose monomer (Beattie et al., 1961). However, chry-

solaminarin of the diatom Thalassiosira weissflogii con-

sists of 5–13 glucose monomers and is not branched

(Størseth et al., 2005) indicating species-specific chryso-

laminarin features potentially impacting their degradation.

Similarly, several different types of combined and linked

polysaccharides are present in cyanobacteria (summa-

rized by Pereira et al., 2009). Thus, according to these

observations, phytoplankton-derived exopolysaccharides

provide a consistent but also highly diverse class of
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molecules that can be specifically used by heterotrophic

bacteria as substrates for metabolic processes (Fig. 1).

Recently developed, sophisticated analytical tools may

increase our knowledge on the composition of

phytoplankton-derived polysaccharides and their selec-

tive usage by heterotrophic bacteria. An overview of

those analytical tools is beyond the scope of this mini-

review but can be found in Panagiotopoulos and Sem-

péré (2005) and, more recently, in Hor�nák and Pernthaler

(2014) and Becker et al. (2017).

Constraints of phytoplankton DOM and

polysaccharide exudation

DOM is also exuded for reasons that are so far unknown

(Wetz and Wheeler, 2007) and this fucntionally unkown

fraction of DOM may exceed that which is exuded for

specific purposes (Thornton, 2014). This may in part be

because DOM exudation involves a passive diffusion pro-

cess driven by a concentration gradient between the cell

and its surroundings. Another reason might be a ‘photo-

synthetic overflow’, in which more carbon is fixed by pho-

tosynthesis than is needed for growth (Thornton, 2014).

In combination with nutrient limitation, exudation of photo-

synthetically derived excess carbon may help to maintain

cellular stoichiometry (e.g., the ‘Redfield Ratio’)

(Thornton, 2014; Hansell and Carlson, 2014). In addition

to the passive diffusion or active export of low-molecular-

weight (LMW)-DOM, algae invest considerable energy in

producing polysaccharides (Thornton, 2014), the release

of which requires specific export mechanisms. This was

demonstrated by Chin et al. (2004) for Phaeocystis

globosa, which uses regulated exocytosis to secrete

polysaccharide gels, including large polymers or particles

(Verdugo et al., 2004; Passow, 2002; Bhaskar et al.,

2005); however, apart from this mechanism, information

about other routes of exudation is scarce. Both diatoms

and green algae continuously exude organic matter, even

when they are growing under balanced conditions

(Myklestad, 1995). Nevertheless, the exudation rate

increases when these organisms are exposed to oxida-

tive stress, cyanobacterial toxins, heavy metals or to

increases in salinity or osmotic stress (Fig. 1) (Maršálek

and Rojí�ckovâ, 1996; Abdullahi et al., 2006; Mohamed,

2008; El-Sheekh et al., 2012; Cherrier et al., 2015). While

a distinct effect of UV radiation on exudation has yet to

be confirmed (Pausz and Herndl, 1999; Carrillo et al.,

2002), phytoplankton maintained in the shade for 3 days

were shown to release large amounts of polysaccharides

(Smith and Underwood, 2000). Conversely, Cherrier

et al. (2015) found that extracellular release of DOM by

phytoplankton was positively correlated with the amount

of light in both lab and field studies. In this case, phyto-

plankton released higher amounts of DOM, as soon as a

few hours after exposure to elevated irradiance levels.

If irradiance stayed constant after an initial increase,

however, exudation fell back to basal levels. Further-

more, a study from Rossi and De Philippis (2016)

revealed that light and temperature had synergistic

effects on polysaccharide exudation.

Phytoplankton-derived polysaccharides have unique

biological properties, depending on their molecular

weight, the degree of branching and ultrastructure (Rossi

and De Philippis, 2016). The monomer composition of

dissolved exopolysaccharides depends on the phyto-

plankton growth phase and group (Fig. 1) (Urbani et al.,

2005). Indeed, exudate quality is strongly influenced by

nutrient availability during growth (Grossart, 1999;

Størseth et al., 2005; Barofsky et al., 2009) and differs for

different limiting nutrients, such as silicate and nitrogen

(Pete et al., 2010). Enhanced polysaccharide exudation

was observed under phosphorus, sulphur and nitrogen

limitation (Rossi and De Philippis, 2016). Accordingly,

nutrient depletion and thus the shift from the exponential

to the stationary growth phase stimulates the extracellular

release of exudates (Fig. 1) (Obernosterer and Herndl,

1995; Underwood et al., 2004; Myklestad et al., 1989;

Malej, 1993). A stress induced increase of polysaccha-

ride exudation might be triggered by the production of

reactive oxygen species (ROS) and/or toxins (Rossi and

De Philippis, 2016).

Besides the impact of abiotic factors, both the quantity

and the quality of phytoplankton exudates also seem to

be actively controlled by bacteria (e.g., Bruckner et al.,

2011; Gärdes et al., 2012). Moreover, the presence of

bacteria can also negatively impact phytoplankton, as

phytoplankton themselves are a source of bacterial nutri-

ents. Thus, in addition to providing bacteria with a sus-

tained carbon source (Decho and Gutierrez, 2017),

phytoplankton releases polysaccharides that prevent

direct bacterial colonization of the algal cell surface

(e.g., Agustí and Duarte, 2013; Amin et al., 2012; Meyer

et al., 2017) in the form of aggregates and particles

(Passow, 2002; Verdugo et al., 2004; Bhaskar et al.,

2005). This function of polysaccharides is similar to that

of the surface mucopolysaccharides of Trichodesmium

(Nausch, 1996). Vice versa, cyanobacteria may create

an environment that traps nutrients provided by reminera-

lization processes of bacteria (Guerrini et al., 1998). The

large amounts of polysaccharides released by nutrient-

limited phytoplankton (Fig. 1) (Myklestad, 1995; Wetz

and Wheeler, 2007) may serve to attract bacteria that will

provide important nutrients such as iron (Amin et al.,

2009), ammonium (Amin et al., 2015) and vitamins (Cole,

1982; Sañudo-Wilhelmy et al., 2014; Durham et al.,

2015). Some beneficial bacterial communities are capa-

ble of enhancing the dissolution of silica from the detritus

of dead diatoms (Bidle and Azam, 1999). In addition, by
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consuming polysaccharides, bacteria detoxify the phyto-

plankton phycosphere, that is, its surface and directly

environed space (Bell and Mitchell, 1972), via the

removal of reactive oxygen species (Morris et al., 2011)

and other harmful metabolites (Christie-Oleza et al.,

2017). The ability of TEP to attract and promote the

growth of different bacterial strains when phytoplankton

are confronted with either reduced or replete nutrient situ-

ations has been reported previously (Grossart and

Simon, 2007). Conversely, bacteria can also stimulate

the exudation of TEP from diatoms, which can in turn be

exploited as a carbon source. Gärdes et al. (2012) found

this to be the case for the Gammaproteobacterium Mari-

nobacter adhaerens when added to a culture of Thalas-

siosira weissflogii diatoms. The authors found, however,

that when under nutrient limitation, TEP production

occurred independent of the presence of bacteria

(Gärdes et al., 2012). In summary, quality and quantity of

exuded polysaccharides is affected by numerous abiotic

as well as biotic factors. These quality and quantity differ-

ences of released polysaccharides may reflect their eco-

logical role and selective utilization by heterotrophic

bacteria.

Exopolysaccharides: Attraction of heterotrophic

bacteria

Interactions between phytoplankton and heterotrophic

bacteria range from mutualism to parasitism (reviewed by

Cole, 1982; Amin et al., 2012) and are governed by nutri-

ent availability via the regulation of algicidal activity (Ray

and Bagchi, 2001), as well as by other environmental fac-

tors. The algal ‘phycosphere’ is an important basis for the

interactions between algae and heterotrophic bacteria. It

is largely made up of the HMW fraction of DOM (Hansell,

2013) together with other DOM fractions differing in

molecular weight (Fig. 1). Since diffusion time is inversely

proportional to the molecule size, HMW compounds have

a higher residence time in the phycosphere (Fig. 1)

(Seymour et al., 2017). Phytoplankton-derived exopoly-

saccharides are crucial attractants involved in the recruit-

ment and retention of heterotrophic bacteria within the

algal phycosphere (Bell and Mitchell, 1972; Grossart

et al., 2001; Barbara and Mitchell, 2003; Seymour et al.,

2010a, 2010b; Sonnenschein et al., 2012; Smriga

et al., 2016).

Within the phycosphere (Bell and Mitchell, 1972; Sey-

mour et al., 2017), the bacteria attracted by the high con-

centration of nutritional substrates (Kiørboe and

Thygesen, 2001; Stocker, 2012) can perform several

beneficial functions for phytoplankton, such as reminerali-

zation of nutrients (Seymour et al., 2017). Because phy-

toplankton increase polysaccharide exudation toward the

end of their exponential growth phase (Aslam et al.,

2012), bacterial colonization of phytoplankton cells also

reaches a maximum during this phase (Grossart

et al., 2006).

Acquisition of polysaccharides by heterotrophic

bacteria

Carbohydrates with a size of ~ 600 Da can either diffuse

freely into gram-negative bacterial cells (Decad and

Nikaido, 1976) or be channelled into the cells via porins

(Weiss et al., 1991). Consequently, these mono- and

oligo-saccharide or amino acid substrates have high turn-

over rates (Hansell, 2013) and cannot sustain the contin-

ued presence of bacteria, although they may act as

important signalling molecules (Seymour et al., 2017).

Bacterial growth is instead maintained by HMW polysac-

charides within the semi-labile fraction of DOM (Fig. 1).

These compounds diffuse away more slowly and are

therefore available for bacterial consumption for longer

periods (Smriga et al., 2016). Large polysaccharides

must first be broken down by hydrolytic exo-enzymes to

generate the oligo- or monomers that can then be readily

taken up by the cells by the above-described mecha-

nisms (e.g.,Traving et al., 2015). However, only a few

bacterial taxa and less than half of the tested bacterial

communities possess the enzymes and uptake mecha-

nisms that enable access to carbon-rich exopolysacchar-

ides (Elifantz et al., 2007; Alderkamp et al., 2007), even

though recent studies pointed out that almost half of all

bacterial genomes possess genes for exoenyme produc-

tion (Zimmerman et al., 2013). Consequently, the enzy-

matic degradation products of fungi and other

microorganisms (Rojas-Jimenez et al., 2017) play impor-

tant roles in providing nutrients for heterotrophic bacteria.

So far, two groups of organisms capable of polysaccha-

ride uptake have been identified: (i) organisms that exude

extracellular enzymes for hydrolysis and (ii) those that

take advantage of the hydrolyzed products, that is, oligo-

saccharides. The production of a product by a bacterium

that can be used by another auxotrophic bacterium is

referred as ‘cross-feeding’ (e.g., Garcia et al., 2017), and

degradation of polysaccharides is thereby accompanied

by succession of bacterial communities (Datta et al.,

2016). For extracellular enzymes, two scenarios exist,

which balance substrate encounter rate with energy costs

for maintenance of the enzymatic apparatus. In one sce-

nario, enzymes are bound to the cell surface – a situation

that may pay off energetically for solitary cells at low sub-

strate concentrations. In the second, enzymes are

released into the environment, which might only be

favourable under high substrate concentrations (Traving

et al., 2015).

A third model with a ‘selfish-uptake’ mechanism was

recently evidenced in human gut bacteria, whereby
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bacteria directly scavenge polysaccharides for hydrolysis.

In this strategy, a long α-mannan polymer is bound at the

cell surface, where it is partially hydrolyzed and the

resulting oligosaccharides are then taken up and further

hydrolyzed in the periplasm (or paryphoplasm in Plancto-

mycetes) (Cuskin et al., 2015). This same principle was

recently shown in marine systems with laminarin, xylan

and chondroitin sulphate polysaccharides (Reintjes et al.,

2017). When processed via this pathway, the uptake of

the glucan laminarin is rapid, occurring in ≤ 30 min

(Reintjes et al., 2017).

The degradation of algal polysaccharides is catalyzed

by carbohydrate-active enzymes (CAZymes, Lombard

et al., 2014, http://www.cazy.org/). Abundances of

CAZymes follow bacterioplankton community succession

patterns during phytoplankton blooms, and high enzyme

levels have been detected in Gammaproteobacteria and

Flavobacteriia, whose abundances follow phytoplankton

blooms (Teeling et al., 2012; 2016; Sperling et al., 2017).

By allowing for the hydrolysis of diverse polymers,

CAZymes of the Gammaproteobacterium Alteromonas

macleodii strain 83–1 allow for growth on a broad spec-

trum of exudates (Neumann et al., 2015). Other Gamma-

proteobacteria that rely on CAZymes include several

Vibrio species, which express laminarases (Alderkamp

et al., 2007). Flavobacteriia are among the genera of

Bacteroidetes frequently found during diatom blooms

(Pinhassi et al., 2004; Teeling et al., 2012) and they are

important polymer degraders (e.g., Fernández-Gómez

et al., 2013; Kabisch et al., 2014; Tang et al., 2017). In

the algae-associated Flavobacterium Zobellia galactani-

vorans, the highest number of glycoside hydrolases and

polysaccharide lyases compared with 125 other marine

bacterial genomes were found, and thus its adaptation to

the associated lifestyle and specialization to algae

derived polysaccharides (Barbeyron et al., 2016). Flavo-

bacterial SusD-like TonB-dependent receptors couple

with SusC-like TonB-dependent transporter porins,

whose abundances increase significantly during phyto-

plankton blooms (Teeling et al., 2012, 2016). In Bacteroi-

detes CAZymes are co-localized within clusters referred

to as polysaccharide utilization loci (PUL), which often

harbour several sulfatases (Grondin et al., 2017; Hel-

bert, 2017).

PULs are operons/regulons of genes that encode the

machinery for polysaccharide detection, hydrolysis and

uptake. They always include an outer membrane trans-

port protein, which is homologous to SusC, and operates

as receptor for the TonB uptake system (e.g., Martens

et al., 2011). For different polysaccharides, different

PULs are present, as shown for Gramella forseti KT0803

(Bacteroidetes) whose specific PULs were activated by

laminarin and alginate respectively (Kabisch et al., 2014).

Also the marine Bacteroidetes Gramella flava reveals

high abundances of glycoside hydrolase genes that are

organized in PULs or PUL-like systems that enable the

usage of diverse algae-derived polysaccharides (Tang

et al., 2017). For Bacteroidetes, habitat adaptations of

PULs were shown with populations specialized in pep-

tides and bacterial- and animal-derived polysaccharide

degradation on the one hand, and algae- and plant-

derived polysaccharide degradation on the other (Bennke

et al., 2016). Similar enzyme complexes are known for

Pseudoalteromonas haloplanktis, a marine Gammapro-

teobacterium, whose enzyme fusion may reduce sub-

strate and enzyme loss and thus represent an adaptation

to its aquatic habitat (Hehemann et al., 2017). However,

ecophysiolocial differentiation in the degradation of an

algal-derived polysaccharide of closely related Vibriona-

ceae populations (also Gammaproteobacteria) was

achieved by horizontal gene transfer (Hehemann

et al., 2016).

However, phytoplankton is not the only source of poly-

saccharides, because bacteria exude polysaccharides

themselves (Thornton, 2014; Zhang et al., 2015). Mostly,

bacterial polysaccharides consist of mannose, rhamnose,

glucose, galactose and galacturonic acid, and are char-

acterized by their high proportion of uronic acid (20%–

50%), which tend to form complexes with transition

metals due to its negative charge (Zhang et al., 2015).

Compared with phytoplankton polysaccharides, polysac-

charides of bacterial origin have a higher resistence

against mineralization by microbes and thus longer resi-

dence times. Nevertheless, bacterial polysaccharides

can also be utilized by dinstinct bacteria, which mostly

belong to the Bacteroidetes (Zhang et al., 2015). Such

secondary usage of polysaccharides (after the primary

utilization of phytoplankton-derived polysaccharides)

yields humic-like components that contribute to the for-

mation of refractory DOC in the oceans.

In summary, heterotrophic bacteria may aquire poly-

saccharides with diverse uptake systems (exoenzymes

for polysaccharide degradation to oligo-saccharides,

uptake mechanisms for oligo-saccharides, ‘selfish’

uptake system) which might be species specific, but are

not necessarily mutually exclusive.

Effects of algal exopolysaccharide release on the

metabolism and community composition of

heterotrophic bacteria

Phytoplankton-derived polysaccharides and other sub-

stances like DMSP, attract heterotrophic bacteria (Bell

and Mitchell, 1972; Kiørboe et al., 2002; Grossart et al.,

2001; Seymour et al., 2010a, 2010b; Smriga et al.,

2016), and appear to be species-specific (Barofsky et al.,

2009; Hahnke et al., 2013; Becker et al., 2014; Gügi

et al., 2015). Thus, the nature of the phytoplankton and
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therefore of its largest fraction of exudates, polysaccha-

rides, strongly determine the phytoplankton-associated

bacterial community composition (Pinhassi et al., 2004;

Grossart et al., 2005; Haynes et al., 2007; Sapp et al.,

2007; Baker and Kemp, 2014; Baker et al., 2016; Bohór-

quez et al., 2017), and shape the interactions between

phytoplankton and bacteria (Fig. 1). Preference for spe-

cific phytoplankton polysaccharide exudates was also

shown for Planktotalea frisia. This Roseobacter species

is highly selective since it prefers the exudate of some

types of diatoms over that of other species: It yielded

high growth rates if cultured together with Phaeocystis

globosa and Thalassiosira rotula, whereas only marginal

growth was observed in culture with Leptocylindrus dani-

cus (Hahnke et al. 2013). These experimental growth

rates matched those found in natural populations occur-

ring in and after diatom blooms, respectively, and could

be attributed to differences in the released polysaccha-

rides of the diatoms (Hahnke et al. 2013).

Differences in polysaccharide exudate composition

reflect the seasonal occurrence of various phytoplankton

species and thus influence bacterial abundances, includ-

ing distinct bacterial species that accompany phytoplank-

ton blooms (Schäfer and Abbas, 2002; Grossart et al.,

2005; Sison-Mangus et al., 2014; Baker et al., 2016).

Conversely, low phytoplankton abundances during winter

corresponded with low abundances of Flavobacteriia and

their CAZymes (Kopf et al., 2015). Teeling et al. (2012)

proposed that seasonality in the composition of the main

phytoplankton polysaccharides in the North Sea reflects

the abundances of specific phytoplankton species. Phyto-

plankton blooms were accompanied by a relatively con-

served bacterioplankton community composition

characterized by high abundances of Flavobacteriia,

Gammaproteobacteria and Roseobacter (Buchan et al.,

2014; Teeling et al., 2016).

At a higher phylogenetic resolution, bacterial species

with specific metabolic traits are supported by specific

‘exudate-regimes’ of photosynthetic products and thus

may form species-specific associations with phytoplank-

ton species (Grossart et al., 2005; Sapp et al., 2007).

Contrary, a gene expression analysis demonstrated a

rather broad spectrum of polysaccharides utilized by a

single Flavobacterium isolate (Thomas et al., 2017) indi-

cating a low substrate specificity of algae-associated bac-

teria. However, Zobellia galactanivorans responded both

to a single type of polysaccharide and to several others,

as long as they originated from the same taxon (Thomas

et al., 2017). This finding indicated a tight and species-

specific association of Z. galactanivorans to macroalgae.

Similarly, Bacillus weihaiensis, a brown-algae-associated

Firmicutes, produces enzymes that enable the complete

degradation of alginate and laminarin, which are major

components of brown algae polysaccharides (Zhu et al.,

2016). In this case, the same heterotrophic bacterium

was responsible for a succession of degradation pro-

cesses: First, alginate was degraded and thus the cell

wall destructed, and subsequently the released laminarin

and mannitol utilized (Zhu et al., 2016). These, at a first

glance, contradictory observations of low and high sub-

strate specificity can be explained by different bacterial

lifestyles, and thus associations of copiotroph and oligo-

troph bacterial species to phytoplankton. Further, a

recent study on niche partitioning indicated that bacterial

populations tend to be more generalistic in their carbon

utilization when provided with increasing substrate quan-

tities, regardless of the quality of those substrates

(Sarmento et al., 2017).

It is also possible that phytoplankton, by modulating

the concentration and quality of its polysaccharide exu-

dates, are able to attract selectively heterotrophs. Amin

et al. (2012) suggest that phytoplankton ‘cultivates’ het-

erotrophic bacteria by offering specific signalling mole-

cules (Gram et al., 2002; Seymour et al., 2017), which

are then preferentially metabolized only by the bacteria

capable of perceiving them. In fact, Amin et al. (2012)

show that diatoms selectively react to the presence of

heterotrophic bacteria by drastically changing the quantity

of polysaccharides in their exudates (Fig. 1) depending

on the strain they were co-cultured with. Bacteria rely on

these signals and, in the case of diatom exudates, are

able to rapidly take up these complex compounds within

30 h (Taylor et al., 2013).

A considerable amount of marine labile DOM can be

remineralized by a single bacterial strain (Pedler et al.,

2014), and many bacterial species possess genes for

several exo-enzymes (Zimmerman et al., 2013). As an

example, approximately half of the examined bacterial

genomes possess genes for alkaline phosphatase, gluco-

saminidase and/or chitinase (Zimmerman et al., 2013);

chitin production might be a common trait in diatoms, as

suggested by Durkin et al. (2009). Bulk DOM turnover,

however, likely requires several groups of bacteria

(Cottrell and Kirchman, 2000; Datta et al., 2016). The

concerted action of the three dominant groups Roseo-

bacter, Flavobacteriia and Gammaproteobacteria (poten-

tially with the aid of fungi) in particular drive the

interdependence with their metabolic traits (Garcia et al.,

2017). The exo-enzymes expressed by Roseobacter

enable polymer degradation (Christie-Oleza et al., 2015),

with the resulting oligomers and monomers taken up by

the bacteria via a sophisticated set of uptake systems

(Buchan et al., 2014; Klindworth et al., 2014).

Thus, a bacterial assemblage may develop with a tem-

poral succession pattern that allows the incremental deg-

radation of algal polymers and a resource partitioning of

polysaccharides with coordinated cooperative activities of

specialized bacteria (Datta et al., 2016). Hence, even
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bacteria lacking certain exo-enzyme capabilities benefit

from the hydrolysis products of others (McCarren et al.,

2010; Alderkamp et al., 2007; Datta et al., 2016). Support

for the requirement for bacteria with multiple enzymatic

capabilities stems from a co-culture study, in which the

axenic strain alone was unable to complement the

metabolism of the diatom (Christie-Oleza et al., 2017).

The authors suggested that the co-culture instead relied

on a mutual metabolite exchange that served to enhance

the long-term stability of both organisms. However, much

remains to be learned about the dynamics of these bac-

terial groups with respect to the overall fate of marine car-

bon cycling.

Role of algal polysaccharides in marine carbon

cycling

Marine phytoplankton supplements the water column with

large amounts of organic carbon. However, the fate of

DOM and its impact on the biological pump and microbial

loop is highly dependent on degradation activities of het-

erotrophic bacteria and the composition of the DOM

(Azam et al., 1983; Jiao et al., 2010; Letscher and Moore,

2015). Whereas LMW-DOM is essentially undetectable

due to its high turnover by bacteria (Kirchman et al., 2001

and references therein; Skoog et al., 1999; Saad et al.,

2016), the large HMW-DOM fraction consists of semi-

labile polysaccharides with turnover times as long as

weeks. Ambient pools of marine DOM in contrast might

be thousands of years old, especially in deep waters

(Saad et al., 2016). In general, a net accumulation of

polysaccharides occurs with the onset of summertime

stratification, whereas a net removal takes place with

deep winter mixing (McCarren et al., 2010), which is the

largest vertical export of carbon in the sea (Hansell,

2013; Aluwihare and Repeta, 1999; Mari et al., 2017).

The vertical transport also depends on the type of

exuded polysaccharides: If the exuded polysaccharides

attract particles and bacteria, the formation of marine

snow is very likely, resulting in higher sinking velocities

and downward fluxes of carbon. If the exuded polysac-

charides repel bacteria, the lower density of the exudates

compared with seawater may result in an upward flux

(Berman-Frank et al., 2007).

The ability of marine microorganisms to utilize polysac-

charides may reflect the conflict posed by the metabolic

costs of its uptake versus the energy gained from its

metabolism (Arrieta et al., 2015). However, based on the

frequent clustering of the bacterial community into prefer-

ential consumers of either LMW- or HMW-DOM

(e.g., Fernández-Gómez et al., 2013), it is likely that

phytoplankton-derived polysaccharides are almost

completely remineralized and that heterotrophic bacteria

are generators of recalcitrant DOM in the ocean

(e.g., Jiao et al., 2010; Zhang et al., 2015). DOM of bac-

terial origin is especially rich in uronic acid and humic-like

components, which increases its resistance against min-

eralization by microbes (Zhang et al., 2015). Neverthe-

less, some of the bacterial EPS can be consumed, for

example, by Flavobacteria, and phytoplankten are them-

selves a source of partly recalcitrant DOM (Landa et al.,

2014). The presence of specific phytoplankton-derived

refractory substrates could also be explained with con-

centrations below a threshold, which impedes their bio-

logical utilization (Traving et al., 2015), or by rapid

successions of bacterial communities, where secondary

consumers are not capable of polysaccharide breakdown

(Datta et al., 2016).

In long-term mesocosm experiments lasting months to

almost 3 years, ~ 30% of algal exudates remained recal-

citrant to microbial remineralization, even though the

water still contained polysaccharides (Fry et al., 1996;

Meon and Kirchman, 2001; Osterholz et al., 2015). Meon

et al. (2001) reported that despite the apparent species

specificity of algal-derived polysaccharides, these sub-

strates are only partially metabolized by bacteria, such

that recalcitrant polysaccharides of relatively uniform

composition are left behind. Those observations are sup-

ported by the recalcitrant behaviour of dissolved com-

bined neutral sugars, based on their molar composition

(Goldberg et al., 2009, 2011), and by the relatively uni-

form patterns of aldose derived from dissolved combined

carbohydrates (McCarthy et al., 1996; Aluwihare et al.,

1997; Borch and Kirchman, 1997). In another study,

’fresh’ polysaccharides in the surface waters were found

to contain high galactose and mannose/xylose concen-

trations, whereas in ‘aged’ and more recalcitrant polysac-

charides, the contribution of glucose was larger than that

of other sugars (Goldberg et al., 2009, 2011). Other stud-

ies demonstrated that neutral sugars, acetate and lipids

account for the major fractions of macromolecules, with

residence times < 3 years (Aluwihare et al., 1997; Repeta

and Aluwihare, 2006). Thus, microbial activities may also

modify the chemical structure of polysaccharides, such

that enzymatic cleavage or the uptake of molecules con-

trolling resilience to further microbial utilization are either

hampered or induced.

For bacterial polysaccharide breakdown, different bac-

terial strategies exist, which also affect the fate of the

released DOM. These different acquisition strategies

accompany microbial lifestyle strategies and therewith

phylogeny. For solitary cells facing low substrate densi-

ties, surface attached enzymes might be the most effec-

tive approach, whereas the release of enzymes might

yield higher effectiveness for high cell and substrate con-

centrations (Traving et al., 2015, see also chapter ‘Acqui-

sition of polysaccharides by heterotrophic bacteria’).

Oligotrophic bacteria possess uptake systems for a broad
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substrate spectrum and streamlined genomes, and

mostly lack motility and therefore preferentially use mem-

brane bound enzymes, whereas copiotrophic bacteria

that mostly exhibit motility, chemotaxis, fast growth and

the potential of high uptake rates under high substrate

concentrations, may release their extracellular enzymes

(Traving et al., 2015). One example for this copiotrophic

lifestyle is the Gammaproteobacterium Alteromonas, who

often reaches high abundances in and after phytoplank-

ton blooms (Zhang et al., 2015), and many Bacteroidetes

are specialists for POM degradation (Puddu et al., 2003).

The degradation of phytoplankton derived polysaccha-

rides is a concert of different bacterial species and

groups with synergistic interactions and population

dynamics in time spans of hours to days (McCarren

et al., 2010). Gammaproteobacteria may degrade LMW

polysaccharides, whereas Bacteroidetes degrade more

the HMW fraction and Methylotrophs utilize C1 com-

pounds that decorate the polysaccharides (McCarren

et al., 2010; Sosa et al., 2015). Together,

polysaccharide-degrading bacterial taxa and species

involved in sequential polymer degradation may produce

a wealth of molecules differing in their chemical formulas

and characteristics.

However, there are several other factors that affect the

fate of released polysaccharides. As example, the locality

of polysaccharide degradation also impacts the degrada-

tion, because different bacteria capable of polysaccha-

ride degradation occur at different places in the oceans.

Thus, different biomes may harbour different hydrolytic

potentials (Wietz et al., 2015). Furthermore, polysaccha-

rides produced under phosphate limitation support a dif-

ferent microbial communities compared with

polysaccharides produced under phosphate replete con-

ditions (Saad et al., 2016). Accompanied with different

microbial communities, polysaccharides exuded into

phosphate-depleted conditions reveal a longer persis-

tence if compared with nutrient replete conditions (Puddu

et al., 2003).

Another important factor for the fate of phytoplankton

derived polysaccharides is the mortality pathway of the

phytoplankton. Autocatalytic programmed cell death, for

example, was highly coupled to POM release in aquatic

ecosystems (Berman-Frank et al., 2007). The complexity

of phytoplankton-derived polysaccharides, its microbial

turnover and the nature of the co-existence of algae and

bacteria are important areas of research that will provide

insights into oceanic carbon cycling and the potential for

the production of recalcitrant DOM.

Summary and conclusions

Exudates of phytoplankton include mono-, oligo- and

polysaccharides that can be broken down and consumed

by heterotrophic bacteria. Therefore, (exo)polysaccha-

rides are an important link between marine heterotrophic

bacteria and marine primary producers. Accordingly, fol-

lowing the fate and role of dissolved marine carbohy-

drates can reveal the interactions and interdependencies

of the different microbes in the pelagic zone. Moreover,

carbohydrates have an extensive impact on carbon

export by controlling organic matter aggregation and par-

ticle transport from the surface to the deep ocean and

sediments. However, much needs to be learned from the

types of interactions, the involved partners and the modu-

lation of phytoplankton exudates by the presence of bac-

teria or changing environmental conditions. Recent

‘omics’ approaches allow for a better insight into the

mutual interactions between phytoplankton and heterotro-

phic bacteria, with metagenomes that reveal the partners

in associations, and transcripts that resolve the different

physiological processes executed by the different part-

ners. Proteomes may further reveal species-specific exu-

dates in multispecies assemblages, as well as the

response to the presence of specific bacteria. Further-

more, mass spectrometry at the nanoscale level

(NanoSIMS) may resolve the fate of exudates in interac-

tions at the cellular level. Combinations of these

approaches may help to define the partners in and the

type of interactions between phytoplankton and heterotro-

phic bacteria, as for example, the association of general-

ist and specialist bacteria to phytoplankton. A better

understanding of the microscale relationship between

phytoplankton and bacteria will then help us to untangle

important aspects of oceanic carbon fluxes, which pro-

vides an important feedback to global climate changes.
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