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Abstract— This paper presents a vision-based approach to Given these “visual relations” and “odometry relations”
SLAM in large-scale environments with minimal sensing and petween consecutive images, the Multilevel Relaxation-alg
computational requirements. The approach is based on a jnm [2] is then used to determine the maximum likelihood

graphical representation of robot poses and links betweenhie timate of all i Th lati d
poses. Links between the robot poses are established basetd o estmate or all image poses. € relations are expresse

odometry and image similarity, then a relaxation algorithm @s an estimate of the relative pose and the corresponding
is used to generate a globally consistent map. To estimate covariance. A key point of the approach is that the estimate

the covariance matrix for links obtained from the vision of the pose difference in the relations (particularly in the
sensor, a novel method is introduced based on the relative “visual relations”) does not need to be extremely accurate a

similarity of neighbouring images, without requiring distances I th di - . deled f
to image features or multiple view geometry. Indoor and ong as the corresponding covariance Is moaelied correctly.

outdoor experiments demonstrate that the approach scalesell  This is because the pose difference is only used as an initial
to large-scale environments, producing topologically coect estimate that the Multilevel Relaxation algorithm can atju

and geometrically accurate maps at minimal computational according to the covariance of the relation. Thereforeneve
cost. Mini-SLAM was found to produce consistent maps i yyith an initial estimate of the pose difference that is fairl
an unstructured, large-scale environment (the total path éngth . L . . .
was 1.4 km) containing indoor and outdoor passages. imprecise, itis p_ossmle to build maps with |r_nproved geocmet
ric accuracy using the geometric information expressed by
l. INTRODUCTION the covariance of the relative pose estimate. In this paiper,
This paper presents a new approach to the problem wiitial estimate of the relative pose is determined assgmin
simultaneous localization and mapping (SLAM). The sugthat similar images are taken at the same place. Despite this
gested method is called “Mini-SLAM” since it is minimalis- simplistic assumption, Mini-SLAM was found to produce
tic in several ways. On the hardware side, it solely relies ooonsistent maps in an unstructured, large-scale envirohme
odometry and an omnidirectional camera. Using a camera ébe total path length was 1.4 km) containing indoor and
the external source of information for the SLAM algorithmoutdoor passages.
provides a much cheaper solution compared to state-of-the-
art 2D and 3D laser scanners with a typically even longef Related Work
range. It is further known that vision can enable solutions Using a camera as the external source of information
in highly cluttered environments where laser range scanni&gr SLAM has received increasing attention during the past
based SLAM algorithms fail [1]. In this paper, the readingyears. Many approaches extract landmarks using local fea-
from a laser scanner are used to demonstrate the consistetwrgs in the images and track the positions of these land-
of the created maps. Please note, however, that the lagearks. As the feature descriptor, Lowe’s scale invariant
scanner is only utilised for visualisation and is not used ifeature transform (SIFT) [3] has been used widely [4], [5].
the visual SLAM algorithm. An initial estimate of the relative pose change is often
Apart from the frugal hardware requirements, the methodbtained from odometry [5], [6], [7], or where multiple
is also minimalistic in its computational demands. Mapgameras are available as in [8], [9], multiple view geometry
estimation is performed online by a linear time SLAMcan be applied to obtain depth estimates of the extracted
algorithm that operates on an efficient graph representaticdfeatures. To update and maintain visual landmarks, Exténde
The main difference to other vision-based SLAM approachd&alman Filters (EKF) [10], [6], Rao-Blackwellised Partcl
is that there is no estimate of the positions of a set dfilters (RBPF) [8] and FastSLAM [5] are among the most
landmarks involved, enabling the algorithm to scale updsett popular methods applied. The visual SLAM method in [10]
with the size of the environment. Instead, a measure of imagises a single camera. Particle filters were utilised to nbtai
similarity is used to estimate the pose difference in betwedahe depth of landmarks, while the landmark positions were
corresponding images and the uncertainty of this estimatepdated with an EKF. In order to obtain metrically correct



estimates, initial landmark positions had to be provided by
the user. A similar approach described in [7] also uses
a single camera but applies a converse methodology. The
landmark positions were estimated with a Kalman filter (KF)
and a patrticle filter was used to estimate the path.

Since vision is particularly suited to solve the correspon-
dence problem, vision-based systems have been applied as
an addition to laser scanning based SLAM approaches for
detecting loop closing. The principle has been applied to
SLAM systems based on a 2D laser scanner [11] and a 3D
laser scanner [12]. A totally different approach that camabi
vision and laser range scanning is_described in [13]. He_rgi,g 1. The graph representation used in MLR. The figure shies
contours extracted from an aerial image were used to inframes (nodes) and the relations (edges) both from odomgtand visual

prove the consistency of a map, which was initially creategjmilarities ry. Each framea contains a reference to a set of features
using the laser scanner Fa extracted from the omni-directional imadg, an odometry posed, a

: . covariance estimate of the odometry p@kg, the estimated pose and an
Other mapping approaches have combined omnéstimate of its covariancy,. See also Fig. 2, which shows images from

directional vision for place recognition with odometry forthis region.
obtaining geometric information in a graph. For example,
Ranganathan and Dellaert [14] use odometry information

to evaluate the likelihood of topological map hypothesgﬁamea relative to frameb. It is modeled as a Gaussian
n a MCMC framework. However, the emPhaS'S of thellyisribution with meanu" and covarianceC’. The output
work is on selecting the correct topology using very COarse the maximum likelihood (ML) estimation vector for

visqal features, and t.heir approach is unlikely to scale tg, . poses of all the frames. In other words, the purpose
enw;onmentsf Or: the S|ze_presented gere.f I . of the algorithm is to assign a globally consistent set of
The rest of the paper is structured as follows. Section o agian coordinates to the nodes of the graph based on

describes tfhehsuggested SLAM gpproaﬁh._ It |ncISude§ a brigfea) (relative), inconsistent (noisy) measurements ring
OVErvIew 0 t e SLAM opumzau_on tec nique (Section I-to maximize the total likelihood of all measurements.
A) a description of the way in which relations are computed

from odometry (Section 1I-B), and from visual similarity .
(Section 11-C). Then the experimental set-up is detailed anP- Relation Based on Odometry

the results are presented in Section Ill. The paper ends withgy ysing odometry to add a relation,, the relative
COﬂC|USIOnS and SuggEStIOI’]S fOI’ future WOI’k (SeCtIOI’l |V) pos|t|on Changqlro can eas”y be extracted d”‘ectly from
1. MINI-SLAM the odometry readings and the covariafig can be esti-

mated by a motion model. In our implementation the model

~ Our approach is based on two principles. First, odometry,ggested in [15] is used where the covariance is modeled
is fairly precise if the distance traveled is short. Secdd, zg:

using visual matching, correspondence between robot poses
can be detected reliably even though the covariance of the

current pose estimate, i.e. the search region, is large. d26>%d +t26§1 0 0

We therefore have two different types of relations. Re- C, = 0 d25$d +t25$t 0
lation based on odometry, and relation based on visual 0 0 d25gd+t25gt
similaritiesry,. (1)

whered andt is the total distance traveled and total angle
rotated between the two frames respectively. The 6 param-

The SLAM problem is solved at the graph-level, where theters adjust the influence of the distardteand rotationt
Multilevel Relaxation (MLR) method of Frese and Duck-in the calculation of the covariance matrix and were tuned
ett [2] is applied. In this method, a map is represented afanually. Thedyx parameters denote the forward motion, the
a set of nodes connected in a graph. Each node or frardg parameters the side motion and tfg parameters the

corresponds to the robot pose at a particular time (in ol cagotation of the robot. Note that an odometry relatignis
when an omni-image was taken), and each link corresponggly added between successive frames.

to a relative measurement of the spatial relation between th
two nodes it connects, see Fig. 1.

The function of the MLR algorithm can be briefly ex-
plained as follows. The input to the algorithm is a sét To add a relatiorry which relies on visual similarities
of m= |#)| relations onn planar frames (i.e., the algorithm the likelihood distribution between two frames based on
in [2] assumes a flat, two-dimensional world). Each relatiothe visual similarity aspects has to be estimated. This is
r € # describes the likelihood distribution of the pose ofexplained below.

A. Multi-Level Relaxation

C. Visual Similarity Relation



Fig. 2. Example of loop closing detection outdoors. Theadisé to the Fig. 3. Example of loop closing detection indoors. Here tis¢adice to the

extracted features is comparably large. The top figure sliestare matches features is smaller compared to Figure 2. The top figure siastshes at the

at a peak of the similarity valu&s7g7sg = 0.728, whereas the lower figure local peak with a similarity valué&y; 360 = 0.322, whereas the lower figure
shows the matches two steps awyo7ss = 0.286 (~3 meters distance). shows the matches two steps avBayso = 0.076 (~3 meters distance). The
The pose variance3, and Ofﬁ, was estimated to be 2.162. pose variancesZ, and 0)%\, was estimated to be 1.2¥.

1) Similarity Measure:Given two imaged, for framea 2) Estimate of the Relative Rotation and Variancéhe
and |y, for frameb. For both images, features are extracted€lative rotation between two framesandb can easily be
using the SIFT algorithm [3], which results in two sets ofestimated in a panoramic image by looking at the change in
featuresF, and F,. Each featureF = [x,y],H comprises Y Pixel coordinate of the matched feature pa#s since the
the pixel position[x,y] and a histogranH containing the width of a panoramic image encloses a complete revolution
SIFT descriptor. The similarity measuggy, is based on the Of the scene.
number of features that match betwe@nand . The relative rotation#®), for all matched pairp € P, are

The feature matching algorithm calculates the Euclidea®dded into a 10 bins histogram, V‘{h'crh is smoothed with a
distance between each feature in imagand all the features [1,1,1] kernel and the relative rotationy’ is determined as
in image I,. A potential match is found if the smallest the maximum point of a polynomial of degree two fitted to
distance is smaller than 60% of the second smallest distand€ smoothed histogram. _

This criterion was found empirically and also used in [16]. 1€ rotation varianceog, is estimated from the sum
It guarantees that interest point match substantiallyebettOf Squared differences between the estimate of the relative

compared to the other feature pairs, see Fig. 2,3. In adgitiorotation pg’ and the relative rotation of the matched pairs
no feature is allowed to be matched against more than ofab-
other feature. If a feature has more than one candidate match 5 1 . 5
the match which has the lowest Euclidean distance among Tgv = y——7 (Hg' — 6p) 3)
. . ab—
the candidate matches is selected. 7 P<Fab

The feature matching step results in a set of feature pairs3) Estimate of the Relative Position and CovarianGair
Pap, with a total numbeM,, of matched pairs. Since the approach does not attempt to determine the position of the
number of extracted features varies heavily depending afetected features. Therefore, the relative position betwe
the image, the number of matches is normalized, hence theo frames a and b cannot be determined accurately. Instead
similarity measures, p € [0,1] is defined as: we use only image similarity and s, py¥] to [0,0]. One
could of course use an estimate based on multiple view
geometry, for example, but this would introduce additional
complexity that we want to avoid.

However, it is possible to determine a meaningful estimate
whereng, andng, are the number of features Fy andF, of the covariance of the relative position between frame
respectively. andb using only the similarity measurg,. The number

A high similarity meassure gives an indication that weof matched features between frames will vary depending on
are at a perceptually similar position. However, a singléhe physical distance of the extracted features, see FEi¢g.4,
similarity measure cannot provide us with a relative positi For example, consider a robot located in an empty car park
or variance estimate. lot, where the physical distance to the features is largd, an
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a similarity measure&, p,.

If no visual relationry has been added, either between
andb or any of the frames betweenandb, the relative co-
varianceCg, , can be determined directly from the odometry

covarianceCyg andCxcb). However when a visual rel<';1ti(]'r$"b

betweena andb is added, the covariance of the estim@jg

should be decreased. The covariance for frémie updated
with

o0O0OpgO0OmEEQgQg OO
a U

Cg, = Cia +Cab (5)

Fig. 4. Left: The physical distance to the features will iefice the number if the new qovarlance IS Sma”er_then the_ previous one.
of features that can be detected from different poses ofdbetr The filed ~ The calculation was made by using the eigen vectors of
squares represent features that could be matched in adl thiwt poses the covariance matrices, i.e. representing the covariaase
while the unfilled squares represent the features were thresgmndence : : : :

cannot be found. The left wall in the figure is closer to theotomeaning elllpses._The new covariance estimate IS_ also used to update
that the features change more rapidly due to faster chamgeppearance the previous frames betweerandb by adding the odometry
compared to the right wall which is further away. covariancesCy  in opposite order (i.e. simulate that the
Fig. 5. Right : Our outdoor robot with the Canon EOS 350D cameerd  robot is moving backwards from frame to a). A new

a panoramic lens from 0-360.com which were used to collegtd#ta, a covariance estimate for framieis calculated with
DGPS unit to determine ground truth positions, and an LMSKS$Canner m

used for visualization.

C)A(j:C)A(b'i_CXg_CX?v (6)

the features are fairly stable if the robot is moved one ste herej € (a, b).' Note_ that the covariance is qnly updated if
e new covariance is smaller than the previous one.

forward. Compare this with a robot located in a narro 5 Visual Relation Filtering-T id addi isual rel
corridor where the physical distance to the extracted featu . ) Visual Relation X |Fer|pg. 0 avold adding visua reba-
ons based on low similarity, visual similarity relation®

is small. The number of matches would most likely b : . L
smaller if the robot was moved the same distance in tHEtWeen frame and frameb are only added if the similarity
corridor compared to the car park measure exceeds a threshuol&, ;, > t. In addition, similarity

Hence the covariance of the robot's pose [X.y] relations are only added if the S|m|!ar|ty va_l&,b has its
peak at frame a (compared to the neighbouring fralies).
0%, OxvOyv There is no limitation on the number of visual relations that
Crv = o 2 (4)
v Oy Oyiv can be added for each frame.

is based on how the similarity measure varies within the 1. EXPERIMENTAL RESULTS

neighbouring framedN(a) of frame a. In order to avoid

estimating the covariance orthogonal to the path of thetrobo A large set of 945 omni-directional images was collected

if the robot was driven along a straight path, the covarianc@/er a total distance of 1.4 kilometers with height differes

is simplified by settingoZ, = o7, . of 3 meters. The robot was manually driven and the data were
The variance is estimated by least squares fitting a 1epllected in both indoor and outdoor areas during a period

Gaussian function to the similarity measurgignp and ©Of 2days. _ .

the Euclidean distance obtained from odometry. In the ex- The omni-directional images were first converted to

perimental evaluation the Gaussian was estimated usingP§noramic images with a resolution of 1000 x 289 before

consecutive frames. any processing was done. When extracting SIFT features
b, whereb is the latest added frame. SIFT features from the first octave were ignored, simply to

By only calculating those similarity value,, for which lower the amount of gxtracted features_. The mean number_ of
it is likely that a and b are sufficiently close, the matching extracted feature per image was 498_W|th a _standard dewiatio
step can be speeded up. This also makes the method m8fel70.0. The threshold, described in Section 1I-C.5, was
robust to perceptual aliasing (where different regionsehas€t 0 0.2.
very similar appearance). If the similarity measure werego
calculated between franteand all previously added frames,
the number of feature paii® to be matched would increase To visualize the maximum likelihood (ML) estimateof
with the number of added frames. the robot poses, laser scans acquired at the same time (and

From the SLAM method, see Section II-A we obtain gpose) as the omni-images were used to render a occupancy
maximum likelihood estimate of the frame,. “There is, map. See Fig. 7 for the whole map using a 25x2% grid
however, no estimate of the covarianCg to distinguish size. In Fig. 8 only the center part is shown with a grid size
whether framea is likely to be close enough to calculateof 10x10 cnf.

A. Visualized results



B. Comparison to ground truth obtained from DGPS

To evaluate the accuracy of the created map, the robot
position was measured with differential GPS (DGPS) and
collected together with the omni-directional images, fice.
every SLAM pose estimate there is a corresponding DGPS
position < %, xP6PS >,

DGPS gives a smaller position error than GPS. However s 15
since only the signal noise is corrected, e.g. the problem LR m————
with reflection still remains. DGPS is also only available if i cT—— !
the radio link between the robot and the stationary GPS is rd

N

functional. Therefore a subset of the pose pairs f \"" b ey
< )'zi,XiDGPS >i—1.N IS selected. Measurements were consid- - . ?ii&"& 2‘
ered only where at least five satellites were visible and the e e

radio link to the stationary GPS was functional. The valig, ¢ pgops data®ePs (blue) with aligned SLAM estimates (red)

DGPS readings are indicated as blue dots in Fig. 6. The tot@$played on an aerial image. The squares show the SLAM arRiD@ses
number of pairs used to calculate the MSE for the whole md‘gr which the number of satellites used to obtained the DGR8surement
was 377 compared to the total number of frames which wagS considered acceptable.
945,

To measure the difference between the estimated poses
from SLAM X and the DGPS positiong’®FS (using UTM
WGS84, which provides a metric coordinate system) the two
data sets have to be aligned. Since the correspondence of the
filtered pose pairs is knowns %i,xPCPS > rigid alignment
can be applied directly, e.g. using ICP [17] without searghi
for the closest point, see Fig. 6.

The mean square error (MSE) betwe®%"S andxfor the
map shown in Fig. 7 is 4.62 meters. This can be compared
to a result of 6.22 meters for a constant average covariance
of 1.72 (the average of the estimated covariances), demon-
strating the increased geometric accuracy due to the new
similarity-based covariance estimation method, see Fig. 9
To see how the MSE evolves over time when creating the
map, MSE was calculated from the new estimateaftér Fig. 7. \Visualized map using laser range data for each image.rNote
each new frame was added. The result is shown in Fig. Xt the laser data is only used for visualization. In thedezed map the
where the MSE that would result from using only odometry"d size is 25x25 cfh
to estimate the robot's position is also plotted.

Note that the MSE was evaluated for every frame added.
Therefore when the DGPS data is not available the MSE will
stay constant for these frames with respect to odométry
This can be seen between frames 25810. The MSE of the
SLAM estimatex"will not be constant since new estimates
are computed for each frame added and loop closing also
occurs indoors. The first visual relatiopwas added around
frame 260. Until then, the error of the SLAM estimate
and odometry were the same. In consequence, the MSE can
change quite abruptly.

IV. CONCLUSIONS AND FUTURE WORK

This paper combines two existing methods: (1) using sim-
ilarity of panoramic images to close loops at the topoldgica
level, and (2) graph relaxation from odometric information
and the given topology to obtain the geometric level of
the map representation, and a novel method to estimate the
required covariance matrix for links obtained from the atisi
sensor based on the visual similarity of neighbouring posegy g visualized map using laser range data for the cerdets f the
This method uses the similarity of images to compensate fafap. In the rendered map the grid size is 10x1¢.cm
the lack of range information for the local image features,




Fig. 9. Visualized map using laser range data to compare ¢heracy
of using (left) the esimtated covariance for each poses &gtit) using
a constant covariance, where the constant covariance isndan of the
estimated covariances.

measure of image similarity used in this work. There are
many possibilities to increase the computation speed reithe
by using alternative similarity measures that are faster to
compute while being still distinctive enough, or by optimiz
ing the implementation, for example, by executing image
comparisons on a graphics processing unit (GPU) [19].
Plans for future work include a thorough run-time eval-
uation of the approach, an investigation of the possibility
of using a standard camera instead of an omni-directional
camera, and to incorporate vision-based odometry to eealis

a completely vision-based system.

MSE of the SLAM pose estimates and odometry compared to DGPS
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Fig. 10. The MSE of the Euclidean distance between the grdurt

position obtained from DGPS readingS8®FS and the SLAM estimate of -
the robot pose for different states of the maps as frames are added. DropJ ]
in the MSE indicate that the consistency of the map has bemedsed.

(8]

avoiding computationally expensive and less general naistho

such as tracking of individual image features. 0
From an experimental point of view, the method seems to

scale well to large environments. The experimental results

are presented by visual means (as occupancy maps rendéf8l

from laser scans and poses determined by the SLAM al-
gorithm) and comparison with ground truth (obtained fronil1]
DGPS). These results demonstrated that the Mini-SLAM
method is able to produce topologically correct and geomeitz]
rically accurate maps of a large-scale environment at nahim
computational cost.

The approach generates 2-dimensional maps based on
d motions &, y, 8). However, it is worth noting that the
ground truth positions in our experiments also containeld”
variations of up to 3 meters in height. This indicates that
the method can cope with 3-d motions to a certain extert5]
and we would expect a graceful degradation in map accuracy
as the roughness of the terrain increases. The representaiis]
should still be useful for self-localization using 2-d odetny
and image similarity, e.g., using the global localization,,
method in [18]. In extreme cases, of course, it is possible
that the method would create inconsistent maps, and a 3-d
representation should be considered. (18]

The bottleneck of the current implementation in terms
of computation time is the calculation of image similarity,

o . 19]
which involves the comparison of many local features. Th[e
suggested approach, however, is not limited to the paaticul
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