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1. INTRODUCTION

A production, manufacturing or assembly line can be
defined as a group of sequential operations established
in a factory where the product moves through them
while the final product is built. Each machine or operator
performs a specific job that must be completed before
the product moves to the next position on the line. The
performance, quality and cost of the final product depend
on a large number of factors and their correct combination
will determine how competitive the finished product is.

A key factor in the performance of the manufacturing lines
is the maintenance. In general, maintenance can be clas-
sified as two main groups: Corrective Maintenance (CM)
and Preventive/Predictive maintenance (PM). CM is car-
ried out when the machine fails or some the equipment
elements are damaged and must be replaced or repaired,
this element and/or part will be responsible for a failure in
the whole line if the action is not executed. However, the
PM is carried out before the equipment fails. The purpose
of a PM order is to promote continuous production of the
system and/or minimize the loss of performance. Inside the
preventive/predictive maintenance, we can find two great
types of strategies, based on time (Time-based Mainte-
nance, TBM) or those based on the state of the machine
(Condition Based Maintenance, CBM). Those based on

time propose to carry out a preventive maintenance peri-
odically, lubricating, calibrating and performing periodic
inspections. Instead, the strategy CBM implies making a
real-time diagnosis in which the decision is made observing
the ”condition” of the system and its components, Falke-
nauer (2013). In TBM strategies, these are based on the
manufacturer’s recommendations, fault history, operator
experience and/or maintenance staff. In contrast, in the
CBM strategy, the objective is to avoid unnecessary main-
tenance tasks and perform them when there is evidence of
abnormal functioning. It is a proactive strategy in which
the development of a predictive model is required. The
CBM motivation is that 99% of equipment failures are
preceded by certain signs, conditions or indications that
the failure is about to occur, Y.Peng et al. (2010). For
all of this reasons, CBM is the most researched tech-
nique recently, F.Camci et al. (December 2018), H.Sarih
et al. (2018). The condition of the system is quantified
through measurements of sensors taken periodically and
even continuously, Falkenauer (2013),H.P.Bosch and Geit-
ner (2012). In general, CBM focuses on not only fault
detection and diagnosis of components but also degra-
dation monitoring and failure prediction, Shin and Jun
(2015). Furthermore, through the CBM strategy, a high
quality of the final product can be ensured, especially if
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the measurement thresholds being taken from the machine
are selected correctly, M.Ben-Daya and Duffuaa (1995).

The CBM can be carried out in two ways, on-line or off-
line, H.P.Bosch and Geitner (2012). The on-line process
involves carrying it out while the machines are active. On
the contrary, in off-line mode, the process is performed
while the machine is stopped. In this case it is common to
look for cracks, color changes, etc. Moreover, the CBM can
be done continuously or periodically. The most usual way
is to do it periodically, for example, every hour or every
change of shift, although the ideal way would be to do it
continuously and automatically. However, as indicated in
R.Ahmad and S.Kamaruddin (2012) it is very expensive
since many sensors and devices are needed to carry it
out. The most used sensors to perform the CBM are the
following:

• Vibration: The vibration sensorization is one of the
most used techniques for the CBM, especially for
machines with rotating elements, A.K.S.Jardine and
D.Banjevic (2006). The analysis is done in-situ and is
a non-destructive test.

• Noise: It is other commonly used technique in the
CBM and it is strongly related to vibration and
therefore, it is also used for machines with rotating
elements, A.K.S.Jardine and D.Banjevic (2006). How-
ever, there is a fundamental difference between the
two. While the sensorization of the vibration requires
being in contact with the machine or element to
be sensorized, the noise monitoring involves simply
”listening” to the equipment without having to be in
contact, H.P.Bosch and Geitner (2012).

• Analysis of the oil or lubricant: With this tech-
nique, the oil is analyzed to determine whether it is
able to function or not properly. In addition, it also
provides an indirect measure of the deterioration level
of the components lubricated, H.P.Bosch and Geitner
(2012).

• Electrical measurements: This technique includes
the change measurement in properties of equipment
such as resistance, conductivity, insulation. This tech-
nique is usually carried out to detect deterioration of
insulation in engines, H.P.Bosch and Geitner (2012).

• Temperature: This technique is mainly used to de-
tect failures in electrical and electronic components,
H.P.Bosch and Geitner (2012).

• Pressure, flow, electric consumption: These
techniques are also used, although to a lesser extent
than the previous ones.

The decisions to be made under the CBM concept can be
classified into two: Fault detection and prediction. Fault
detection is the process of finding the fault source while
prediction is the process of estimating when the failure
will occur, I.J.Jeong et al. (2007). The objective of the
diagnosis is to warn maintenance engineers on equipment
operations under abnormal functioning conditions. Even if
the equipment is working in abnormal conditions, this does
not mean that the equipment has failed. This will happen
after a certain time, R.Ahmad and S.Kamaruddin (2012).
The time that remains until the failure is the one that
must estimate the prediction. Regarding maintenance, the
prediction is much more relevant than the diagnosis since

Fig. 1. Change point definition, X.Zhao et al. (2018).

Fig. 2. Change point of a fan measured with a vibration
sensor, X.Zhao et al. (2018).

unexpected failures can be predicted, A.K.S.Jardine and
D.Banjevic (2006).

1.1 Change point

At this point it is very important what is known as Change
point, see Fig. 1, X.Zhao et al. (2018).

The change point is defined as an abrupt change in
the measurement that is being made of the machine,
vibration, sound, etc. The change point is an indication
that something anomalous is happening and announces the
end of the useful life of some component. In A.Rastegari
(2017) an attempt is made to define a guide on how to treat
the CBM. As an example, Fig. 2 shows the deterioration of
a fan measured with a vibration sensor. The graph shows
the time series for five days before the failure.

The change point is always related with some physical
change of the component. In the case of oil or lubricant,
it is known that there is a sudden change in performance,
mainly because, when the oil is approaching the end of
its useful life, its viscosity changes abruptly. When a
component or part is subjected to a constant load, the
elongation that suffers with the passage of time is known
as ”the creep curve” where, at the end of its life there is
an accelerated elongation, see J.Corcoran and C.M.Davies
(2018). Something similar happens with the elasticity
coefficient. When a part is subjected to continuous flexion,
as may be the case of a train track, see X.Zhao et al.
(2018), M.B.Nigro et al. (2014), and the end of its useful
life is approaching, there comes a point where its initial
position is not recovered.

There are different techniques to detect change points,
EWMA, CUMSUM, MSE, etc., see M.B.Nigro et al.
(2014). Given the relevance they have in the CBM, new
techniques are being researched for more complex cases,
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Fig. 3. From Micro-term to Long-term

see Al-Kandari and Aly (2014), and even a special package
has been developed for R, see R.Killick and I.A.Eckley.
(2014).

2. PREVIOUS WORKS

2.1 From the micro-term to the long-term

The literature classifies the data used in the analysis of
the manufacturing process into two types, the long-term
data (long-terms), and the short-term data (short-terms).
Long-term data are used mainly for process planning while
short-term data are used mainly for process control. There
is abundant literature that works with the analysis of long-
term times, in comparison with the literature that uses
short-term times. Following the definition of L.Li et al.
(2009), the short-term data refer to a time not long enough
for the failure period of the machine and where the cycle
time of the machine is considered short-term time. In
E.Garcia (2016) the short term is redefined in two new
terms, the mini-term and the micro-term. A mini-term
can be defined as a part of the machine, in a policy of
preventive maintenance or in a breakdown, in which it
could be replaced in an easier and faster way than another
sub-divided part of the machine. Also a mini-term could
be defined as a sub-division that allows us to understand
and study the machine behavior. In the same way, a micro-
term is defined as each part of the mini-term that could be
divided itself, see Fig. 3. This model has been published
in E.Garcia and N.Montés (2017).

2.2 Mini-term for failure diagnostic. Pre-test

The main goal of our research is to use the mini-term for
failure prognosis. The mini-term, by definition, is a sub-
cycle time and had only been used to improve production.
In our previous work, E.Garcia et al. (2018), a test was
developed in an isolated welding station, see Fig. 4 (left).
The welding unit was divided into three mini-terms, the
robot arm, the welding movement and the welding action.
Fig. 4 (right) shows the experimental setup to measure
the cycle time of each mini-term in the welding station,
where the PLC and the PC are used to measure time.
To carry out this study, components with an advanced
lifetime were selected. These components are in normal

production where nobody notices a failure in their behav-
ior. These pathologies are the failure of the proportional
valve, the cylinder stiffness, loss of insulation in the weld-
ing transformer, loss of pneumatic pressure and loss of
robot speed. Table 1 shows the results of experimental
measurements for each mini-term and for each one of the
pathologies. C are the measurements without pathology
and P1,P2,P3,P4,P5 are the measurements obtained for
each of the pathologies analyzed. The table shows the
mean and variance, (X̄,S) of the 40 repetitions carried
out for each mini-term in each case. Units are in seconds.

Table 1. Miniterms for a welding unit (X̄,S)
without (C) and with deterioration (Tests P1

to P5).

Robot Movement Clamp movement Welding clamp
(x, S) (x, S) (x, S)

C 35.5497;0.0215 0.4158;0.0061 1.4373;0.0109
P1 35.5472;0.0336 0.4302;0.0060 4.0523;0.1585
P2 35.5496;0.0257 1.4087;0.0488 1.1391;0.0783
P3 35.5492;0.0361 0.4643;0.0070 1.4389;0.0119
P4 35.5485;0.0302 1.5594;0.0489 1.2945;0.0665
P5 46.3314;0.0314 0.4185;0.0060 1.4489;0.0110

3. GOAL OF THE PAPER

Industry 4.0 is a current trend and data exchange in manu-
facturing technologies. It includes cyber-physical systems,
the internet of things and cloud computing creating what
has been called a ”smart factory”. Following this tendency,
the ideal way for predictive maintenance would be to do it
continuously and automatically. However, as indicated in
R.Ahmad and S.Kamaruddin (2012) it is very expensive
since many sensors and devices are needed to carry it
out. The most used sensors to perform the maintenance
prognosis are vibration, noise, temperature, pressure, flow,
etc. Fortunately, as we have explained in E.Garcia et al.
(2018), when components have an advanced age (at least
the selected in E.Garcia et al. (2018) ), it affects the cycle
time but with an important advantage, the mini-term is
easier and cheaper to install than other sensors. It is cheap
because no additional hardware installation is required to
measure the sub-cycle time, only the use of the PLC and
sensors installed for the automated production process,
and it is easy because we only need to code extra timers
into the PLC.

The results presented in E.Garcia et al. (2018) generated
a great expectation in Ford Motor Company, allowing us
to analyse deeply the capabilities of the mini-term for
fault detection. Section 4 shows the experimental setup to
measure mini-terms at ford plant in Almussafes factory,
the so-called Mini-term 4.0. The system was switched on
in April 2018 and began to monitor thousands of mini-
terms. Section 5 shows a summary of the different kinds
of pathologies that through the mini-terms we are able to
detect since the system was switched on. Section 6 shows
the conclusions with emphasis in future works.

4. MINI-TERM 4.0. INSTALLATION SETUP

As we have explained before, one of the main drawbacks
for industry 4.0 is the cost of introducing sensors into ma-
chines and how to integrate this with the system installed
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Fig. 4. Welding station (Left). Experimental Setup (Right).

in the production line. In big manufacturing industries like
Ford, there are a lot of memory and I/O restrictions for
the PLC. Everything is standardized with a lot of protocols
for all the plants around the world. Then, the success of
whatever industry 4.0 technique depends mainly on the
intrusiveness in the existing production lines. In our partic-
ular case, the standardization consists in reserving memory
space for the mini-term measurements in the Standard
that Ford has in the PLC Coding. Nowadays, we can
measure the mini-terms for whatever element that Ford
has in its factories. In the same way, there is a hardware
architecture to collect data from the PLC that is used also
to collect mini-terms, see figure 6. In the first layer there
are PLCs that control the machines and measure mini-
terms. The second layer is an intermediate layer with one
single objective: connect the PLC with the third layer, the
Database collector. Figure 5 shows the interface used in
the third layer to monitor and analyze the mini-terms. In
this sense, there are four possibilities;

Fig. 5. Interface for Mini-term 4.0. It analyzes mini-terms
and sends e-mails to maintenance workers.

• The PLC is connected directly with the Database
collector, figure 6 (A),

• The PLC and the Database collector use a PLC
concentrator between them, figure 6 (B),

• A PC Line is used to extract the data from the PLC,
figure 6 (C),

• A dedicated PC extracts the Data, figure 6 (D)

In the third layer, Database collectors send the data to
a Database collector that is able also to analyze the
mini-terms and send messages to maintenance workers.
This database collector is connected to the fourth layer,
where the developers and the managers of each plant can
supervise and improve the system. The last layer is the
internet connection that allows to connect different plants
around the world as well as to monitor the process out of
the factory. The whole system is well known as mini-term
4.0.

The process to collect and analyze mini-terms started in
April 2018 at Almussafes factory. At present, three plants,
Body 1,2 and 3 have hundreds of mini-terms collected in
theMini-term 4.0. Table 2 shows themini-terms collected,
the sensors used to measure the time. As we can see,
the mini-term measurement uses the sensors used for the
automated machine and a timer in the PLC. Therefore, it
is not necessary to install any new hardware and software.

Table 2. Mini-terms monitored at Ford Almus-
safes (Valencia).

Mini-term Required sensors

Pneumatic welding gun Time Limit sensor

Elevators Time Limit sensor

Cylinder Time Limit sensor and actuation valve

Turn Table Time Limit sensor

Scissors Table Time Limit sensor

Nut Runners Time Limit sensor

Figure 7 shows a layout of the mini-terms located at Body
2 plant in that moment. The kind and number of mini-
terms are increasing continuously.

5. COLLECTING MINI-TERMS CASES

Mini-term 4.0 is actually in a learning process aboutmini-
terms. The system analyzes the mini-terms and sends an
e-mail to the maintenance worker when a change point
occurs in one of them. The maintenance worker checks the
component and acts if a failure is found. The maintenance
team reports the pathology detected to the Mini-term 4.0.
Until now, the Mini-term 4.0 is able to detect a huge
variety of pathologies. Figure 8 shows some cases detected
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Fig. 6. Architecture for Mini-term 4.0. It collects mini-terms in Real-time at Ford factories.

Fig. 7. Mini-terms collected at Body1 and Body 2 plant.

by the system where bubble C means change point and
bubble M means Maintenance Job. The first case is the
lubricant deterioration in the welding clamp and how, once
lubricated correctly, its nominal value is recovered. The
second one is an internal leak in the clamp cylinder. The
third one is a mechanical deterioration in a scissor table.
The fourth one is the deterioration of a proportional valve
that controls the welding gun. The last two ones are for
the elevator screws. The first one is for a wrongly tightened
screw and the second one is for a broken screw.

6. CONCLUSION

The present paper shows how mini-terms can replace
the common sensors used for failure prognosis, vibration,
noise, temperature, pressure, flow, etc. To demonstrate
it, a monitoring system was installed at Ford Almus-

safes factory, the so-called Mini-term 4.0. This system
was switched on in April 2018 and started to collect
many cases. The present paper shows a summary of them
showing the power of the mini-terms for fault detection,
detecting from an internal leak in the clamp cylinder,
lubricant deterioration and even if a screw is broken or
wrongly tightened. As mini-terms are easy and cheap to
install, it could become a new paradigm in failure prog-
nosis for industry 4.0 because allows to collect a huge
quantity of mini-terms and to detect many of the machine
pathologies. Further developments are focused in two main
branches, diagnosis and prognosis. The first one consists
in determining, by time series analysis, which pathology is
suffering the machine. The second one is to determine the
RUL (Remaining Useful Life) before breakdown in order
to schedule the change points for maintenance workers.
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Fig. 8. Summary of mini-term cases detected using mini-
term 4.0 from April 2018 until now.
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