

Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins

Lambertsen, L.; Sternberg, Claus; Molin, Søren

Published in: Environmental Microbiology

Link to article, DOI: 10.1111/j.1462-2920.2004.00605.x

Publication date: 2004

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Lambertsen, L., Sternberg, C., & Molin, S. (2004). Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. *Environmental Microbiology*, *6*, 726-732. https://doi.org/10.1111/j.1462-2920.2004.00605.x

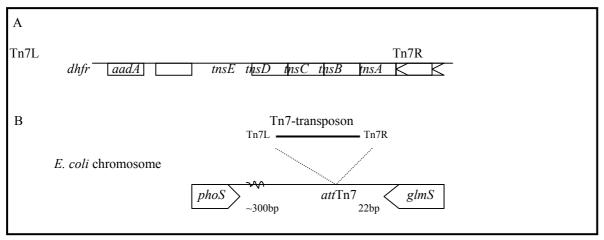
General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.


The Tn7 transposon

The Tn7 transposon was originally discovered by Barth *et al.*, (1976) on the plasmid R483 (IncI α) as an element carrying the resistance genes trimethoprim (Tm^R) and streptomycin/ spectinomycin (Sm^R/ Sp^R), which could be transposed to other replicons (note; in some earlier papers the Tn7 transposon is named TnC).

The Tn7 transposon is 14 kb. It contains five genes (Fig. 1), involved in the transposition process, and two resistance genes as described above. These genes are flanked by the ends of the transposon, named the left (Tn7L) and the right (Tn7R) end (Barth *et al.*, 1976; Lichtenstein and Brenner, 1982; Rogers *et al.*, 1986). Note; in the literature the names of the ends have not been used consistently. In the following the names used for the ends are as indicated in Fig. 1.

The Tn7 transposition process has been studied intensively in *Escherichia coli* in which Tn7 inserts with high efficiency and unique orientation into one specific location named the *att*Tn7 site (Lichtenstein and Brenner, 1981; McKnown *et al.*, 1988). This site of insertion is located just downstream of the coding region, in the transcriptional terminator, of the *glmS* gene (Gringauz, *et al.*, 1988). The transposon genes required for specific insertion into the *att*Tn7 site, are *tnsABCD*, and they function *in trans*. Thus, sequences located in the 3'end of the coding region of *glmS* are recognised by transposase proteins and directing the actual insertion into the *att*Tn7 site, down-stream of the *glmS* gene (McKnown *et al.*, 1988; Baiton *et al.*, 1993). However, if this site is unavailable the transposon can insert into other sites with low frequency (Rogers *et al.*, 1986; Kubo and Craig, 1990).

The Tn7 transposon recognises a sequence located in the terminal part of the *glmS* gene, but it inserts just downstream of this and thereby it does not disrupt the gene (Gringauz, *et al.*, 1988). The *glmS* gene encodes a glucosamine synthetase, which is required for cell wall synthesis (Volger *et al.*, 1989). It is conserved among many bacteria and therefore Tn7 is likely to have the same specific insertion site in many different bacteria, some have already been tested (Table 1). Detailed information about the Tn7 transposon mechanisms can be found in the literature, two recommendable reviews are Craig (1989) and Peters and Craig, (2001).

Fig. 1. Map of transposon Tn7 (A) and its insertion site *att*Tn7 in *Escherichia coli* (B). The gene *dhfr* encodes dihydrofolate reductase providing trimethoprim resistance and *aadA* encodes adenylyltransferase, which provides resistance to streptomycin and spectinomycin (the figures are redrawn from Craig *et al.*, 1989).

Bacterium	Specific insertion	Test	Sequence of insertion site	Numbers of base pairs downstream of <i>glmS</i> ¹	System tested ²	Comments	References
Caulobacter crescentus	Yes	Southern	-	-	RP4::Tn7 ³	9 isolates tested	Ely <i>et al.</i> , 1982
Desulfovibrio desulfuricans G20	Yes	Southern	U46080	28	RK2073::Tn7 ³	15 out of 16b had specific insertion	Wall <i>et al.</i> , 1996
Escherichia coli	Yes	Southern	AE000450	22	ColE1::Tn7 ³	Tested many times by different scientists	Lichtenstein and Brenner, 1981; 1982
Escherichia coli BE6	-	-	-	-	Grinter's system	Stable insertion	Grinter, 1983
Erwinia chrysanthemi EC16	Yes	Southern			Monsanto's system	<i>lux</i> -based reporter system	Shen <i>et al.</i> , 1992
Klebsiella pneumonia	-	-	-	-	-	-	In Caig 1989: Qadri <i>et al</i> personal communication
Methylophilus methylotrophus	-	-	-	-	Grinter's system	Stable insertion	Grinter, 1983
P. fluorescens CHA0	Yes	Southern	-	-	Bao's system	Specific insertion, no effect on growth rate was observed	Højberg et al., 1999; Zuber et al., 2003
Pseudomonas DS-S73	Yes	-	-	-	Bao's system	Specific insertion	Koch <i>et al.</i> , 2002
Pseudomonas S108	Yes	-	-	-	Bao's system	Specific insertion	Koch <i>et al.</i> , 2002
Pseudomonas aeruginosa PAC and PAO1161	Yes	Southern	-	-	CAM- OCT::Tn7 ³	17 of 18 tested were similar	Caruso and Shapiro, 1982

Table 1 I Hanstone anomian	of hastania	tontod for	incention of To7
Table 1. Literature overview	of Dacteria	tested for	Insertion of 1 n/

2

⁻ not tested or described in the article.

 ¹ Number of base pairs were calculated from the stop codon to the middle base of the five base pairs that are duplicated upon insertion.
² Named according to the name of the original tagging system on which the used helper plasmid and delivery plasmids are based.
³ Wild type Tn7 transposon located at the plasmid.

Bacterium	Specific insertion	Test	Sequence of insertion site	Numbers of base pairs downstream of glmS ¹	System tested ²	Comments	References
Pseudomonas aeruginosa PAO1	Yes	Southern	-	-	Bao's system	-	Klausen <i>et al.</i> , 2003
Pseudomonas aeruginosa PAOE1A	-	-	-	-	Grinter's system	Stable insertion	Grinter, 1983
Pseudomonas corrugate strain 2140	-	Southern	-	-	Barry's system	Strains was not changed after 4 years in soil	Choi <i>et al.</i> , 2003
Pseudomonas fluorescens 701E1	Yes	Southern	-	-	Monsanto's system	Four isolates tested. Growth not affected, stability tested	Barry, 1986
Pseudomonas fluorescens DR54	Yes	PCR	AJ276127	29	Bao's system		Koch <i>et al.</i> , 2001
Pseudomonas putida KT2440	Yes	PCR, Southern	4	25	Bao's system	Growth not affected, many isolates tested, stable and specific insertion	Lambertsen et al., 2003
Pseudomonas putida GR12-2	Yes	Southern			Monsanto's system		Staley et al., 1997
Pseudomonas putida R20	No	Southern			Monsanto's system		Staley et al., 1997
Pseudomonas putida PH6	No	Southern			Monsanto's system		Staley et al., 1997
Pseudomonas solanacearum	Yes	Southern	-	-	pAS8Rep- 1::Tn7 ³	16 isolates tested, suicide system used	Boucher et al., 1985
Pseudomonas syringae pv. glycinea PsgR4	Yes	Southern			Monsanto's system	<i>lux</i> -based reporter system	Shen et al., 1992
Rhodospirillum rubum	_	Southern	-	-	Bao's system	Stable, stability tested for 50 generations	Bao, 1991

⁴ Sequenced PCR product of the region between Tn7R and *glmS*: CAGTTGATCAACACCTGACTACCCG

3

Bacterium	Specific insertion	Test	Sequence of insertion site	Numbers of base pairs downstream of <i>glmS</i> ¹	System tested ²	Comments	References
Salmonella thyphimurium	-	-	-	-	-	-	In Caig 1989: Mak and Craig, unpub observation
Serratia marcescens	-	-	-	-	-	-	In Caig 1989: Qadri <i>et al.</i> , personal communication
Sphingomonas yanoikuyae B1	Yes	Southern	U37523	93	RKTV14::Tn7	-	Wang and Lau, 1996
Xanthomonas campestris pv. campestris NC PPB 1145	Yes	Southern	-	-	pRK2013:: Tn7	10 tested	Turner <i>et al</i> , 1984

References

Bainton, R. J., K. M. Kubo, J.-N. Feng, and N. L. Craig (**1993**). Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72: 931-943.

Bao, Y., D. P. Lies, H. FU, and G. P. Roberts (**1991**). An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of Gram-negative bacteria. Gene 109: 167-168.

Barry, G. F. (**1986**). Permanent insertion of foreign genes into the chromosome of soil bacteria. Bio/Technology 4: 446-449.

Barth, P. T., N. Datta, R. W. Hedges, and N. J. Grinter (**1976**). Transposition of a deoxyribonucleíc acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J. Bacteriol. 125: 800-810.

Boucher, C. A., P. A. Barberis, A. Ph. Trigalet, and D. A. Demery. (**1985**). Transposon mutagenesis of *Pseudomonas solanacearum:* Isolation of Tn5-induced avirulent mutants . J. Gen. Microbiol. 131: 2449-2457.

Caruso, M. and J. A. Shapiro (**1982**). Interactions of Tn7 and temperate phage F116L of *Pseudomonas aeruginosa*. Mol. Gen. Genet. 188: 292-298.

Choi, H. Y., M. H. Ryder, M. R. Gillings, H. W. Stokes, K. M. Ophel-Keller and D. A. Veal. (**2003**). Survival of a *lacZY*-marked strain of *Pseudomonas currugata* following a field release. FEMS Microbiology Ecology 43, 367-374.

Craig, N. L. (**1989**). Chapter 7, Transposon Tn7, p. 211-225. *In* D. E. Berg and M. M. Howe (eds.), Mobile DNA. American Society for Microbiology, Washington, DC.

Ely, B. (1982). Transposition of Tn7 occurs at a single site on the *Caulobacter crescentus* chromosome. J. Bacteriol. 151: 1056-1058.

Gringauz, E., K. A. Orle, C. S. Waddell, and N. L. Craig (**1988**). Recognition of *Escherichia coli att*Tn7 by transposon Tn7: Lack of specific sequence requirements at the point of Tn7 insertion. J. Bacteriol. 170: 2832-2840.

Grinter, N. J. (**1983**). A broad-host-range cloning vector transposable to various replicons. Gene 21: 133-143.

Højberg, O., U. Schnider, H. V. Winteler, J. Sørensen, and D. Haas (**1999**). Oxygen-sensing reporter strain of *Pseudomonas fluorescens* for monitoring the distribution of low-oxygen habitats in soil. Appl. Environ. Microbiol. 65: 4085-4093.

Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jørgensen, A., Molin, S. and Tolker-Nielsen, T. (2003). Biofilm formation by *Pseudomonas aeruginosa* wild type, flagella and type IV pili mutants. Molecular Microbiology 48, 1511-1524.

Koch, B., L. E. Jensen, and O. Nybroe (**2001**). A panel of Tn7-based vectors for insertion of the *gfp* marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J. Microbiol. Meth. 45: 187-195.

Lambertsen, L. M., Sternberg, C. and S. Molin (2004). Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. In press.

Lichtenstein, C. and S. Brenner (1981). Site-specific properties of Tn7 transposition into the *E. coli* chromosome. Mol. Gen. Genet. 183 : 380-387.

Lichtenstein, C. and S. Brenner (1982). Unique insertion site of Tn7 in the *E.coli* chromosome. Nature 297: 601-603.

McKown, R. L., K. A. Orle, T. Chen, and N. L. Craig (**1988**). Sequence requirements of *Escherichia coli att*Tn7, a specific site of transposon Tn7 insertion. J. Bacteriol. 170: 352-358.

Peters, J. and N. L. Craig (**2001**). TN7: Smarter than we thought. Nature Reviews Molecular Cell Biology 2, 806–814.

Rogers, M., N. Ekaterinaki, E. Nimmo, and D. Sherratt (**1986**). Analysis of Tn7 transposition. Mol. Gen. Genet. 205: 550-556.

Shen, H., S. E. Gold, S. J. Tamaki, N. T. Keen (1992). Construction of a Tn7-lux system for gene expression studies on Gram-negative bacteria. Gene 122, 27-

Staley, T. E., E. G. Lawrence, D. J. Drahos (**1997**). Variable specificity of Tn7::*lacZY* insertion into the chromosome of root-colonizing *Pseudomonas putida* strains. Mol. Ecol. 6, 85-87.

Turner, P., C. Barber, and M. Daniels (**1984**). Behaviour of the transposons Tn5 and Tn7 in *Xanthomonas campestris* pv. *campestris*. Mol. Gen. Genet. 195: 101-107.

Vogler, A. P, S. Trentmann, J. W. Lengeler (**1989**). Alternative route for biosynthesis of amino sugars in Escherichia coli K-12 mutants by means of a catabolic isomerase. J. Bacteriol. 171: 6586-6592.

Waddell, C. S. and N. L. Craig (**1989**). Tn7 transposition: Recognition of the *attTn7* target sequence. Proc. Natl. Acad. Sci. U. S. A. 86: 3958-3962.

Wall, J. D., T. Murnan, J. Argyle, R. S. English, and B. J. RappGiles (**1996**). Transposon mutagenesis in Desulfovibrio desulfuricans: Development of a random mutagenesis tool from Tn7. Appl. Environ. Microbiol. 62: 3762-3767.

Wang, Y. and P. C. K. Lau (**1996**). Sequence and expression of an isocitrate dehydrogenaseencoding gene from a polycyclic aromatic hydrocarbon oxidizer, *Sphingomonas yanoikuyae* B1. Gene, 168: 15-21. **Zuber**, S., F. Carruthers, C. Keel, A. Mattart, C. Blumer, G. Pessi, C. Gigot-Bonnefoy, U. Schnider-Keel, S. Heeb, C.. Reimmann and D. Haas (**2003**). GagS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of *Pseudomonas fluorescens* CHA0. Mol. Plant-Microbe Interact. 16, 634-644.