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Abstract
As more people desire at-home diagnosis and treatment for their health improvement, healthcare devices have become more 
wearable, comfortable, and easy to use. In that sense, the miniaturization of electroencephalography (EEG) systems is a 
major challenge for developing daily-life healthcare devices. Recently, because of the intertwined relationship between EEG 
recording and processing, co-research of EEG recording hardware and data processing has been emphasized for whole-in-one 
miniaturized EEG systems. This paper introduces miniaturization techniques in analog-front-end hardware and processing 
algorithms for such EEG systems. To miniaturize EEG recording hardware, various types of compact electrodes and mm-
sized integrated circuits (IC) techniques including artifact rejection are studied to record accurate EEG signals in a much 
smaller manner. Active electrode and in-ear EEG technologies are also researched to make small-form-factor EEG meas-
urement structures. Furthermore, miniaturization techniques for EEG processing are discussed including channel selection 
techniques that reduce the number of required electrode channel and hardware implementation of processing algorithms 
that simplify the EEG processing stage.

Keywords Electroencephalography (EEG) · Miniaturization · Integrated circuits (IC) · Active electrode · In-ear EEG · 
Channel selection · Hardware implementation · Field-programmable gate array (FPGA)

1 Introduction

Healthcare devices have become more wearable and com-
fortable as demands for easy-to-use devices in various 
applications rapidly increase. Over the past few decades, 
more people have desired at-home diagnosis and treatment 
for their health improvement [1, 2]. In particular, since the 

COVID-19 pandemic started in 2020, caring for patients 
without face-to-face contact has become the main issue. 
With the development of the self-diagnosis kit, a strong 
desire for simple, user-friendly, and long-term usable wear-
able healthcare devices is further increasing [3–5].

In this trend, several comfortable systems are being 
developed to measure and analyze various kinds of bio-
signals such as Electrcardiography (ECG), Electromyo-
graphy (EMG), Photoplethysmography (PPG), and Elec-
troencephalography (EEG). Among them, EEG especially 
receives huge interest because it can monitor human brain 
conditions in a non-invasive manner and has a wide range of 
applications [6–8]. For instance, EEG is applicable for men-
tal disorder management, epilepsy treatment, sleep monitor-
ing, and neurofeedback. Furthermore, EEG enables people 
with limited mobility to control devices using their thoughts 
due to a brain-computer interface (BCI) technology [9].

However, most current EEG measurement devices require 
professional assistance due to their large size and the com-
plex installation procedures [10]. For this reason, most of the 
devices are used for medical or experimental purposes only, 
not for everyday life [11, 12]. Therefore, for everyday-use 
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EEG systems, the main research goal is to implement min-
iaturized and easy-to-use EEG hardware by (1) decreasing 
the size of the electrodes, (2) designing small-form-factor 
integrated circuits (IC), and (3) simplifying the structures 
of the EEG device. With the demands for miniaturization in 
the physical dimension of EEG recording hardware, minia-
turization in computational loads in EEG data processing is 
also essential. For the past few decades, machine learning 
algorithms such as support vector machines (SVM) [13], 
linear discriminant analysis (LDA) [14], and deep learning 
[15] have been used for the BCI system. However, current 
algorithms for EEG classification are computationally heavy. 
Therefore, raw data transmission to host computers or data 
servers that perform heavy data processing is unavoidable, 
making the overall EEG system bulky, energy-inefficient, 
and non-portable. As such, for the miniaturized and easy-to-
use EEG systems, 1) alleviation of the computational load 
by channel selection (CS) and 2) hardware implementation 
of EEG data processing are required.

Several review papers addressing miniaturization in EEG 
systems by focusing on either EEG recording or EEG data 
processing have been published [16–18]. However, co-
research of EEG recording and data processing is essential 
for a miniaturized whole-in-one EEG healthcare system 
[19]. Therefore, this paper reviews methodologies toward 
EEG miniaturization by focusing on the two perspectives 
altogether. The rest of the paper is organized as follows. Sec-
tion 2 describes the miniaturization of EEG recording hard-
ware including electrodes, integrated circuits, and device 
structures. Section 3 shows channel selection techniques that 
simplify the EEG processing stage, and hardware implemen-
tation of EEG data analysis. Finally, Sect. 4 concludes this 
review.

2  Miniaturization techniques for EEG 
recording hardware

2.1  EEG electrodes

The electrode has a role of front-end contact with the skin 
when recording EEG, so it needs to be minimized preferen-
tially to miniaturize the EEG measurement devices. Since 
human EEG was first measured by Hans Berger (1873-
1941), various types of electrodes have evolved with the 
change of their shapes and configurations. Early models are 
bridge electrodes or cup electrodes which fix the position 
of electrodes firmly on the scalp, and additional electro-
lyte gel was used to increase skin adhesion [10]. However, 
these electrodes have difficulty in usage because the size is 
bulky and additional supporting structures are required. In 
addition, the conductive gel is not suitable for long-term 
daily-life usage, because wet electrodes require additional 

preparation processes such as hair waxing. Furthermore, the 
gel becomes dried out over time which causes signal distor-
tion [20, 21].

Therefore, attempts to measure EEG with small size dry-
contact electrodes have been made. Needle-type electrodes 
which measure clean EEG signal in very narrow areas have 
been developed [22, 23]. With the help of flexible substrates 
such as polydimethyl-siloxane (PDMS), ethylene propylene 
diene monomer (EPDM), and SU-8, skin adhesion of needle 
electrodes is increased, resulting in better signal quality [24, 
25]. Ultra-small electrodes have also been manufactured in 
which microneedle-array electrodes (MAEs) penetrate the 
stratum corneum so that EEG can be measured even on hairy 
scalp [26, 27]. In addition, major skin-electrode contact type 
has gradually been changed to a dry fashion without using 
any conductive gel [28, 29]. Recently, semi-dry electrodes 
which add a very small amount of paste only when needed, 
and non-contact electrodes which do not require skin-metal 
contact are also utilized [30–32].

However, as the area of the electrodes becomes smaller, 
the electrode-skin impedance (ESI) increases accordingly. 
Therefore, the input impedance of the following analog-
front-end must be increased to avoid signal attenuation [33, 
34]. In addition, high electrode-skin resistance makes ther-
mal noise, which makes fatal adverse effects in measuring 
μ V level EEG signal [6, 35]. In order to solve these prob-
lems, methods to increase the effective surface area while 
reducing the geometrical dimension of the entire electrode 
have been proposed. Surface roughening techniques by uti-
lizing nanoporous platinum, platinum black electro-pattern-
ing, Ag-TiN coating, and nano-patterning based on pillar or 
arch shapes are developed to measure EEG precisely when 
using extreme small electrodes [36–38]. Such electrodes are 
actively manufactured in various bio-potential measurement 
fields and are expected to get more increasing interest in 
wearable ultra-small EEG measurement.

2.2  EEG integrated circuits

Semiconductor application-specific integrated cir-
cuit (ASIC) is a breakthrough technology that integrates 
analog-front-end and digital-back-end in a single small-
form-factor unit. It plays a role of amplifying, filtering, 
analog-to-digital converting, and complicate signal control-
ling all at once [39–42]. Metal-oxide-semiconductor field-
effect transistor (MOSFET) has continuously decreased in 
size of a few nano-meter scales over the past few decades. 
In these days, it is possible to design IC chips with many 
functional blocks in extremely small areas. Such ultra-small 
transistor technology has extreme performance in a low 
power operation and high current-driving characteristics 
especially on a sub-threshold operation [43]. Therefore, IC 
chips capable of inserting dozens of channels within a small 
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area are currently being designed, and those are essential for 
the miniaturization of EEG measurement devices [44–46].

Unfortunately, lots of problems arise when trying to use 
EEG recording IC chips. MOS transistor generates a con-
stant value of thermal noise regardless of frequency due to 
the random motion of electrons. In addition, flicker noise 
caused by trapped charge carriers between the gate oxide 
and the silicon substrate also occurs, which shows 1/f char-
acteristics [47, 48]. Since short-channel MOSFET produces 
hot electron effects and flicker noise is inversely proportional 
to MOSFET oxide capacitance between gate and channel, 
smaller MOS transistor has worse intrinsic low-frequency 
noise. In addition to the problems from the IC chip itself, 
miniaturized dry-contact electrodes have high electrode-skin 
impedance near a few M Ω or G Ω levels, which makes the 
system more vulnerable to motion artifacts due to ESI vari-
ation. Furthermore, as the device becomes simpler and rigid 
fixing architecture has been removed, it is hard to fix the 
electrode at a certain position, resulting in baseline wander 
[49]. These lots of noise and artifact components worsen 

signal-to-noise ratio (SNR) in measuring low-frequency 
EEG signal in the 0.5-100Hz range.

Ultra-small IC chip design technology reduces such low-
frequency interference and many kinds of artifacts within 
an invisible scale area. First, auto-zeroing, a kind of dis-
crete-time compensation technique, is a method that uses 
a switched-capacitor to sample an error of an amplifier for 
one clock phase and then remove it from the subsequent 
clock phase [50]. Second, chopping, a kind of continuous-
time modulation technique, uses a paired chopper made of 
switches to avoid the intrinsic offset in the amplifier. As 
shown in Fig. 1a, the first chopper modulates the signal to 
the high-frequency level. After the following amplifier and 
the next chopper, the modulated signal is demodulated back, 
while the offset is modulated to the chopping frequency and 
its harmonics. A low-pass filter is then used to remove the 
modulated offset, resulting in a clean EEG signal [51]. Addi-
tional ripple reduction loop (RRL) can also be designed to 
remove extra output triangular ripple wave generated when 
the chopped offset of the input stage is filtered by the Miller 

Fig. 1  Various IC techniques for artifacts reduction in EEG record-
ing. a Capacitively-coupled chopping instrumentation ampli-
fier  (CCIA) with several IC techniques. The graphs  (i-iv) show how 
the input signal  (V

IN
 ) and the offset  (V

OS
 ) are modulated at each 

node (yellow box) to generate clean output EEG signal (V
OUT

 ); b Rip-
ple reduction loop (RRL); c Input impedance boosting techniques; d 
DC servo loop (DSL). (Color figure online)
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compensation capacitor (Fig. 1b). RRL integrates ripple AC 
voltage at the output and converts it into current to compen-
sate for DC offset, resulting in nullification of output ripple 
[52]. Furthermore, switched-capacitor notch filters or mul-
tiple-chopping schemes are also applied to reject residual 
ripples more efficiently [53, 54]. By properly using these IC 
circuit techniques, inherent circuit noise such as thermal and 
flicker noise can be significantly reduced.

To reduce the signal distortion due to high ESI mismatch 
of small dry-contact electrodes, the input impedance of 
analog-front-end (AFE) is boosted by using several imped-
ance boosting techniques in IC chips. If the input impedance 
of sensor’s AFE is high enough, EEG signal is measured 
without any voltage drop or attenuation even though ESI 
has time-varying features. Fig. 1c shows impedance boot-
strapping which increases the impedance viewed from the 
input terminal by injecting current through a positive feed-
back loop to cancel the current from the input [55]. Unity-
gain buffer and active shielding are also used to nullify the 
MOSFET parasitic capacitance and reject 50/60Hz power 
line interference (PLI) [56]. Moreover, chopper-stabilized 
amplifiers switch input coupling capacitors and pre-charge 
them through the auxiliary path before the chopping phase, 
which makes input capacitance decreasing [57, 58]. Imped-
ance monitoring sensors based on artificial current injection 
are also utilized to check ESI change and compensate it for 
maximizing input impedance [59, 60].

To remove baseline wander due to electrode movement, 
DC servo loop (DSL) with the integrator in negative feed-
back loop have been used (Fig. 1d) [39]. It sets the DC volt-
age level as a stable reference point and removes extremely 
low-frequency components below cut-off frequency (e.g. 
0.1Hz). Recently, on-chip pseudo-resistor or duty-cycled 
resistor of extremely high resistance are used for fine-tuning 
of very low cut-off frequency [61, 62]. However, because of 
the large time-constant of the integrator, DSL has an issue 
of DC settling time problem. Therefore, thanks to the devel-
opment of a dynamic comparator and fast signal-tracking 
ADC, digitally-controlled DC servo loop (DCDSL) are used 
to stabilize the DC operating point when the output voltage 
is going out of a certain range [63, 64]. Nowadays, mixed-
mode DSL composed of conventional DSL and DCDSL are 
co-utilized to prevent EEG signal from saturating.

2.3  Structures of EEG hardware

With the development of electrodes and IC technology 
described above, the entire structure of EEG recording hard-
ware is also getting smaller, making it hard to be seen from 
the outside. As shown in Fig. 2, an active electrode (AE) 
made by locating small-form-factor IC chips directly on the 
electrodes can remove the long wire connection between a 
bench-top recording unit and electrodes. Two-wired active 

electrode structures which combine output terminal with a 
positive supply of operational amplifier into a single wire 
have been suggested [65, 66]. These active electrodes mini-
mize the number of connecting wires and high impedance 
connections. To integrated EEG recording IC chips and 
electrodes, many kinds of flexible and wearable biomedical 
IC packaging technologies using planar fashionable circuit 
board (P-FCB) or flexible PCB (FPCB) are studied [67, 68]. 
These circuit boards allow the device to fit the head flexion 
so that it adheres well to the skin without additional bulky 
fixing structures. In addition, 3D packaging such as bottom-
up packing and through-silicon via (TSV) with interposer 
are recently utilized, so that active electrode which have 
increased functionality density in even small size can be 
manufactured [69].

Furthermore, wireless communication technology like 
Bluetooth low energy (BLE) transfers EEG signal from the 
recording unit to the outside processor without additional 
wire connections [70, 71]. Therefore, it becomes possible 
to transmit accurate EEG signal by using miniaturized less-
wire equipment without the effects of the artifacts. The 
shape of the device has also gradually been developed in 
a form of a headband or a patch which can be used while 
walking or exercising [72, 73]. Compact flexible joint and 
bearing structures based on anatomic and ergonomic design 
are inserted to make robust skin contact [74].

One of the great examples of a miniaturized EEG record-
ing system is ear-EEG technology. Two types of ear-EEG 
recording methods have actively been studied: (1) in-ear 
EEG which records EEG within the ear canal using an ear-
piece-shaped electrodes [75–77]; and (2) cEEGrid which 
records EEG in the area behind and around the ear using 
an ear hook-shaped electrodes [78]. Particularly, small size 
in-ear EEG device has several attractive advantages com-
pared to bulky conventional on-scalp EEG device. Small and 
lightweight earpiece makes the recording module compact 
and unobtrusive, leading to wearable easy-to-use in every-
day life [79]. In addition, because electrodes contact tightly 
and firmly with ear skin due to pressure between earpiece 
and ear canal, some kinds of artifacts such as eye blink-
ing can be reduced [80]. In the near future, EEG recording 
modules are expected to be integrated with noise cancella-
tion techniques or sound production speakers, which makes 
it possible to organize an all-in-one healthcare in-ear EEG 
device collaborated with a wireless earphone or a hearing 
aids product [81, 82].

Many kinds of researches for precise in-ear EEG 
recording in a comfortable manner have been performed. 
In terms of electrode development, several user-generic 
earpieces are manufactured by using various materials 
such as carbon-nano-tube/polydimethylsiloxane (CNT/
PDMS) [83], viscoelastic memory foam with Ag-coated 
cloth [84], and silvered glass silicone [85]. All those 
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materials have high flexibility, adequate viscoelasticity 
and biocompatibility, and moderate pressure between ear-
piece and ear canal. These characteristics make compact 
devices to be fixed in place softly and firmly. In terms of 
electrical circuit development, bio-signal readout circuits 
have been increasingly implemented in developing minia-
turized and power-efficient in-ear EEG recording systems 
[86, 87]. The readout modules utilize a CCIA to reduce 
the noise level and combine other IC schemes to record 
exact in-ear EEG signal.

3  Miniaturization techniques for EEG 
processing

3.1  EEG channel selection

Although the EEG has been recorded with a miniatur-
ized EEG device, extracting meaningful information 
from multi-channel data is an ongoing challenge. If the 
crucial channels can be discriminated, the computational 

Fig. 2  Miniaturized EEG devices using active electrodes  (AE) are 
shown. Two representative active electrode structures such as two-
wired AE buffer and active shielding have widely been used. With the 

AE techniques, small-form-factor and daily life EEG devices are able 
to record EEG on the forehead (headband), around the ear (cEEGrid), 
and in the ear canal (in-ear EEG)
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complexity of the following EEG analysis will be signifi-
cantly reduced. Furthermore, EEG devices can operate 
with smaller batteries by finding crucial channels only, and 
small-form-factor devices with minimum wire configura-
tion can be re-manufactured. In that sense, many kinds of 
research are ongoing to reduce the number of electrodes 
for certain EEG applications. For example, in [88, 89], 
motor imagery classification and sleep monitoring were 
done only using 6 electrodes. In [90], emotion-based EEG 
classification has been conducted with 13 electrodes.

Channel selection (CS) refers to a series of processes that 
enables data processing and classification of EEG signals 
even with a small number of channels by selecting a few 
crucial channels for analysis. By including the CS process 
in or before EEG processing algorithms, we can find the 
critical channels for discriminating EEG patterns and utilize 
this result to simplify the EEG systems. There are two main 
approaches of CS: filtering method and wrapper method.

Filtering method is a technique that reduces the number 
of channels through a specific criterion or channel search 
algorithm before classification (Fig. 3 Top). Therefore, how 
well the channel is selected is only determined by the par-
ticular criterion or selection algorithm itself. Using variance 
is one of the strategies for channel selection [91]. The vari-
ance of EEG data from each channel is calculated, and only 
the top three channels with the largest variance are used 
for subsequent seizure classification. Besides variance, sta-
tistical criteria such as entropy are often used for CS [92]. 
In addition, common spatial patterns (CSP), a widely used 
algorithm in motor imagery classification [93], is catego-
rized into filtering methods. The CSP algorithm filters the 

EEG signal by creating a spatial filter that maximizes the 
variance of one group of data while minimizing the variance 
of the other data. During this process, the coefficient of each 
spatial filter is calculated. Finally, only a few filters with a 
large coefficient are used to reduce the number of channels. 
Modulations of the CSP such as CSP-rank [94] and L1 norm 
regulation CSP [95] are also used. After the channel reduc-
tion, a subsequent classification algorithm such as support 
vector machine (SVM), linear discriminate analysis (LDA) 
is trained.

Wrapper method is a technique that a particular algorithm 
determines the channel subset and outputs classification 
results simultaneously. Unlike the filtering method, channel 
selection is wrapped around by the feedback of classification 
results. As shown in Fig. 3 (Bottom), both channel selection 
and classification are trained through a specific algorithm 
together. The classification algorithm classifies EEG data 
using only the specific channel subset and outputs classifica-
tion results. Based on these classification results, the channel 
subset is updated until there is no accuracy improvement. 
Machine learning algorithms such as SVM and LDA are 
used for wrapper methods. SVM was repeatedly applied 
to several channel subsets and finally reduced 18 channels 
to 4.6 channels while maintaining 97% seizure detection 
accuracy [96, 97]. In the case of [98, 99], selecting chan-
nels and calculating classification errors were evaluated by 
LDA training. Besides SVM and LDA, other machine learn-
ing algorithms are used for channel selection in a wrapper 
method [100, 101].

The main difference between filtering and wrapper meth-
ods is whether channel selection is trained together with the 

Fig. 3  Two main categories of channel selection. (Top) Filtering 
method reduces channels according to specific criteria beforehand. 
The following classifier only uses the reduced data for training. (Bot-

tom) Wrapper method trains the classifier to do both channel selec-
tion and classification of EEG. The main difference is whether chan-
nel selection is included in classifier training
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classification algorithm. As shown in Fig. 3, channel selec-
tion of filtering methods is independently performed regard-
less of the classifier. Thus, filtering method shows faster cal-
culation compared to wrapper method. However, it achieves 
sub-optimal performance because the channel selection is 
conducted regardless of classifier output accuracy. On the 
other hand, wrapper method finds the optimal channel subset 
through feedback at the expense of expensive computation 
and over-fitting. By considering the pros and cons of the 
filtering and wrapper method, applying the appropriate CS 
technique to raw EEG data can relieve the computational 
burden, leading to miniaturized EEG systems.

3.2  Hardware implementation of EEG processing

Conventional EEG analysis was conducted by transmitting 
the EEG signal to the computer, where the processing and 
classification are performed (Fig. 4 Left). In the case of 
wired data transmission, the wire itself hinders the mobility 
of EEG devices. Also, for the case of wireless data transmis-
sion, the device needs large batteries, which disturb minia-
turization. Referring to [102], 73% of power dissipation in 
bio-sensor is due to wireless data transmission. Therefore, 
hardware implementation of EEG classification is in the 
spotlight to achieve miniaturization and high mobility by 
minimizing the stage of raw EEG signal transmission (Fig. 4 
Right). In particular, field-programmable gate array (FPGA) 
is drawing attention as a hardware implementation platform. 
FPGA is more energy-efficient than other processors such 
as central processing unit (CPU) because of its low-power 
parallel processing. Also, utilizing short development time 
and re-programmability, FPGA is a promising platform 
for EEG processing. Although the device still needs occa-
sional wireless data link to update its parameters such as in 

initialization stage, it does not need a constant data transmis-
sion due to its own processing capability. This stand-alone 
ability dramatically reduces the overall power consumption.

The paper [103] implemented a motor imagery classifier 
using a CSP algorithm on various FPGAs and compared the 
performance of those systems. The EEG classifier imple-
mented on FPGA was 7.5 to 16 times faster than the clas-
sifier implemented on CPU and was an order of magnitude 
more power-efficient. The paper [104] implemented a short-
time Fourier transform (STFT) and SVM-based classifier 
for EEG seizure detection on FPGA. Compared with the 
conventional method, the hardware classifier shows 1.7x 
speed up and improved detection sensitivity. The machine 
learning algorithms with relatively low complexity such 
as SVM and LDA can be implemented with lower design 
cost on FPGA. However, the performance and stability of 
a simple machine learning classifier are usually affected by 
the data when building the model. Thus, many studies also 
pay attention to hardware implementation of deep learning, 
which shows general performance in various applications. 
The paper [105] implemented a convolutional neural net-
work (CNN) on FPGA and used it for EEG-based emotion 
detection studies.

There are some common considerations to implementing 
algorithms on FPGA, such as model compression and hard-
ware optimization for algorithm calculation. First, model 
compression should be considered to fit the algorithm model 
on FPGA, which has more limited resources than comput-
ers. Quantization of data is one possible strategy of model 
compression that can reduce the storage requirement of the 
hardware system. Many research articles implement EEG 
classifiers on FPGA by using the fixed-point format [106, 
107]. Fixed point format is a method of representing frac-
tional numbers with a fixed number of digits in hardware 

Fig. 4  (Left) A conventional system for EEG processing. Raw data transmission is inevitable because of processing algorithms running on com-
puters. (Right) System for hardware-implemented EEG processing. On-chip processing enables fast and low-power operations on EEG devices
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(Fig. 5 a). Using this format, data previously defined as a 
long bit-width floating-point format can be represented with 
a low-bit fixed point.

Furthermore, another model compression method is 
reducing the amount of calculation by setting operands zero. 
The pruning method as one possible scheme zeros the num-
bers which are smaller than a specific threshold value and 
makes the following multiplication to simple zero (Fig. 5 
b). Pruning was used as model compression in an EEG 
intend recognition system [108, 109]. Even with applying 
the pruning algorithm to data, no significant degradation 
in performance was observed. After the pruning, data can 
be represented in a sparse matrix form. Besides pruning, 
other techniques such as single value decomposition can 
be utilized to transform the data matrix to a sparse matrix 
during hardware implementation [110]. Moreover, storage 
requirements can be lowered by storing a sparse matrix in a 
unique format. One of the methods to store sparse matrix is 
compressed sparse row (CSR). The CSR method represents 
a spares matrix by three arrays containing non-zero values, 
column indices, and the extent of rows. With this method, 
the storage requirement of data can be even compressed, 
which alleviates the memory bottleneck of hardware [111].

Finally, hardware-optimization for algorithm calculation 
can be considered to fully exploit the limited resource. One 
of the methods is to optimize repeated calculations such as 
matrix-vector multiplication. Utilizing parallel computing 
and pipe-lining characteristics of hardware, matrix-vector 
multiplications are performed much faster with high energy-
efficiency compared to the calculation on computers [112]. 
Another possible method is to refine data flow. As the 

resource of FPGA is limited, data fetching and data con-
trolling should be carefully conducted. To optimize mem-
ory-related data flow, the tiling of for-looped operations is 
focused [113, 114]. These approaches enable real-time BCI 
systems and EEG device miniaturization through processing 
acceleration and small battery usage.

4  Conclusion

This article reviews miniaturization techniques for EEG 
measurement and classification simultaneously. From the 
perspective of developing compact EEG recording hard-
ware, various technologies are applicable to the acquisi-
tion system. Small-size electrodes and nano-meter scale IC 
technology are studied to measure EEG within a small area. 
Moreover, miniaturized devices such as in-ear EEG get high 
research interest to measure EEG easily and comfortably. 
Along with the hardware miniaturization, channel selection 
techniques and hardware implementation of EEG classifica-
tion were studied for the compact EEG processing.

As this paper reviewed, miniaturization is essential for 
developing wearable healthcare EEG systems. However, 
as front-end hardware gets much smaller, the number of 
channels decreases. High-performance signal classification 
techniques are inevitably required to monitor meaningful 
human brain information with even fewer channels. There-
fore, the limitation of hardware miniaturization at the front-
end is determined by signal processing performance at the 
back-end. In addition, to ease the burden of the classification 
processes, it is necessary to extract a high SNR EEG signal 

Fig. 5  a Simple illustration of quantization and fixed-point format. 
b Flow for model compression of a data matrix. The values smaller 
than the threshold value (in this case, 3) are pruned to zero. After 

pruning, a matrix is transformed into a sparse matrix. Using special 
format such as CSR, sparse matrix is even compressed
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by utilizing well-manufactured compact electrodes and IC 
chips. Eventually, this intertwined relationship makes co-
research of EEG recording and processing indispensable.
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