
MiniBit: Bit-Width Optimization via Affine Arithmetic

Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer and Wayne Luk
Department of Computing, Imperial College, London, United Kingdom

{dong.lee, altaf.gaffar, o.mencer, w.luk}@imperial.ac.uk

ABSTRACT
MiniBit, our automated approach for optimizing bit-widths
of fixed-point designs is based on static analysis via affine
arithmetic. We describe methods to minimize both the in-
teger and fraction parts of fixed-point signals with the aim
of minimizing circuit area. Our range analysis technique
identifies the number of integer bits required. For precision
analysis, we employ a semi-analytical approach with ana-
lytical error models in conjunction with adaptive simulated
annealing to find the optimum number of fraction bits. Im-
provements for a given design reduce area and latency by up
to 20% and 12% respectively, over optimum uniform fraction
bit-widths on a Xilinx Virtex-4 FPGA.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: De-
sign Aids—automatic synthesis, optimization

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Affine Arithmetic, Bit-Width, Fixed-Point, FPGA, Simu-
lated Annealing

1. INTRODUCTION
One of the main objectives of hardware designers is to

find the optimal design in terms of area, latency, throughput
and power. Bit-widths of signals is one of the parameters
designers can tweak to improve these metrics.

Bit-width optimization has enjoyed much attention in the
research community. The work in this area can be classi-
fied in many different ways, one such classification is static
analysis versus dynamic analysis. Dynamic analysis [1, 2]
relies on the use of stimuli input signals. Though this ap-
proach provides bit-widths closer to the optimal when com-
pared to static analysis techniques, it is problematic since a
large set of stimuli signals are required to analyze a design
with enough confidence, leading to prohibitively long simu-
lation times. Static analysis [3, 7] gives more conservative
bit-width estimates than dynamic analysis. However, static
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Figure 1: Overview of the MiniBit automated bit-
width optimization approach.

analysis is the more attractive solution, especially for large
designs, since only the characteristics of the input signals are
needed. In this work, we use a static analysis technique via
affine arithmetic [6] to optimize both ranges and precisions
for the signals in a fixed-point design.

Another way of classifying bit-width optimization is the
error metric. Most existing work involves the signal to noise
ratio (SNR) error criterion. The SNR criterion is popular
with digital signal processing applications. On the other
hand, many computer arithmetic and scientific applications
require a maximum absolute error bound. This error metric
is good for portability, especially when a module needs to be
integrated to a larger design. Our criterion for evaluating
the accuracy is the unit in the last place (ulp). The ulp of
a fixed-point number with eight bits of fraction bit-width
would be 2−8. In this work we aim for faithful rounding,
meaning that results are accurate to 1 ulp compared to in-
finite precision arithmetic. Hence, if the result has eight
fraction bits, our approach guarantees a maximum absolute
error of less than or equal to 2−8.

The main contributions of this paper are:

• Analytical range and error models for fixed-point de-
signs using affine arithmetic (Section 3).

• Range optimization using range models with guaran-
teed overflow/underflow protection (Section 3.1).

• Analytical uniform fraction bit-width determination
using error models with guaranteed maximum absolute
error bounds (Section 3.2).
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• Multiple fraction bit-width determination via adap-
tive simulated annealing using error models and area
cost functions with guaranteed maximum absolute er-
ror bounds (Section 3.2).

• Demonstration of our approach with five case stud-
ies: polynomial approximation, RGB to YCbCr con-
version, matrix multiplication, B-splines and DCT re-
alized in a Xilinx Virtex-4 FPGA (Section 4).

2. OVERVIEW
The automated framework for bit-width optimization we

propose in this paper targets fixed-point numbers. In fixed-
point representation a real number is represented by two
parts: an integer part which represents the range, and a
fraction part which represents the precision. Two’s comple-
ment fixed-point is used throughout this work.

We split the bit-width optimization problem into two steps:
range analysis and precision analysis. Range analysis in-
volves inspecting the dynamic range and working out the
integer bit-widths. Using insufficient bits for the range can
cause overflows, and using bits excessive to the required
range wastes valuable hardware resources. Hence, we are
looking for the optimal integer bit-widths to avoid both
shortcomings. Precision analysis involves minimizing the
fraction bit-widths, while respecting the user-specified out-
put error criterion. Again, the aim is to find the optimum
fraction bit-widths that meet the output error criterion while
keeping hardware cost minimal.

An overview of our bit-width optimization framework is
illustrated in Figure 1. Our approach performed at the algo-
rithmic level, and is implemented as a series of compilation
passes inside MiniBit, which is built on top of the BitSize
bit-width analysis system [1]. The input to MiniBit is a de-
sign description in ASC [8], C/C++ or Xilinx System Gen-
erator. MiniBit uses this design description together with
user-supplied information, such as the output error speci-
fication, specified in terms of the fractional bit-width and
the range of the input of values, specified in terms of the
input integer bit-width, to perform the range analysis and
then to generate the error function and the cost function.
The error function captures the output error as a function
of the fraction bit-width of the signals in the design via affine
arithmetic. The area cost function returns the area cost as
a function of the bit-widths of the signals.

We first perform range analysis, then pass the ranges
found to the precision analysis phase. Finally, we run range
analysis again since the ranges could have slightly changed
with the new precisions. Range analysis is performed via
affine arithmetic and computes the integer bit-width re-
quired for each signal in the design. Precision analysis op-
erates in two phases: (1) using the error function generated
by MiniBit, we find the optimum uniform fraction bit-width
(UFB). The UFB serves as the initial set of parameters for
the next phase. (2) we use both the error and cost functions
to find the optimum multiple fraction bit-widths (MFBs)
which minimize the cost function, while meeting the con-
straints in the error function. The MFBs are found by using
adaptive simulated annealing (ASA) [5], a fast simulated
annealing technique.

3. BIT-WIDTH ANALYSIS
VIA AFFINE ARITHMETIC

Affine arithmetic (AA) [6] is a refinement of interval arith-
metic (IA) and deals with the correlation problem of inter-
val arithmetic. If we consider a signal x, over the range
[xmin, xmax], the mid-point of this range is x0 = (xmax +
xmin)/2, the maximum variation of x in this range is x1 =
(xmax − xmin)/2. The range x̂ can now be expressed as
[x0 − x1, x0 + x1], in terms of x0 and x1. We express this as
a single equation as

x̂ = x0 + x1ε1 (1)

a = [-3,2] b = [4,8] c = 4.3

z = [-25.7,16.3]

d = [-24,18]

e = [-19.7,22.3]

Figure 2: An example circuit performing z = ab+c−b.

where ε1 models the uncertainties in x and lies in the range
[−1, 1]. Expressing the range as shown in Equation (1), is
known as the affine form of x. Affine arithmetic deals with
the correlation problem of interval arithmetic, by encoding
the range information using a separate uncertainty parame-
ter ε for each signal.

We write an addition or a subtraction x̂± ŷ in affine arith-
metic form as

x̂ ± ŷ = (x0 ± y0) +
n�

i=1

(xi ± yi)εi

For multiplication, we eliminate high order terms to ob-
tain:

x̂ × ŷ = x0y0 +
n�

i=1

(x0yi + y0xi)εi + uvεk

where u =

n�
i=1

|xi| v =

n�
i=1

|yi|

Affine forms for other elementary operations such as divi-
sion and square root are given in [6]. It has been shown that
affine arithmetic gives tighter bounds than interval arith-
metic for both fixed-point [3] and floating-point designs [4].

3.1 Range Analysis
The authors in [3] propose a single affine expression to

capture both range and precision. However, we believe range
and precision expressions should be kept separately, since
the expressions can easily explode. Precision is a function of
range for operations such as multiplication and division, and
hence, the number of error terms εi can easily explode. Af-
ter range analysis, we obtain numerical values for the ranges,
hence the affine expressions for precisions remains manage-
able.

We implement range analysis using affine arithmetic to
find the minimum integer bit-widths required for each signal.
For instance, let us consider the evaluation of z = ab + c− b
as illustrated in Figure 2. Since we want to obtain the range
for each signal, we set d = ab, e = d + c and y = e − b. In
affine form we get

â = −0.5 + 2.5ε1 b̂ = 6 + 2ε2

ĉ = 4.3 d̂ = −3 + 15ε1 − 1ε2 + 5ε3

ê = 1.3 + 15ε1 − 1ε2 + 5ε3 ẑ = −4.7 + 15ε1 − 7ε2 + 5ε3

Hence, the ranges of the signals are d = [−24, 18], e =
[−19.7, 22.3] and z = [−25.7, 16.3]. We perform range analy-
sis on all signals for a given design and find the range for
each signal. The integer bit-width (IB) required for a signal
x is computed with

IBx =

� �log2(d)� if |d| > 1
1 if |d| ≤ 1

where d = max(|xmin|, |xmax|)
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3.2 Precision Analysis
We use affine arithmetic for precision analysis in a similar

fashion as for range analysis. There are two main ways to
quantize a signal: truncation and round-to-nearest. Trun-
cation and round-to-nearest can cause a maximum error of
2−F B (1 ulp) and 2−F B−1 (0.5 ulp), respectively. Trun-
cation chops bits off the least significant bits and requires
no extra hardware resources. Round-to-nearest involves a
small adder followed by truncation. For simplicity, we shall
perform round-to-nearest throughout this work. Hence, the
quantized version x̃ of a signal x is given in affine form by

x̃ = x + 2−F Bx̃−1ε where ε = [−1, 1]

where FBx̃ is the fraction bit-width of x̃. Hence, the error
at x̃ due to finite precision effects is given by

Ex̃ = 2−F Bx̃−1

For addition/subtraction, the affine error expression is
given by

z̃ = x̃ ± ỹ = x ± y + Ex̃ ± Eỹ + 2−F Bz̃−1ε3

⇒ Ez̃ = Ex̃ + Eỹ + 2−F Bz̃−1ε3

For multiplication:

z̃ = x̃ỹ
= xy + xEỹ + yEx̃ + Ex̃Eỹ + 2−F Bz̃−1ε3

⇒ Ez̃ = xEỹ + yEx̃ + Ex̃Eỹ + 2−F Bz̃−1ε3

The application of the error models to the circuit in Fig-
ure 2 is shown below.

Eã = 2−F Bã−1ε1

Eb̃ = 2−F B
b̃
−1ε2

Ec̃ = 2−F Bc̃−1ε3

Ed̃ = aEb̃ + bEã + EãEb̃ + 2−F B
d̃
−1ε4

Eẽ = Ed̃ + Ec̃ + 2−F Bẽ−1ε6

Ez̃ = Eẽ − Eb̃ + 2−F Bz̃−1ε7

Since we are interested in the worst case error, we take
the maximum absolute values for each signal.

max(Ez̃) = 2−F B
b̃ + 2−F Bã+2 + 2−F Bã−F B

b̃
−2 +

2−F B
d̃
−1 + 2−F Bc̃−1 + 2−F Bẽ−1 + 2−F Bz̃−1

For faithful rounding, the output error Ez̃ needs to be less
than or equal to 1 ulp, i.e.

2−F Bz̃ ≥ max(Ez̃)

⇒ 2−F Bz̃−1 ≥ 2−F B
b̃ + 2−F Bã+2 + 2−F Bã−F W

b̃
−2

+2−F B
d̃
−1 + 2−F Bc̃−1 + 2−F Bẽ−1 (2)

From Equation (2), we see that the aim is to find minimal
FB for each signal that satisfy the inequality and results
in minimal circuit area. This is a non-linear optimization
problem and analytical methods are of little use. Hence,
we use simulated annealing to solve this optimization prob-
lem. We choose the adaptive simulated annealing (ASA)
package available from [5]. ASA, also known as very fast
simulated re-annealing, performs adaptive global optimiza-
tion on multivariate non-linear stochastic systems. In ASA,
the user supplies a constraint function and a cost function.
Error functions such as the inequality above are supplied as
the constraint function. Since our aim is to minimize circuit
area in this work, we supply an area model of the circuit as a

function of the signal bit-widths as the cost function. In this
area model, the area for the addition x + y is modeled with
max(IBx +FBx, IBy +FBy) and the area for the multipli-
cation xy is modeled with (IBx +FBx)(IBy +FBy). These
area models are derived to correspond with the operator
area usage of our hardware compilation system (ASC) [8].
Other area models can be used to target different hardware
compilers and device technologies.

The annealing process can be accelerated significantly by
supplying good initial parameters (FBs in our case). Op-
timum uniform FBs are analytically computed and used as
the initial parameters. For Equation (2), substituting the
fraction bit-widths in the computation chain with a uniform
fraction bit-width UFB,

2−F Bz̃−1 ≥ 2−UF B + 2−UF B+2 + 2−2UF B−2 + 3(2−UF B−1)

Let FBz̃ = 16 bits. Solving the equation for the mini-
mum value of UFB which satisfies the inequality, gives us
UFB = 20 bits, an analytical solution of the uniform bit-
width selection problem.

4. RESULTS
We implement the five case studies with ASC, A Stream

Compiler, for FPGAs [8]: degree four polynomial approxi-
mation, RGB to YCbCr color space conversion, Strassen’s
2×2 matrix multiplication, cubic B-splines, and 8×8 DCT.

ASC code makes use of C++ syntax and ASC semantics,
which allow the user to program on the architecture-level,
the arithmetic-level and the gate-level. Designs are syn-
thesized with ASC and placed-and-routed with Xilinx ISE
6.3 on a Xilinx Virtex-4 XC4VLX100-11 FPGA. The de-
vice contains user-programmable elements known as slices,
dedicated multiply-and-add units and embedded RAMs. In
order to make fair comparisons, we implement designs using
slices only and combinatorially without any pipelining.

Table 1 shows the optimization times and error statistics
of multiple fraction bit-width designs, and comparisons be-
tween uniform fraction bit-width (UFB) and multiple frac-
tion bit-width (MFB) designs. The UFB and MFB designs
use the same number of integer bits for all signals, as com-
puted in our range analysis phase. The optimization times
have been measured on an AMD Athlon XP 2600+ PC with
2GB DDR-SDRAM, and include both range and precision
analysis times. The ulp errors and SNRs are computed by
simulating MFB optimized designs using random input vec-
tors. Double precision floating-point is assumed to be the
true value for the error computations, since it is significantly
more accurate than the precisions we are targeting. The
maximum ulp error for all designs are well below 1 ulp to
guarantee faithful rounding. Also, the average ulp error is
less than 0.3 for all case studies. Looking at the area and
speed comparisons, although we optimize designs for min-
imal area, the reduction in the multiplier and adder sizes
leads to reductions in latencies as a byproduct. We note
that designs using MFBs are always smaller and faster than
designs using UFBs. Some of the savings may seem rather
small, but we get these savings for free, as the MFB designs
have the same error bound as the UFB designs.

Figure 3 shows the area variation for B-splines with in-
creasing target precision. It can be seen that the area differ-
ences between UFB and MFB are increasing with the target
precision. Figures 4 shows the area variation for various
polynomial degrees with target precision fixed at eight bits.
Since we use Horner’s rule to evaluate polynomials, one ex-
tra degree causes one more adder and one more multiplier.
In order to make a fair comparison, the coefficients are set
to the number π throughout. We can see that as we increase
the depth of the computation chain (i.e. increase the poly-
nomial degree), the area difference between UFB and MFB
increases.
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Table 1: Optimization times and error statistics of multiple fraction bit-width (MFB results), and comparisons
between uniform fraction bit-width and multiple fraction bit-width (UFB/MFB comparisons).

Case Studies MFB Results UFB/MFB Comparisons

Application Prec Opt Max Err Avg Err SNR Area [slices] Latency [ns]

[bits] Time [s] [ulp] [ulp] [dB] UFB MFB Diff Impr [%] UFB MFB Diff Impr [%]

Degree 4 8 1.9 0.694 0.253 51.5 803 723 80 9.96 114.00 105.39 8.61 7.55

Polynomial 16 2.0 0.731 0.256 99.5 1921 1797 124 6.45 168.55 151.81 16.74 9.93

RGB to YCbCr 8 8.9 0.662 0.260 97.2 1165 1132 33 2.83 37.47 36.95 0.52 1.39

16 9.7 0.793 0.272 144.9 1641 1602 39 2.38 50.26 48.83 1.43 2.85

2 × 2 Matrix 8 16.1 0.520 0.251 54.4 1896 1799 97 5.12 44.20 42.73 1.47 3.33

Multiplication 16 19.5 0.528 0.247 102.5 4240 4072 168 3.96 59.22 56.14 3.08 5.20

B-Splines 8 27.7 0.716 0.267 49.8 1189 952 237 19.93 88.39 78.58 9.81 11.10

16 32.8 0.774 0.278 96.6 2652 2165 487 18.36 130.11 114.03 16.08 12.36

8 × 8 DCT 8 154.3 0.702 0.254 103.1 5368 5217 151 2.81 54.83 50.73 4.10 7.48

16 179.1 0.708 0.257 151.3 7320 7167 153 2.09 66.39 59.42 6.97 10.50
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Figure 3: Area variation for B-splines with increas-
ing target precision.

5. CONCLUSIONS
We present MiniBit, an automated approach for optimiz-

ing bit-widths of fixed-point designs with static analysis.
We describe methods to minimize both integer and frac-
tion parts of fixed-point signals based on affine arithmetic.
Our range analysis technique finds the minimum number of
required integer bits. For precision analysis, we employ a
semi-analytical approach, where analytical error models in
conjunction with adaptive simulated annealing are used to
find the optimum number of fraction bits. The analytical
models allow us to guarantee overflow protection and nu-
merical accuracy for all inputs over the user-specified input
intervals.

One limitation of our approach is that the search space for
ASA could can be vast for large designs, leading to slow opti-
mization times. For future work, we hope to use clustering
techniques by optimizing parts of a large design indepen-
dently, which will result in suboptimal bit-widths but faster
execution times.
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