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Abstract. One of the main tools to construct secure two-party computation pro-
tocols are Yao garbled circuits. Using the cut-and-choose technique, one can
get reasonably efficient Yao-based protocols with security against malicious ad-
versaries. At TCC 2009, Nielsen and Orlandi [28] suggested to apply cut-and-
choose at the gate level, while previously cut-and-choose was applied on the
circuit as a whole. This idea allows for a speed up with practical significance
(in the order of the logarithm of the size of the circuit) and has become known
as the “LEGO” construction. Unfortunately the construction in [28] is based on
a specific number-theoretic assumption and requires public-key operations per
gate of the circuit. The main technical contribution of this work is a new XOR-
homomorphic commitment scheme based on oblivious transfer, that we use to
cope with the problem of connecting the gates in the LEGO construction. Our
new protocol has the following advantages:

1. It maintains the efficiency of the LEGO cut-and-choose.
2. After a number of seed oblivious transfers linear in the security parameter,

the construction uses only primitives from Minicrypt (i.e., private-key cryp-
tography) per gate in the circuit (hence the name MiniLEGO).

3. MiniLEGO is compatible with all known optimization for Yao garbled gates
(row reduction, free-XORs, point-and-permute).

1 Introduction

Secure two-party computation allows two parties to compute a function of their inputs
while ensuring security properties such as the privacy of the inputs and the correct-
ness of the outputs. The first protocol for secure two-party computation is Yao’s gar-
bled circuit [21, 32]. In recent years there has been a significant effort to bring secure
computation into practice. These efforts resulted in terrific improvements in terms of
algorithmic complexity, efficiency of implementations etc. (see e.g., [1, 2, 5, 7, 11–13,
15–20, 22–24, 27–31] and references therein). Perhaps the most interesting problem is
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how to achieve protocols with security against malicious adversaries that are efficient
enough to be used in practice.

In a nutshell, Yao’s protocol works as follows: A constructs an encrypted version
of the circuit to be computed (the “garbled circuit”) and sends it to B who evaluates
the encrypted circuit on encrypted inputs, thus learning nothing but the output of the
computation. One of the main problems of this protocol is that if A is malicious she
can encrypt a circuit different than the one B agreed on computing, with dramatic con-
sequences for the correctness of the result and the privacy of B’s input. One of the
main tools to cope with this is the so called cut-and-choose technique: A prepares many
copies of the encrypted circuit and B checks some of them for correctness. This induces
a probability on the unopened circuits to be correct. Nielsen and Orlandi [28] presented
a twist on this approach, known as LEGO: their approach consists of performing a
cut-and-choose test at the gate level (instead of at circuit level), and allows to save a
factor O(log(s)) with s being the circuit size, in the computation and communication
complexity w.r.t., “standard” cut-and-choose at the circuit level. However, the approach
did not have a practical impact for the efficiency of Yao-based protocols, for several
reasons:

1. LEGO uses public-key primitives for each gate in the circuit: Each gate has associ-
ated three commitments to its input/output keys. Those commitments are used for
the “soldering” and need to be homomorphic. For this purpose LEGO uses Ped-
ersen commitments. This is a drawback for the efficiency of the protocol (group
operations, even in an elliptic curve, are orders of magnitude slower than symmet-
ric primitives such as hash functions or private-key encryption). Moreover, it limits
LEGO to discrete logarithm computational assumptions.

2. LEGO is not compatible with known optimization for Yao’s protocol: Keys in LEGO
are element of Zp for some prime p, while using binary strings {0, 1}t is more nat-
ural and standard. Therefore, it is not possible to use the “free-XOR” trick with
LEGO, nor many of the others optimizations that are tailored for bit-string keys.

3. LEGO has too many bricks: there are many different kind of objects in LEGO (key-
filters, not-two gates, etc.) that make the use of LEGO complex to understand and
implement.

Contributions. In this paper, we present a generalization and a simplification of the
LEGO approach. The main technical difference is to replace the Pedersen commitments
with some XOR-homomorphic commitments based on oblivious transfer (OT) which
we believe is of independent interest and might be used in other applications. We take
this direction as OT can be efficiently extended (both with passive [14] and active secu-
rity [9,27]), the price is only a few private-key operations per OT (together with a small
number of “real” seed OTs that use public-key technology to bootstrap the process).
Doing so allows us to:

1. Maintain LEGO’s good complexity and achieve statistical security 2−k when the
replication factor is only ρ = O(k/ log(s)) against a replication factor of ρ = O(k)
for standard cut-and-choose such as the one in [22]

2. Implement a variant on LEGO whose security only relies on generic, symmetric
primitives (except for the few seed OTs needed to bootstrap the OT extension).
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3. Achieve a variant of LEGO that uses “standard” garbled gates (ANDs and free
XORs), compatible with garbled gates optimization.

Whether our proposed protocol will be more efficient in practice than protocols with
standard cut-and-choose [7, 18, 20, 29, 31] will only be decided by performing a se-
rious comparison of similar implementations running on the same hardware-network
configuration of our and other approaches. This is on-going work.

Technical Overview. The main idea of the protocol we present here is the same as
in [28]: A prepares many garbled gates (NANDs in [28], while here we use ANDs)
together with commitments to the input and output garbled keys. If A prepares a gate
dishonestly we view it as a faulty gate, i.e., one that does not give the correct output
on some inputs. B asks A to open a random subset of the AND gates and checks them
for correctness. If the check goes through, B randomly permutes the unopened gates
into buckets representing a redundant AND gate. He solders the gates within a given
bucket together and then solders the buckets together to form a circuit that computes
the function even in the presence of a minority of faulty gates within each bucket. As
part of this soldering NOT gates can be injected thus the garbled AND gates and the
soldering alone provides a universal set of Boolean gates.

As the gates have been generated independently, the output keys of the gates in one
layer of the circuit cannot be directly fed as input to the next layer. Therefore, A reveals
the XOR difference between the output keys in the first layer with the corresponding
input keys in the second layer (using the XOR-homomorphic properties of the commit-
ment scheme). This allows B to “align” the input keys of the gates in one layer with
the output keys of the gates in the previous layer. He then evaluates all ρ garbled gates
in a bucket on the same input key and take the output of the bucket to be any output
key agreed upon by more than �ρ/2� of the replicated garbled gates it contains. The
main intuition for the security of LEGO cut-and-choose is as follows: If A had sent B k
faulty gates, B would detect this with probability 1 − 2−k. Therefore, if B accepts the
test, with very high probability there are only a few faulty gates among the unopened
ones. As all gates are permuted at random and placed in random buckets in the circuit,
only very little redundancy is needed to correct for all faulty gates.

Because we use XOR homomorphic commitments, our construction can be instanti-
ated with essentially any free-XOR compatible garbled gate scheme and is compatible
with various state of the art optimizations (such as free-XOR, row-reduction, point-and-
permute).

Organization. We start with preliminaries and background in Section 2. We then con-
tinue to go through the overall description of the secure-two party computation proto-
col in Section 3. This is followed by Section 4 where we describe the main technical
contribution of this paper; the XOR homomorphic commitments.

2 Background

In this section we formalize our goal in the UC framework (refer to textbooks such
as [8, 10] for definitions). We furthermore list the basic building blocks of our protocol
and quickly review their individual constructions.
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The Ideal Functionality. In Fig. 1 the ideal functionality for secure function evaluation
is presented (taken almost verbatim from [28]). Note that the functionality is insecure
in the sense that A can try to guess B’s input bits, but if her guess is wrong B is told that
A is cheating. This models a standard problem in Yao based protocols known as “se-
lective failure attack”, that can be solved by modifying the circuit to be evaluated. For
instance, to evaluate a circuit C ((ai)i∈[�], (bi)i∈[�]

)
securely one could instead evaluate

C′ ((ai)i∈[�], (bi,j)i∈[�],j∈[k]

)
= C ((ai)i∈[�], (⊕i∈[k]bi,j)j∈[�]

)
i.e., B encodes his real

input bit in the parity of a k bit-long string, and the modified circuit first reconstructs
the real input and then evaluates the original circuit. Now, in order to guess one of B’s
real input bits A needs to guess correctly the k random bits, so she will fail with prob-
ability 1 − 2−k. As our construction allows to compute XOR gates for free, this only
marginally increases the complexity. Better encodings can be used (See [20]) to reduce
the size of the encoded input from � · k bits to max(4�, 8k) bits.

Circuit and inputs: On input (init, A, k) from A and input (init, B, k) from B where
A = (a, CA), B = (b, CB) proceed as follows:

1. Let k be a statistical security parameter and let CA and CB be descriptions of
Boolean circuits consisting of NOT, XOR and AND gates computing the corre-
sponding Boolean functions fA, respectively fB .

2. Leak CA, CB and k to the adversary.
3. If CA �= CB , then the ideal functionality outputs disagreement! to both parties

and terminates. Otherwise, let C = CA and parse C as (�,C′), where � ∈ N and C′ is
a circuit with 2� input wires and � output wires. I.e., we potentially add blank wires
to make sure that the size of A’s input, B’s input and the output are the same. Thus
C′ computes the Boolean function f = fA.

4. Finally parse a as a ∈ {0, 1}� and b ∈ {0, 1}� and return (�,C′) to both A and B.
Corrupt A: On input (corrupt) from A, let her be corrupt. She can then specify a set
{(i, βi)}i∈I , where I ⊆ {1, . . . , k} and βi ∈ {0, 1}. If βi = bi for i ∈ I , then
output correct! to A. Otherwise, output You were nicked! to A and output
Alice cheats! to B.

Evaluation: If both parties are honest or A was not caught above, then on input
(evaluate) from both A and B the ideal functionality computes z = f(a, b) and
outputs z to A. The adversary decides the time of delivery.

Fig. 1. The ideal functionality, FSFE, for secure function evaluation for two parties

Building Blocks. We here review the main building blocks of our protocol.

Generic Free-XOR Yao Gate. Our protocol is compatible with every “free-XOR com-
patible” garbling schemes. In particular, it is possible to use very optimized garbling
schemes. We now describe such a garbling scheme that combines the state of the art
optimizations for Yao Gates i.e., free XOR [17], permutation bits [26], garbled row-
reduction [26] in the same way as [1].

In particular this means that to garble a gate 4 evaluations of AES are needed, and
a garbled gate consists of only 3 ciphertexts (therefore saving on communication com-
plexity). The evaluation of the gate consists of a single AES evaluation.
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– We have a (possibly randomized) algorithm Yao(L0, R0, Δ, id) with id a unique
gate identifier, a left input zero-key L0 ∈ {0, 1}t, a right input zero-key R0 ∈
{0, 1}t and a global difference Δ ∈ {0, 1}t outputs a garbled gate gg and a output
zero-key O0 ∈ {0, 1}t.

– We have a (possibly randomized) algorithm Eval(gg, L′, R′) that on input a garbled
gate gg, a left key L′ ∈ {0, 1}t and a right key R′ ∈ {0, 1}t outputs an output key
O′ ∈ {0, 1}t ∪ {⊥}.

– We define the one-keys L1,R1,O1 s.t. L0 ⊕ L1 = R0 ⊕R1 = O0 ⊕O1 = Δ.

The idea is that a garbled AND gate gg has a zero- and a one-key associated with each
of its wires (left input, right input and output wire), and that these keys represent the
bit values on those wires. E.g., if gg is a garbled AND gate generated as (gg,O0) ←
Yao(L0, R0, Δ, id) then Eval(gg, La, Rb) for any a, b ∈ {0, 1} should output Oa∧b.

Note that if A samples Δ and a zero-key, say L0, at random and give the key La

to B then there is no way for B to infer the bit a from La. Furthermore, even if B
learns a he cannot guess the key L1−a with better probability than guessing Δ. For a
garbling scheme to be secure we want that even if B learns gg and keys La and Rb for
a, b ∈ {0, 1}, and is able to evaluate Oa∧b ← Eval(gg, La, Rb), then he cannot guess
L1−a, R1−b or O1−a∧b with better probability then guessing the random string Δ, even
if he knows a and/or b.

Thus B can evaluate the garbled gate gg without knowing anymore about the output
than he can infer from his knowledge of a and b. Furthermore, B cannot evaluate the
gate on any other inputs. Thus if B sends back Oa∧b to A, A can learn a ∧ b (as she
knows O0 and Δ) and be confident that this is the correct result. We formalize this
intuition about correctness and security of a garbled gate in Def. 1.

Definition 1. We say that (Yao,Eval) is a Yao free-XOR garbling scheme if the follow-
ing holds:

Correctness: Let (gg,O0) ← Yao(L0, R0, Δ, id). Then for all a, b ∈ {0, 1},
Eval(gg, La, Rb) = Oa∧b, with overwhelming probability over the choices of L0,
R0, Δ and the random coins of Yao and Eval.

Secrecy: Consider the following indistinguishability under chosen input attack game
for a stateful adversary A: The adversary outputs two pairs of bit vectors(
ai0, b

i
0

)
i∈[k]

,
(
ai1, b

i
1

)
i∈[k]

∈ {0, 1}2k. The game picks a uniformly random chal-

lenge c ∈R {0, 1}, samples Δ ∈R {0, 1}t and for i = 1, . . . , k it samples Li, Ri ∈R

{0, 1}t, samples (ggi, Oi
0)← Yao

(
Li
0, R

i
0, Δ, i

)
and then inputs

(
ggi, Li

ai
c
, Ri

bic

)

i∈[k]

to A. Finally A outputs a bit d ∈ {0, 1} and wins if d = c. We say that the scheme
is IND-CIA if for all PPT A, A wins the IND-CIA game with at most negligible
advantage in t.

In the full version [6] we describe an optimized garbling scheme that can be used with
our protocol. See also [1].

Soldering. The idea for this component is the same as in [28], however, slightly changed
to support a general gate garbling scheme. When a garbled gate gg1 has the same zero-
key (and therefore also one-key) associated to one of its wires, as is associated with one
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of gg2’s wires, we say that the given wire of gg1 is soldered to the given wire of gg2.
This is a useful concept when we want to build circuits of garbled gates. To see this
consider a garbled gate gg1 with its left input wire soldered to the output of gg2, and its
right input wire soldered to the output of gg3. This means that if gg2 and gg3 has output
zero-keys O2

0 and O3
0 respectively, then gg1 has left and right zero-keys L1

0 = O2
0 and

R1
0 = O3

0 . Thus if we evaluate gg2 and gg3 on some input and obtain output keys O2
a

and O3
b we can use this to further evaluate gg1 on these outputs. The resulting output

would be some output key O1
a∧b.

Alternatively notice that if gg1 has, e.g., left, input zero-key L1
0 = O2

0 ⊕O3
0 then

O2
a ⊕O3

b = O2
0 ⊕O3

0 ⊕ (a⊕ b)Δ = L1
0 ⊕ (a⊕ b)Δ = L1

a⊕b .

In this case we say that the left input wire of gg1 is soldered to the XOR of the output
of gg2 and gg3. This is because by XOR’ing the outputs keys of gg2 and gg3 we get the
left input key of gg1 corresponding to XOR of the outputs of gg2 and gg3. This is also
why we call the garbling free-XOR: we do not need to garble XOR gates, since this is
handled by the soldering.

In our protocol we will first generate garbled gates where all zero-keys are picked
independently, and then in a later stage we will solder the wires of the garbled gates
to each other to form a garbled circuit. For this purpose, we introduce a function
Shift

(
gg, Ld, Rd, Od

)
that on input a garbled gate (gg,O0) ← Yao (L0, R0, Δ, id),

and three differences Ld, Rd, Od ∈ {0, 1}t, outputs a new shifted gate sgg. The shifted
gate sgg is the gate gg modified to have have input zero-keys

(
L0 ⊕ Ld

)
and

(
R0 ⊕Rd

)

and output zero-key
(
O0 ⊕Od

)
.

This can be implemented by letting Shift output the concatenation of its inputs i.e.,
sgg =

(
gg, Ld, Rd, Od

)
and let the evaluation of a shifted gate sgg be defined by:

ShiftEval
(
sgg, L̂, R̂, Ô

)
= Eval

(
gg, L̂⊕ Ld, R̂⊕Rd

)
⊕Od

where for all K we define ⊥ ⊕ K = ⊥. It is clear that a shifted gate is correct (with
respect to the shifted zero-keys) if and only if a standard gate is correct, and clearly
shifting a gate does not threaten its security property. A shifted gate can be shifted
again: The Shift function will just update the values Ld, Rd, Od accordingly.

Consider two garbled gates
(
gg1, O1

0

) ← Yao
(
L1
0, R

1
0, Δ, 1

)
and

(
gg2, O2

0

) ←
Yao

(
L2
0, R

2
0, Δ, 2

)
. The shifted gate sgg2 = Shift

(
gg2,

(
O1

0 ⊕ L2
0

)
, 0, 0

)
then be-

comes a garbled gate with left zero-key L2
0 ⊕

(
O1

0 ⊕ L2
0

)
= O1

0 . I.e. the output wire of
gg1 is now soldered to the left input wire of sgg2.

Similarly we could have used the Shift function to solder the input of sgg2 to the
XOR of some other garbled gates.

If one wish to use NOT gates then these can be implemented as part of this shifting
by a simply change in the the difference, i.e., to add a NOT gate to the soldering to the
left wire of a gate we simply use ¬Ld = Ld ⊕Δ instead of just Ld.

To see this assume we want to put a NOT into the soldering between gg1 and
gg2. In this case we would have ¬L1d = L1d ⊕ Δ = O1

0 ⊕ L2
0 ⊕ Δ, i.e., sgg2 =

Shift
(
gg2,

(
O1

0 ⊕ L2
0 ⊕Δ

)
, 0, 0

)
. Thus when the evaluator does

ShiftEval
(
sgg2, L2, 0, 0

)
= Eval

(
gg2, L2

a ⊕ (O1
0 ⊕ L2

0 ⊕Δ), R2
)
.
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If a = 0 we get the left input key for gg2 is L2
0⊕ (O1

0 ⊕L2
0⊕Δ) = O1

0 ⊕Δ = O1
1 and

similarly for a = 1 we get L2
1⊕ (O1

0 ⊕L2
0⊕Δ) = (L2

0 ⊕Δ)⊕O1
0 ⊕ (L2

0 ⊕Δ) = O1
0 .

Thus we clearly see that the bit represented by the left input key (along with the key
itself) for gg2 has been flipped.

Initialization
On input (init, ID,W ) from the adversary, with |ID| = μ, |W | ≤ κ and W ⊂ ID,
output ID to both A and B and let J = ∅. If A is honest, then W = ∅.

Commit
On input (commit, j ∈ ID,mj) with mj ∈ {0, 1}h from A, and where no value of
the form (j, ·) is stored, store (j,mj). If j ∈ ID \W , add J = {j} to J and associate
with J the equation Xj = mj . Then output (commit, j) to B.

Open
On input (open, J ⊂ ID) from A, where for all j ∈ J a pair (j,mj) is stored do the
following:

– If A is honest, output (open, J,⊕j∈Jmj) to B.
– If A is corrupted wait for A to input (corrupt-open, J,mJ ). Then add J to J ,

associate the equation ⊕j∈JXj = mJ to J , and check that the equation system
{⊕j∈JXj = mJ}J∈J has a solution. If so, output (open, J,mJ ) to B. Otherwise,
output Alice cheats to B and terminate.

Oblivious Opening
On input (OT-choose, otid, b) with b ∈ {0, 1} from B output (OT-choose, otid)
to A. On input (OT-open, otid, J0, J1) from A with J0, J1 ⊂ ID where for all j ∈
J0, J1 a pair (j,mj) is stored and (OT-choose, otid, ∗) was input before by B do the
following:

– If A is honest, output (OT-open, otid, Jb,⊕j∈Jbmj) to B (Note that B does not
learn the set of ids J1−b).

– If A is corrupted, wait for A to input (guess, g) with g ∈ {0, 1,⊥}. If g ∈ {0, 1}
and g �= b output Alice cheats to B and terminate. Otherwise, proceed to wait
for A to input (corrupt-open, J0, J1,mJ0 ,mJ1). Add Jb to J and associate
the equation ⊕j∈JbXj = mJb to Jb. Check that the equation system still has a
solution as described above. If so, output (OT-open, Jb,mJb) to B. Otherwise
output Alice cheats to B.

OR Open
For up to ω Or-Openings, that must all occur before the first Oblivious-Opening, do
the following: On input (OR-open, J0, J1, a) from A, with J0, J1 ⊂ ID, a ∈ {0, 1}
where for all j ∈ J0, J1 a pair (j,mj) is stored do the following:

– If A is honest, output (OR-open, J0, J1,⊕j∈Jamj) to B.
– If A is corrupted, and if Ja ∩ W �= ∅, wait for corrupt A to input

(corrupt-open, Ja, mJa), add Ja to J and associate ⊕j∈JaXj = mJa to Ja.
Check if the equation system still has a solution as described above. If so, output
(OR-open, J0, J1,mJa) to B. Otherwise output Alice cheats to B.

before the first Oblivious-Opening.

Fig. 2. The ideal functionality, FCOM, for the commitment scheme used by πLEGO

Homomorphic Commitments. To securely implement the soldering described above,
we cannot simply have (potentially malicious) A send the differences needed to shift
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the gates. Instead we will have A give homomorphic commitments to all zero-keys of
each gate, and then have her open the differences of the committed keys. Therefore we
need a homomorphic commitment scheme. In Fig. 2 we state the ideal functionality
FCOM for the homomorphic commitments that we implement in Section 4. As we are
now going to use this functionality to implementFSFE we will briefly recap the features
of this functionality.

The functionality allows A to commit to messages and to later reveal those mes-
sages. In addition the functionality allows to reveal the XOR of two or more committed
messages to B (without revealing any extra information).

The functionality is “insecure”, in the sense that A can choose a set of up to κ wild-
card commitments where she can change her mind about the committed value at open-
ing time. However, openings need to be consistent. More specifically, the FCOM func-
tionality stores a system of linear equations. Initially these equations simply specify
that non-wildcard commitments must be opened to the value, they were commitments
to. Every time A performs an opening involving wildcard commitments this defines
a new linear equation, which is stored in the ideal functionality. For an opening of a
wildcard commitment to be successful the set of linear equations stored in the ideal
functionality must be consistent.

If the set of equations stored in the ideal functionality restricts the opening of a
commitment in such a way that it can only be opened to one value, we say that the com-
mitment is fixed to that value. Note, that all non-wildcard commitments are fixed, and a
fixed wildcard commitment can essentially be viewed as a non-wildcard commitment.

As we are treating the commitments as an ideal functionality, we need to push into
the ideal functionalities two extra commands (in a way similar to the commit-and-prove
functionality in [3])): apart from the regular openings the functionality allows to open
(the XOR of) committed messages in two alternative ways: In an Oblivious-Opening,B
can choose between two sets of committed messages and learn the XOR of the messages
in one of them. In an Or-Opening we allow A to open the XOR of one out of two sets
of committed messages without revealing which one. For technical reasons there can
only be a total of ω Or-Openings and all Or-Openings must be done before the first
Oblivious-Opening. Also, note that there is a build-in selective failure attack in the
Oblivious-Opening. However, this is not a problem as we will only use this type of
opening to handle B’s input where, as discussed above, the FSFE functionality already
allows a selective failure attack.

Commitment from B to A. Additional to the FCOM functionality we are going to use
an extractable commitment Com. This commitment is used only once by B to commit
to his challenge in the cut-and-choose phase and extraction is needed for simulation (to
avoid selective opening issues). Since this commitment does not need to be homomor-
phic it can be easily implemented in the FOT-hybrid model.

3 The MiniLEGO Protocol

We now show how to use the ingredients outlined in the previous section in order to
construct the MiniLEGO protocol.
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We denote by C′ the Boolean circuit to be evaluated. We assume C′ to be composed
of NOT, XOR and AND gates. The XOR gates are allowed to have unbounded fan-in
while the AND gates have fan-in 2. With each AND gate in C′ we associate a unique
label and we let gates be the set of all these labels. A subset inputGates ⊂ gates of size
2� are specially marked as input gates. The AND gates in inputGates should be given
the same bit on both input wires, so that the gate simply computes the identity function.
A subset in Ainputs ⊂ inputGates of size � are taken to be A’s inputs. The remaining
� gates in Binputs = inputGates \ Ainputs are B’s inputs (for convenience assume that
Binputs = [�]). A has input bits (a1, . . . , a�), while B has input bits (b1, . . . , b�).

A subset outputGates ⊂ gates of size � are marked as output gates. The output of
these gates are taken to be the output of the circuit. Note that this means that all output
gates are AND gates. This is without loss of generality: a circuit with XOR gates as
output gates can be modified to an equivalent circuit with AND gates as output gates by
adding at most � AND gates. The � output bits are denoted (z1, . . . , z�).

The wiring of the circuit C′ is described by two functions lp, rp : gates\inputGates→
2gates∪{�}. We call lp(j) the left parents of j (resp. rp(j) the right parents of j), and
take the left (resp. right) input of j to be the XOR of the output bits of all gates in lp(j)
(resp. rp(j)). Thus, the XOR gates of C′ are implicitly defined by the lp and rp func-
tions. If the special symbol � is included in the set returned by lp, rp, this means that a
NOT gate is inserted between gate j and its parent gate (i.e., the input is XORed with
the constant 1). We assume that max(lp(j) ∪ rp(j)) < j for all j.

Garbled Circuit. Let Γ = 2ρs for s = |gates| and some replication factor ρ ∈ N. For
our protocol A will construct Γ garbled gates. She constructs twice as many garbled
gates as is needed to build the garbled circuit, because half the gates are going to be
checked during the cut-and-choose phase. We choose to check exactly half for the sake
of presentation but, as in [31], this could be changed to any fraction in order to optimize
concrete efficiency.
Bucket Notation. In the protocol individual garbled gates are combined together in
“buckets” of gates. We introduce here some convenient notation that allow us to ad-
dress the gates in a bucket, the bucket of a gate etc. Let B be the family of ρ-to-1,
ρ-wise independent functions from a set U ⊂ [Γ ] of size ρs to gates. For a func-
tion BucketOf ∈ B let Bucket be the function that, for all j ∈ gates outputs the set
{i ∈ U |BucketOf(i) = j}. Let BucketHead(j) be the function that returns the “first”
(in lexicographic order) element of Bucket(j).

There are Γ ′ = 3Γ + 1 keys in the protocol, because every constructed AND gate
has a left, right and output key and in addition there is a global difference Δ. The key
index is written as a superscript while subscripts are in {0, 1} and describe the value
carried by the key i.e., Ki

b = Ki ⊕ (bΔ). Let id be a function that on input a key
Kj

0 ∈ {0, 1}t returns a unique label for that key. We will sometimes abuse notation and

write id
(
Kj

1

)
to denote the set

{
id
(
Kj

0

)
, id (Δ)

}
. This will simplify the notation

when using the FCOM functionality.

Protocol Specification. The protocol πLEGO in Fig.s 3 and 4 progresses in six phases:
Setup, Garbling, Cut-and-choose, Soldering, Input and Evaluation. Here we
describe these phases one by one.
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During Setup, A or B initialize the FCOM functionality by calling (init, ID,W )
with ID = Γ ′ and |W | ≤ k. For the remainder of the protocol if FCOM outputs
Alice cheats , B will abort the protocol. Then A samples the global difference
Δ and commits to it using the commit command in FCOM. B samples his challenge
for the cut-and-choose phase and the BucketOf function as described above, and com-
mits to both using the extractable commitment Com. B also “commits” to his input
using the OT-choose command of the FCOM functionality. These commitments of
B’s are needed to avoid selective opening issues in the cut-and-choose phase and reduce
the security of the protocol to the IND-CIA game.

In Garbling, A constructs the candidate garbled gates (ggi)i∈[Γ ] and commits to the
input/output zero-keys of each garbled gate using FCOM.

In Cut-and-choose, B reveals his challenge. The challenge consists of a set of in-
dices T ⊂ [Γ ] of size ρs and a sequence of bits (ui, vi)i∈T , indicating that B wants to
test garbled gate ggi on input (ui, vi). A opens the corresponding input and output keys
for the test gates, allowing B to check for correctness. Note that B only tests one set of
inputs for each gate – otherwise he will learn Δ.

In the remainder of the protocol the garbled gates that are not checked in Cut-and-
choose, those with indices in U = [Γ ] \T , are used to build a garbled circuit according
to the following fault tolerant circuit design: With each gate j ∈ gates we associate a
bucket of ρ AND gates. To evaluate gate j we will evaluate each gate in the bucket of
j on the inputs given to j. If more than �ρ/2� of the gates in the bucket agree on their
output bit, we take this bit to be the output of j (otherwise the output is ⊥). Clearly if
there are more than �ρ/2� non-faulty gates in each bucket the output is correct.

To build such a garbled circuit the gates that were not checked (ggi)i∈U are put into
buckets using the BucketOf function. Then B uses the Shift function as described in
Section 2 to solder the wires of the garbled gates. Since A may be malicious we cannot
simply have her sent the XOR’s of zero-keys that B needs for soldering. Instead A
reveals the XOR’s by opening the corresponding commitments to the zero-keys.

The garbled circuit is constructed in Soldering in three different soldering steps: For
all j ∈ gates Horizontal Soldering solders all wires of all gates in (ggi)i∈Bucket(j)

to the corresponding wires of ggBucketHead(j). This allows to evaluate all the gates in
the same bucket on the same input keys and get the same output keys. I.e., if A is
honest, after the horizontal soldering all the gates in one bucket have exactly the same
keys. For all j ∈ gates Vertical Soldering solders the left input wire of ggBucketHead(j)

to the XOR of the output wires of
(
ggBucketHead(i)

)
i∈lp(j)

, and the right input wire of

ggBucketHead(j) to the XOR of the output wires of
(
ggBucketHead(i)

)
i∈rp(j)

(and we use

the convention O� = Δ to deal with NOT gates – note that Δ can be seen as the 1
key of a special wire with zero-key equal to 0t). Note that since Horizontal Soldering
made all garbled gates in a bucket have the same input keys, this essentially means
soldering all the gates in the bucket to the output wires of gates in (Bucket(i))i∈lp(j)

and (Bucket(i))i∈rp(j). I.e., vertical soldering is “functional”, in the sense that it ensures
that the garbled circuit computes the right circuit, C′. For all j ∈ inputGates Input
Soldering simply solders the left and right input wire of garbled gates in Bucket(j) to
each other, i.e., the gates in inputGates compute the identity function.
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Setup Choose ρ = O(k/ log(s)) and Γ = 2ρs where s = |gates| in C′. Let Γ ′ = 3Γ + 1
and proceed as follows:

1. A and B initialize a FCOM functionality by having either of them call
(init, ID,W ) with |ID| = Γ ′ and |W | ≤ k.

2. A samples Δ ∈R {0, 1}t and inputs (commit, id(Δ),Δ) to FCOM.
3. B samples a random T ⊂ [Γ ] of size ρs, and for all i ∈ T samples ui, vi ∈R {0, 1}.

Let U = [Γ ] \ T .
4. B samples BucketOf ∈ B as described in Section 2.
5. B sends CT = Com(T, (ui, vi)i∈T ,BucketOf, rT ) to A.
6. For each j ∈ Binputs, B inputs (OT-choose, j, bj) to FCOM.

Garbling
1. For all i ∈ [Γ ], A samples Li

0, R
i
0 ∈R {0, 1}t, computes

(
ggi, Oi

0

) ←
Yao

(
Li

0, R
i
0,Δ, i

)
and sends GG =

(
ggi

)
i∈[Γ ]

to B.

2. A inputs
(
commit, id

(
Li

0

)
, Li

0

)
,

(
commit, id

(
Ri

0

)
, Ri

0

)
and(

commit, id
(
Oi

0

)
, Oi

0

)
to FCOM.

Cut-and-choose
1. B sends T , (ui, vi)i∈T , BucketOf and randomness rT to A.
2. If this is not a valid opening of CT A aborts. Otherwise, for all i ∈ T A inputs to
FCOM

(
open, id

(
Li

ui

))
,
(
open, id

(
Ri

vi

))
,
(
open, id

(
Oi

ui∧vi

))
. Let L̂i, R̂i, Ôi

be the values output to B by FCOM.

3. B aborts if there is an i ∈ T so that Ôi �= Eval
(
ggi, L̂i, R̂i

)
.

Soldering
1. Horizontal Soldering: For all j ∈ gates, let h = BucketHead(j): For all i �= h ∈

Bucket(j) A inputs
(
open,

{
id
(
Lh

)
, id

(
Li

)})
,
(
open,

{
id
(
Rh

)
, id

(
Ri

)})
,

and
(
open,

{
id
(
Oh

)
, id

(
Oi

)})
to FCOM. Let Lid, Rid, Oid be the keys output

to B from FCOM and sggi = Shift
(
ggi, Lid, Rid, Oid

)
.

2. Vertical Soldering: For all j ∈ gates \ inputGates, let h = BucketHead(j):

A inputs

(
open,

{
id
(
Lh

)} ∪
{
id
(
OBucketHead(i)

)}

i∈lp(j)

)
and

(
open,

{
id
(
Rh

)} ∪
{
id
(
OBucketHead(i)

)}

i∈rp(j)

)
to FCOM. Let Lhd

, Rhd

be the keys output to B by FCOM and sggh = Shift
(
ggh, Lhd

, Rhd
, 0t

)
.

3. Input Soldering: For all j ∈ inputGates, let h = BucketHead(j): A inputs
(
open,

{
id
(
Lh

)
, id

(
Rh

)})
to FCOM. Let Rhd

be the key output to B by FCOM

and sggh = Shift
(
sggh, 0t, Rhd

, 0t
)

.

Fig. 3. The Protocol πLEGO implementing FSFE (Part 1)

In Input, for all j ∈ Ainputs A uses the Or-Opening of FCOM to open the input key
to the garbled gates in Bucket(j) corresponding to her input bit. For all j ∈ Binputs B
also learns the input key to the garbled gates in Bucket(j) corresponding to his input
bit, using the Oblivious-Opening.

Given the initial input keys in Evaluation B evaluates each bucket of garbled gates in
the following way: He evaluates each gate in the bucket on the left and right input keys
for that bucket. If a key appears more than �ρ/2� times as the output key of the garbled
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gates in the bucket, he takes this to be the output key of the bucket. If no such key exists
B aborts. Note that by the way we soldered the garbled circuit, this corresponds exactly
to the fault tolerant circuit we described above. Finally B provides A with the output
keys. Knowing Δ, A can decipher the output keys and obtain the output values.

Input
1. For all j ∈ Ainputs let h = BucketHead(j), A inputs(

OR-open, id
(
Lh

0

)
, id

(
Lh

1

)
, aj

)
to FCOM.

2. For all j ∈ Binputs let h = BucketHead(j), A inputs(
OT-open, j, id

(
Lh

0

)
, id

(
Lh

1

))
to FCOM.

3. In both cases let L̂h be the key output from FCOM to B. B computes a list of can-

didate keys Candj =
(
ShiftEval

(
sggi, L̂h, L̂h

))

i∈Bucket(j)
. If any key appears

more than ρ/2 times in Candj name it Ôj , otherwise B aborts.
Evaluate

1. For each gate j ∈ gates \ inputGates, B computes:
(a) Left and right keys L̂j =

⊕
l∈lp(j) Ô

l and R̂j =
⊕

l∈rp(j) Ô
l.

(b) The list of output keys Candj =
(
ShiftEval

(
sggi, L̂j , R̂j

))

i∈Bucket(j)
.

(c) If a key appears more than ρ/2 times in Candj name it Ôj and proceed, other-
wise abort.

2. For all j ∈ outputGates, B sends Ôj to A.
3. For all j ∈ outputGates, A outputs zj = 0 if Ôj = O

BucketHead(j)
0 , zj = 1 if

Ôj = O
BucketHead(j)
1 and aborts otherwise.

Fig. 4. The Protocol πLEGO implementing FSFE (Part 2)

Theorem 1. Let k be the security parameter, ρ = O(k/ log(s)). If (Yao,Eval) is an
IND-CIA secure Yao free-XOR garbling scheme then the protocol πLEGO in Fig.s 3 and
4 UC, active, static securely implements FSFE in the (FCOM)-hybrid model (initialized
with (init, ID,W ) for |ID| = 3Γ + 1 and |W | ≤ k).

Analysis. We sketch the idea of the proof. Details are in the full version. First consid-
ering a corrupted B and then considering a corrupted A.

Corrupted B. B does not receive any output nor has any real way of cheating in the
protocol (in the output phase, if B changes the output key in a way that makes A ac-
cept, then he must have guessed Δ, thus breaking the IND-CIA game). Essentially, we
only need to argue that his view does not leak any information, thanks to the IND-CIA
security of the garbling scheme. Note that in the protocol B starts by committing to his
input and challenge for the cut-and-choose phase. This allows the simulator S to ex-
tract all this information at the beginning of the simulation (and provide input on behalf
of corrupted B to the ideal functionality). Then we reduce the security of the proto-
col to the IND-CIA security of the garbling scheme: the simulator knows in fact T and
U before it sends the gates to B, therefore S will place honestly constructed gates in T
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(for which it knows the openings and therefore can easily simulate the cut-and-choose
test – remember that the simulator fully controlsFCOM) and the challenge garbled gates
from the IND-CIA game in U : that is, the simulator produces a view such that distin-
guishing between a real and a simulated execution is equivalent to winning the IND-CIA
game.

Corrupted A. Essentially, the proof of security boils down to proving correctness. By
the design of the garbled circuit, correctness follows when there is more than �ρ/2�
correct gates in each of the buckets.

The LEGO approach ensures that if A passes the cut-and-choose test, then with over-
whelming probability there are at most k faulty gates left in U . Those faulty gates are
then randomly assigned into buckets, and this means that with overwhelming proba-
bility each bucket will have a majority of correct gates. However, as opposed to [28]
where all commitments were binding, here we have also k wildcard commitments to
deal with. This is in problematic, as wildcard commitments can be opened to anything,
and we need make sure that this does not break correctness.

To be more specific we say that a garbled gate ggi is faulty if the commitments to
its input and output zero-keys are fixed to values Li

0, Ri
0 and Oi

0 respectively, and there
exists some a, b ∈ {0, 1} so that Eval

(
ggi, Li

a, R
i
b

)
does not output Oi

a∧b with over-
whelming probability. If a gate ggi has a wire where the commitment to the associated
zero-key is not fixed, then we say that this wire is faulty, and ggi has faulty wiring. We
say that ggi is fault free if it is neither faulty nor has faulty wiring. If a garbled gate
ggi is faulty, fault free or has faulty wiring, we say the same of any shifted gate sggi

resulting from shifting ggi.
Gates ggi with faulty wiring are problematic for the cut-and-choose test: If i ∈ T

A can choose to let ggi act as a fault free gate by opening the wildcard commitments
consistently with the actual zero-keys used to generate ggi. On the other hand, if i ∈ U
A can make sggi faulty by opening the commitment inconsistently in Soldering1.

In the full version we show that, with overwhelming probability, there will be a
majority of fault free gates in

(
ggi

)
i∈Bucket(j)

for all j ∈ gates. It is easy to verify that
this means that after Horizontal Soldering all commitments to zero-keys are fixed. I.e.,
the commitment to the zero-key of a faulty wire will be fixed to open as one specific
value. If this value is not consistent with the zero-keys used to generate the associated
garbled gate, then that gate becomes faulty.

Note however, that for all j ∈ gates all fault free shifted gates
(
sggi

)
i∈Bucket(j)

resulting from Horizontal Soldering will have identical input and output keys, as re-
quired of the garbled circuit, even if some gates in

(
ggi

)
i∈Bucket(j)

had faulty wiring.

I.e., the effect of a garbled gate ggi having faulty wiring is at worst that shifted gate
sggi after Soldering is faulty. Since we use a FCOM functionality with at most k wild-
card commitments we still have at most k faulty gates in Evaluation. Since these faulty
gates are placed in random buckets we can still guarantee correctness with overwhelm-
ing probability.

1 By inconsistently we mean inconsistent with the actual keys used for ggi, not inconsistent with
the equations stored in FCOM.
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Note that the faulty wires are also the reason for gate replication on the input layer,
to not let A change her or B’s input by using the wildcard commitments.

4 Commitments

In this section we present our novel construction of XOR-homomorphic commitment
based solely on OT. We also describe how to transform this general construction of
XOR-homomorphic commitments into the specific type we need in Fig.s 3 and 4.

The Ideal Functionality. We name our ideal functionality FWCOM and describe it in
Fig. 5. The functionality allows A to commit to up to μ messages and to later reveal
those messages. In addition the FWCOM allows to reveal the XOR of two or more com-
mitted messages to B (without revealing any extra information). In the context of Fig.s
3 and 4. this is the same as FCOM except without the methods for Oblivious Opening,
OR open and (which will become apparent later on) contains more wildcards than we
can handle in Fig.s 3 and 4.

We formalize FWCOM in the following way: First we let the adversary specify a set
of identifiers ID of size κ used to identify each of the μ commitments (for technical
reasons ID will be a subset of [2μ]). In addition the adversary gives a set W ⊂ ID,
of size at most κ, to identify the wildcard commitments. FWCOM stores a set of linear
equations on μ variables (Xi)i∈ID (one for each commitment). Initially this set is empty.
Each time A commits to a message mj using a non-wildcard commitment (i.e., j ∈
ID \W ) FWCOM will store the equation Xj = mj . For wildcard commitments no such
equation are stored when A makes the commitment. If A instructs FWCOM to open the
XOR of the set of commitments J ⊂ ID we let corrupted A input a message mJ ∈
{0, 1}t she wants to open to. The functionality then adds the equation

⊕
j∈J Xj = mJ

to the set of stored equations and checks that this set of equations has a solution, i.e.,
if there is an assignment of values in {0, 1}t to each variable Xj such that all equations
are satisfied. If so, the functionality permanently stores the equation

⊕
j∈J Xj = mJ

and opens the XOR of the set of commitments J as mJ . Otherwise, FWCOM will output
Alice cheats to B and terminate. Note that if J ∩W = ∅ then for all j ∈ J the
functionality has stored the equation Xj = mj , and therefore a corrupt A can only open
the commitment successfully if mJ =

⊕
j∈J mj . Note also that if, e.g., A has made

commitments i ∈ W and j ∈ ID \W , and opens the XOR of commitments i and j as
m′ then for all later openings A can only successfully open the wildcard commitment
i as m′

i = mj ⊕ m′. In these cases, when a commitment can only successfully be
opened to one value, we say that the commitment is fixed to that value. Non-wildcard
commitments are always fixed; when A opens the XOR of a wildcard commitments
and non-wildcard commitments, a wildcard commitment can become fixed. When a
wildcard commitment has been fixed it can essentially be viewed as a non-wildcard
commitment.

Notice that the terminology can become a little confusing because of the wildcard
commitments: when we say that A opens the XOR of some set of commitments J ⊂ ID
to a value mJ , then we cannot guarantee that mJ =

⊕
j∈J mj , when J ∩W �= ∅.
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Initialization: On input (init, ID,W ) with |ID| = μ, |W | ≤ κ and W ⊂ ID from the
adversary output ID to both parties and let J = ∅. If A is honest, then W = ∅.

Commit On input (commit, j ∈ ID,mj) with mj ∈ {0, 1}t from A, and where no value
of the form (j, ·) is stored, store (j,mj). If j ∈ ID\W , add J = {j} toJ and associate
with J the equation Xj = mj . Then output (commit, j) to B.

Open On input (open, J ⊂ ID) from A, where for all j ∈ J a pair (j,mj) is stored do:
– If A is honest, output (open, J,⊕j∈Jmj) to B.
– If A is corrupted wait for A to input (corrupt-open, J,mJ). Then add J to
J , associate the equation ⊕j∈JXj = mJ to J , and check that the equation system
{⊕j∈JXj = mJ}J∈J has a solutiona. If so, output (open, J,mJ ) to B. Otherwise,
output Alice cheats to B and terminate.

a I.e., there should be an assignment of values to the wildcard commitments such that all
stored openings can be explained by this assignment.

Fig. 5. The ideal functionality, FWCOM, for our basic commitment scheme consisting

Building blocks. Here we give the building blocks from which we implement FWCOM.

Oblivious Transfer. We use a
(
n
u

)
-Oblivious Transfer functionality with message strings

of length 2μ. We denote this functionality
(
n
u

)
-FOT(2μ). On input start from both A

and B the
(
n
u

)
-FOT(2μ) functionality picks n message strings S1, . . . , Sn ∈R {0, 1}μ,

a uniformly random set I ⊆ {1, . . . , n} with |I| = u and outputs (Si)i∈[n] to A and

(I, (Si)i∈I) to B. We can implement
(
n
u

)
-FOT(2μ) for any 2μ = poly(k) using a FOT

functionality and a pseudo random generator (prg), where k is the security parameter,
using the same technique as in [27]: Simply use the FOT(k) functionality to send seeds
to the prg and then use the prg to expand those seeds to 2μ bits. One can then construct
a
(
n
u

)
-FOT(2μ) functionality from

(
2
1

)FOT(2μ) e.g., as described in [25].

Error Correcting Codes. We also need an error correcting code (ECC), which encodes
an t-bit string as an n-bit string with minimal distance at least d using some φ-bits of
randomness. It should at the same time be a secret sharing scheme in that seeing u
random positions of a random codeword does not leak information on the message. We
denote this scheme by ssecct,n,d,u. We use enct,n,d,u to denote the encoding function
and we use dect,n,d,u to denote the decoding function. Both should be PPT and we drop
parameters for notational convenience. The code should have the following properties.

Error correction. For all m ∈ {0, 1}t, r ∈ {0, 1}φ and error vectors e ∈ {0, 1}n with
hw(e) < d/2 it holds that dec(enc(m; r) ⊕ e) = m, where hw is the Hamming
weight in {0, 1}n. We assume that dec(C) = ⊥whenC has distance more than d/2
to all codewords and we assume that there exists an efficient algorithm ncw (nearest
codeword) such that ncw(enc(m; r) ⊕ e) = enc(m; r) when hw(e) < d/2.

Privacy. There exists a PPT function xpl which can explain any codeword as being a
codeword of any message to anyone who knows at most u positions of the code-
word. Formally, for all I ⊂ [n], |I| = u and all m,m′ ∈ {0, 1}t the distributions
D0 and D1 described below are statistically close. The distribution D0 is generated
as follows: sample r ∈R {0, 1}φ, let c = enc(m; r) and output ((ci)i∈I ,m, r). The
distribution D1 is generated as follows: sample r′ ∈R {0, 1}φ, let c = enc (m′; r′),
sample r ← xpl(I,m′, r′,m) and output ((ci)i∈I ,m, r).
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Linearity. For all m,m′ ∈ {0, 1}t and r, r′ ∈ {0, 1}φ it holds that enc(m; r) ⊕
enc(m′; r′) = enc(m⊕m′; r ⊕ r′).

Note that Error correction implies that the minimal distance is at least d, i.e., for all
m �= m′ ∈ {0, 1}t and r, r′ ∈ {0, 1}φ, c = enc(m; r) and c′ = enc(m′; r′) it holds
that ham(c, c′) ≥ d where ham is the Hamming distance.

We further require of the parameters of ssecc that: n = Θ(k), u = Θ(n) and d =
Θ(n). I.e., both the privacy and minimum distance of ssecc must be a constant fraction
of the length of codewords, and the code should have constant rate. Codes that satisfy
the desired properties can be found in [4].

Protocol Specification. Here we describe the ideas behind the protocol πWCOM imple-
menting FWCOM described in Fig. 6.

Let v ∈ {0, 1}n and I = {i1, i2, . . . , iu} ⊆ [n]. We define the function wI :
{0, 1}n → {0, 1}u so that wI(v) = (vi1 , vi2 , . . . , viu) ∈ {0, 1}u, i.e., wI(v) is the
u-bit string consisting of the u bits in v indexed by I .

In the protocol a commitment to a message m is a one-time pad of m with some key
T . Clearly this is hiding but not binding. To make the commitment binding we allow the
receiver of the commitment (B) to learn wI(m) for some secret set I ⊆ [n]. We denote
wI(m) the watch bits of the commitment. To open the commitment to m A sends m′ to
B and B checks if wI(m

′) = wI(m). If this is not the case B rejects the opening.
The watch bits give some degree of binding since A can only open the commitment

to some message m′ �= m if wI(m
′) = wI(m). I.e., if u = |I| is large enough A can

only hope to change a few bits of m without getting caught. On the other hand the watch
bits clearly compromises the hiding property of the commitment. To avoid this we use
the code ssecc to encode the message m and commit to the encoded m instead. I.e., a
commitment to m becomes enc(m; r)⊕ T . By privacy of sseccm is now hidden.

The encoding additionally strengthens the binding of the commitment: codewords
c and c′ encoding to two different messages m and m′ must be different in many bit
positions. Thus for A to open a commitment to m to m′ none of these positions must
be in the watch bits.

More precisely let d = 2w + 1 be the minimum distance of ssecc for some w < n
2 .

Suppose a corrupt A gives the commitment, c ⊕ T . Note that when A is corrupt c does
not have to be a codeword. In that case we have that c = ncw(c) ⊕ e for some error
vector e ∈ {0, 1}n, and we say the commitment has hw(e) errors.

Regardless of the number of errors, consider what it takes for A to be able to open
this commitment to two different messages m′ and m′′, with codewords c′ and c′′ re-
spectively: for any two different codewords c′ and c′′ one of them has distance at least
w to c, say c′. In other words c′ has at least w bit positions different from c. If A tries
to open the commitment to m′, B only accepts the opening if none of these bit posi-
tions are in his u watch bits for the commitment. Thus for any commitment (possibly
with errors) the probability that a cheating A can open the commitment to two different
messages m′ and m′′ is at most

(
n− u

w

)(
n

w

)−1

=

w−1∏

i=0

n− u− i

s− i

w−1∏

i=0

w − i

n− i
=

w−1∏

i=0

n− u− i

n− i
=

w−1∏

i=0

1− u

n− i
.
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Assume that w = w′n and u = u′n for constants 0 < u′, w′ < 1, then the probability
of A breaking the binding property is at most

w−1∏

i=0

(
1− u

n− i

)
≤

w−1∏

i=0

(
1− u′n

n

)
= (1− u′)w

′n
.

Thus with k being the security parameter, n = Θ(k) and for any positive constants
u′, w′ with 0 < u′, w′ < 1, A will have negligible probability of breaking binding.

Notice, that while c′ will have distance at least w to c it could be that c′′ is much
closer to c. E.g., c′′ could be the nearest codeword to c. In this case, we have that, if
the commitment has very few errors, a cheating A could open the commitment to m′′

with noticeable probability (say, if the number of errors were constant in k). This is not
a problem since such a “slightly wrong” commitment can be seen as a commitment to
the message m′′ encoded by the nearest codeword c′′.

To get XOR-homomorphic commitments, more work has to be done. The problem
being that the XOR of several commitments with errors, may become a commitment
that breaks binding, even if the individual commitments only have a few errors. Con-
sider a number of commitments made with non-codewords ci with nearest codewords
c′i. The XOR the non-codewords c =

⊕
i ci may then be very far from the XOR of their

nearest codewords c′ =
⊕

i c
′
i. In fact c might be so far away from c′ that it gets very

close to some other codeword c′′. Hence the XOR of the commitments can be opened
to a message different from the XOR of the message associated with the individual
commitments. This would break the binding property.

To deal with this problem, the protocol initialization πWCOM starts by letting A com-
mit to 2μ random messages. We then do a cut-and-choose test to check that half of these
commitments can be opened correctly. IfA passes the test we have that, with overwhelm-
ing probability, the remaining commitments only have a few errors. Additionally, those
errors must be isolated to a few common bit positions. Thus the result of XOR’ing these
commitments will at most have a few errors, namely in these few positions.

Thus if A passes the cut-and-choose test we use the un-tested random commitments
to implement the actual commitments. The resulting commitment will have exactly the
same errors as the random commitment (if any).

Theorem 2. Let k be the security parameter and use a code with n = Θ(k), u = Θ(n),
d = Θ(n) and k < d/2 as, e.g., given by [4]. Then the protocol in Fig. 6 UC, active,
static securely implementsFWCOM in the

((
n
u

)
-FOT(2μ)

)
-hybrid model when initialized

on (init, ID,W ) with |ID| = μ and |W | ≤ nk + k.

Analysis. Simulating when no party is corrupted or both parties are corrupted is straight
forward. Simulating when B is corrupted is also quite simple, and can be done using
standard techniques from simulation in secure multi-party computation based on secret
sharing. Thus we will only sketch the proof for corrupted B, and focus on the case of
corrupted A.

Corrupted B. The simulator commits to 0t in all commitments. When asked to open
such a commitment Uj to a given mj ∈ {0, 1}t it uses the efficient algorithm xpl
to explain the commitment as Uj = enc(xj ; rj) ⊕ Tj for xj = yj ⊕ mj . The only
non-trivial detail is that if the simulator is asked to open a commitment, where the
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Setup To set up the scheme A and B run the following.
1. A and B run a

(
n
u

)
-FOT(2μ) functionality and get as output (Ri)i∈[n] and

(I, (Ri)i∈I) respectively where R1, . . . , Rn ∈R {0, 1}2μ and I is a uniformly ran-
dom subset of [n] with |I | = u.

2. A lets R ∈ {0, 1}n×2μ be the matrix with Ri as the i’th row and lets Tj ∈ {0, 1}n
be the j’th column of Ra.

3. A for j = 1, . . . , 2μ, samples xj ∈R {0, 1}t, rj ∈R {0, 1}φ and sends the commit-
ment cj = (enc(xj; rj)⊕ Tj , j). Let cj = (Uj , j) the value received by B.

4. B sends a uniformly random subset C ⊂ [2μ]. This also defines ID = C̄.
5. For j ∈ C, A opens cj by sending oj = (xj , rj , j).
6. For j ∈ C, B receives (x′

j , r
′
j , j) and checks that wI

(
enc

(
x′
j ; r

′
j

))
= wI(Uj) ⊕

wI(Tj), if not B terminates the protocol.
Commit To commit to mj for j ∈ ID A sends (yj , j) to B where yj is the correction value

yj = xj ⊕mj .
Open To open the XOR of commitments J ⊂ ID the parties do the following.

1. For j ∈ J , let cj = (enc(xj ; rj)⊕ Tj , j) be the commitments sent in initialization
and yj the value sent during commitment. A computes the opening of

⊕
j∈J mj as

oJ =
(⊕

j∈J xj ,
⊕

j∈J rj , J
)

, and sends it to B.

2. If an opening of J was done previously, B uses the previous mJ , otherwise he
proceeds as follows: Let cj = (Uj , j) be the commitments received during Setup.
B accepts oJ = (xJ , rJ , J) iff

wI(enc(xJ ; rJ )) = wI

(
⊕

j∈J

Uj

)

⊕ wI

(
⊕

j∈J

Tj

)

, where

wI

(
⊕

j∈J

Uj

)

=
⊕

j∈J

wI(Uj) and wI

(
⊕

j∈J

Tj

)

=
⊕

j∈J

wI(Tj) .

If B accepts he outputs xJ ⊕ yJ , where yJ =
⊕

j∈J yj . Otherwise, B rejects the
opening and terminates the protocol.

a Notice B can use (Ri)i∈I to compute wI(Tj) for all j ∈ [2μ].

Fig. 6. The protocol πWCOM implementing FWCOM

value of the opening follows from previous openings (i.e., using some linear equation),
it computes the opening as a linear combination of the previous simulated openings.
As an example, if the simulator opened Uj as Uj = enc(xj ; rj)⊕ Tj and opened Ui as
Ui = enc(yi; ri)⊕Ti. Then it will open Uj⊕Ui as Uj = enc(xj⊕xi; rj⊕ri)⊕Tj⊕Ti.
Corrupted A. Intuition of the proof when A is corrupted is that the cut-and-choose test
will catch A if there are many indices i for which there exists a commitment that has an
error in position i. This is because if the errors of the commitments are very spread out,
with high probability, many of them will be in the watch bits positions. As mentioned
above, this means that almost all errors must be isolated in a few positions. Therefore
XOR’s of commitments will also have errors only in these position, so the XOR’s will
also be close to their “correct” codeword. The formal proof is complicated by the fact
that a few commitments with many errors, or errors outside isolated few positions, may
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pass the cut-and-choose. These commitments will be the wildcards. It can be shown
that not even a commitment with many errors can be opened to two different values,
as it would give a codeword encoding a non-zero value which is 0 in all the watch
bits, which happens with negligible probability by the watch bits being random and the
minimal distance high. This translates into it being impossible to make any combination
of openings of linear equations yielding inconsistent outputs.

Completing the Construction. There is a gap between the ideal functionalityFWCOM that
we just implemented and the functionalityFCOM used in the protocolπLEGO. The gap can
be closed using standard techniques, as sketched now. There are many more details on
this in the full version. We can reduce the number of wildcard commitments by opening
random pairs of commitments and discarding one of the commitments. This fixes any
wildcard commitment not lucky enough to be paired with another wildcard commitment.
We can implement Oblivious Opening by sending both openings through an oblivious
transfer: note that we allow selective errors in the ideal functionality, so it is not an issue
that the adversary can send one correct and one incorrect opening. Finally, we can imple-
ment OR Open using a standard technique where the committer commits to many pairs
of values, each pair being a random permutation of the values in the two commitments
of which he wants to open one. Then for each pair he is randomly challenged by the re-
ceiver to either uses the XOR homomorphism to show that the correct two messages were
committed, or to open one of the two commitments to the claimed value.
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