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MINIMA IN BRANCHING RANDOM WALKS

BY LOUIGI ADDARIO-BERRY1 AND BRUCE REED

Université de Montréal, and McGill University and INRIA

Given a branching random walk, let Mn be the minimum position of
any member of the nth generation. We calculate EMn to within O(1) and
prove exponential tail bounds for P{|Mn − EMn| > x}, under quite general
conditions on the branching random walk. In particular, together with work
by Bramson [Z. Wahrsch. Verw. Gebiete 45 (1978) 89–108], our results fully
characterize the possible behavior of EMn when the branching random walk
has bounded branching and step size.

1. Introduction. The object of study in this paper is a supercritical branch-
ing random walk (or tree-indexed random walk)—which we view as a Galton–
Watson tree T with root r and offspring distribution B , each of whose edges e has
been augmented (or labeled) with an independent copy Xe of a random variable X

(which we call the step size). For the formal details of a probabilistic construction
of branching random walks, see, for example, Harris [23]. When X is nonnegative,
this is often called an age-dependent branching process.

We assign to each node v of T the “displacement” (or label) Sv which is the
sum of the edge labels on the path from r to v. The depth of a node v ∈ T is the
number of edges on the path from r to v. One of the most well-studied parameters
associated with branching random walks is the minimum after n steps, that is,
the minimum value of Sv over all nodes v having depth n in T ; we denote this
quantity Mn. When X is nonnegative, Mn may be viewed as the time at which the
first element of the nth generation is born. For several special choices of branching
random walk, Mn also turns out to be closely linked to the performance of data
structures that arise in computer science; this connection is explored in depth by
Devroye [18].

The starting point for our research is the Biggins–Hammersley–Kingman theo-
rem, which provides a law of large numbers for the minimum displacement Mn of
a branching random walk after n steps. (We set Mn = ∞ if the process does not
survive for n generations.) In a sequence of papers, each building on the results
of the last, Hammersley [22], Kingman [25] and Biggins [6] showed that under
suitable conditions on the exponential moment of X, there is a finite constant γ

such that, conditional on the survival of the branching process,

Mn/n → γ almost surely.
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When Hammersley initiated this research into the first-order behavior of Mn, he
posed several questions to which complete answers remain unknown. In particular,
he asked when more detailed information about Mn − γ n than that given by the
above law of large numbers can be found, about the expectation of Mn, and about
whether the higher centralized moments of Mn (and particularly the variance) are
bounded. Our goal in this paper is to provide answers to Hammersley’s questions
for a broad range of branching random walks. Before we state our results, however,
we briefly discuss some previous work on this and related problems.

In a remarkable paper, Bramson [7] derived extremely precise information about
the maximum displacement of branching Brownian motion. In this model, an ini-
tial particle starts at position 0 on the real line and begins a standard Brownian
motion with variance 1. The particle decays according to an exponential mean 1
clock; when the clock goes off, the particle splits into two, each of which continues
an independent Brownian motion and each of which independently decays accord-
ing to an exponential mean 1 clock. This process is continued forever. Bramson
studied the maximum displacement Mbr

t of any particle after time t (of course,
his results apply immediately to the minimum, by symmetry). He showed that the
median mbr

t of Mbr
t satisfies

mbr
t = √

2t − 3 log t

2
+ c + o(1),(1)

where c is a fixed constant, and additionally showed that Mbr
t − mbr

t converges in
distribution. (In this paper, by log we always mean the natural logarithm.) It is
worth noting that Lifshits [26] has apparently (see Hu and Shi [24]) provided an
example of a branching random walk for which Mn minus its median is tight but
does not converge in distribution, so in general a result as strong as Bramson’s will
not hold in the branching random walk setting.

Since Bramson’s work, it has been expected that for at least some branching ran-
dom walks, the median mn of Mn should exhibit similar behavior. However, such
results have been slow in coming. McDiarmid [27] proved (among other results)
that for a wide class of branching random walks, Mn − γ n = O(logn) almost
surely. Bachmann [3, 4] studied the tightness of the family {Mn − mn :n ∈ N},
where mn is the median of Mn, showing that the aforementioned family is tight
when X has logarithmically concave distribution function. (We have not stated all
the conditions on X and B required for his result.) More recently, Bramson and
Zeitouni [9, 10] also proved tightness of the family {Mn − mn :n ∈ N}, under a
strong local condition on the lower tail of X.

In the course of studying the height of random binary search trees (RBSTs),
Reed [28] proved that for a branching random walk with deterministic binary
branching and exponential mean 1 step size, there exist explicit constants α > 0,
β > 0 such that

mn = αn + β logn + O(1),(2)
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the first such result for any branching random walk; Reed additionally proved ex-
ponential tail bounds for P{|Mn − mn| > x}. We remark that the difference in sign
of the logarithmic terms in (1) and (2) is because the former equation bounds
a maximum, whereas the latter equation bounds a minimum. Drmota [21] has
also published an alternative proof of Reed’s result, using completely different
techniques. Chauvin and Drmota [13] have since extended Drmota’s techniques
to show exponential tail bounds for Mn around mn when (among other condi-
tions) the step size X satisfies what they call an intersection property. In particular,
their result implies that such tail bounds hold when X has logarithmically concave
distribution function. In a series of papers, Broutin and Devroye [11], Broutin,
Devroye and McLeish [12] have recently extended the Hammersley–Kingman–
Biggins theorem to a wide range of branching random walks in which dependency
is allowed among the steps and in which the “cutoff” at which the minimum is
measured is not deterministically n, but is determined by a second family of ran-
dom variables coexisting on the edges of the Galton–Watson tree T .

The results and techniques of Bramson [7] and Reed [28], in particular, serve
as guidance and inspiration for the work of this paper. For our approach, the as-
ymptotic behavior of Mn and of its median mn are best characterized in terms of
the behavior of the logarithmic moment generating function (LMGF) �. For a real
random variable X, we define the LMGF � = �X of X by

�(t) = �X(t) = log E{etX}.
To better understand the utility of the function � in studying Mn, we first recall
Chernoff’s bounding technique: if Sn = ∑n

i=1 Xi is a sum of n independent copies
of X, then for any c ∈ R and u > 0, by using Markov’s inequality we have

P{Sn ≤ cn} = P{e−uSn > e−ucn} ≤ E{e−uSn}
e−ucn

= [
E

{
e−u(X−c)}]n,

so

P{Sn ≤ cn} ≤
[

inf
u>0

E
{
eu(X−c)}]n

.(3)

If there is u such that E{eu(X−c)} < (EB)−1 (where B is the branching distribution)
then it follows that P{Sn ≤ cn} ≤ (EB)−n, and it is fairly easy to show, using this
fact and straightforward bounds on the growth of T , that lim infn→∞ Mn/n > c.
(To show that in this case limn→∞ Mn/n actually exists and to determine the limit
takes more work.)

The optimal choice for u in (3) is that for which �′(u) = c, as may be informally
seen by differentiating E{eu(X−c)} with respect to u. Choosing u in this fashion,
and writing �′(u) in place of c, gives the bound

P{Sn ≤ �′(u)n} ≤ [
E{euX} · e−u�′(u)]n = e−n(u�′(u)−�(u)).(4)
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It turns out that the upper bound given by (4) is almost tight; this is the substance of
the “exact asymptotics for large deviations” first proved by Bahadur and Rao [5],
and is the reason that the behavior of � is key to our investigation. As our proof
leans strongly upon the exact asymptotics for large deviations, we now take the
time to formally introduce this result.

Given X, Sn and � as above, let D� be the set of values t for which �(t) is
finite, and let Do

� be the interior of D�. We say X is a lattice random variable with
period p > 0 if there is a constant x such that (X − x)/p is almost surely integer-
valued, and p is the largest real number for which this holds. We now state the
asymptotic estimates for large deviations as they appear in Dembo and Zeitouni
[17] (as Theorem 3.7.4):

THEOREM 1 (Bahadur and Rao [5]). Let S = {Sn}n∈N be a random walk with
step size X, and define � and Do

� as above. Choose any t ∈ Do
� with t < 0 and

any function g(n) tending to plus infinity with n; then if X is nonlattice then for
any a ∈ R with a ≤ √

n/g(n),

P{Sn ≤ �′(t)n − a} = (
1 + o(1)

) · eat−n(t�′(t)−�(t))

√
�′′(t) · 2πn

,(5)

uniformly over a in the above range. Furthermore, if X is a lattice random vari-
able with period p, then for any a which is a multiple of 1/p and for which
a ≤ √

n/g(n), the same result holds.

In fact, this theorem is stated with a constant in [17], but the proof in that book
yields without modification the above formulation. Theorem 1 contains two cases:
the values of a for which (5) holds depend on whether X is lattice or nonlattice.
Technically, this fact necessitates a case analysis in our proof, but as the two cases
are virtually identical, we do not bother with both of them. For the remainder of
the paper, we assume that the step size X is nonlattice.

We will shortly have use of the following corollary of Theorem 1. Let f (t) =
t�′(t) − �(t).

COROLLARY 2. For 0 ≥ t ∈ D0
�, f (t) is infinitely differentiable and strictly

decreasing. Furthermore, if X is bounded from below then

lim
t→−∞f (t) = log(1/P{X = ess infX})

(where we interpret the right-hand side as ∞ if P{X = ess infX} = 0).

PROOF. The facts that f (t) infinitely differentiable in D0
� and is strictly de-

creasing when t ≤ 0 follow from Dembo and Zeitouni [17], Lemma 2.2.5 and
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Exercise 2.2.24. To prove the second assertion, first assume without loss of gener-
ality that ess infX = 0. Next note that �′(t) = E{XetX}/E{etX} > 0 for all t 	= 0.
In particular, for all t < 0, by Theorem 1 we thus have

P{X = 0}n ≤ P{Sn ≤ �′(t)n} = (
1 + o(1)

) e−nf (t)

√
�′′(t) · 2πn

,

so we must have f (t) ≤ log(1/P{X = 0}). As t < 0 was arbitrary it follows that
limt→−∞ f (t) ≤ log(1/P{X = 0}).

To see that in fact equality holds, we first show that limt→−∞ �′(t) = 0. Note
that for any fixed ε > 0 and t < 0, EetX ≥ etε/3P{X < ε/3} and E{etX/21[X≥ε]} ≤
etε/2P{X ≥ ε}, so

E{etX/21[X≥ε]}
EetX

≤ etε/6 P{X ≥ ε}
P{X < ε/3} → 0,(6)

as t → −∞. Next, given ε as above, for all sufficiently large negative t and all
x ≥ ε we have xetx ≤ εetx/2, so

E{XetX} = E
{
XetX1[X<ε]

} + E
{
XetX1[X≥ε]

}
≤ ε

(
E

{
etX1[X<ε]

} + E
{
etX/21[X≥ε]

})
.

It follows that for such t ,

E{XetX}
EetX

≤ ε

(
1 + E{etX/21[X≥ε]}

EetX

)
→ ε

as t → −∞, by (6). Since ε > 0 was arbitrary it follows that

lim
t→−∞�′(t) = lim

t→−∞
E{XetX}

EetX
= 0,

as claimed. Now fix N ∈ N>0, and small δ > 0, let ε = δ/N and let tε < tδ < 0 be
chosen so that �′(tδ) = δ, �′(tε) = ε [such choices of tε and tδ exist for δ small
enough since �′(t) > 0 for all t 	= 0 and limt→−∞ �′(t) = 0]. Then for any t ≤ tε ,
f (t) ≤ f (tε). Furthermore, if we are to have Sn ≤ εn then at most n/N of the Xi

can satisfy Xi > δ. Letting pδ = P{X ≤ δ}, it follows that

(
1 + o(1)

) e−nf (tε)√
�′′(tε)·2πn

= P{Sn ≤ εn} ≤ P
{

Bin(n,pδ) ≥ n

(
1 − 1

N

)}
,

so

lim
t→−∞f (t) ≥ f (tε) ≥ 1

n
log

(
1/P{Bin(n,pδ) ≥ n(1 − 1/N)}).

Since δ > 0 and N ∈ N were arbitrary and limδ→0 pδ = P{X = 0}, it then follows
by standard binomial estimates that

lim
t→−∞f (t) ≥ log(1/P{X = 0}). �
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Using the above exact asymptotics, it turns out that one can prove an analogue
of Bramson’s result for a wide range of branching random walks. The primary
result of this paper is:

THEOREM 3. Consider a supercritical branching random walk with branch-
ing distribution B and nonconstant step size X, and suppose that the following
conditions hold:

(I) there exists an integer d ≥ 2 such that P{B ≤ d} = 1;
(II) there exists a real number u > 0 such that EeuX < ∞; and
(III) there exists t ∈ Do

�, t < 0, such that t�′(t) − �(t) = log(EB).

Let S be the event that the branching random walk survives. Then

E{Mn|S} = �′(t)n − 3

2t
logn + O(1),(7)

and there exist constants C > 0, δ > 0 depending only on X, such that for all
x ∈ R,

P
{|Mn − E{Mn|S}| ≥ x|S} ≤ Ce−δx.(8)

A brief discussion of the conditions appearing in Theorem 3 are in order.
Conditions (II) and (III) control the positive and negative exponential moments
of X, respectively. Condition (III) is perhaps the least intuitive. For example,
if X is bounded from below, then by Corollary 2, (III) simply requires that
P{X = ess infX} < 1/EB . Together with a result of Bramson [8], this shows that
condition (III) can not be removed. In particular, Bramson [8] has shown that if X

is bounded from below and P{X = ess infX} = 1
EB

, then EMn = (ess infX) · n +
O(log logn) (Dekking and Host [16] contains further information about behavior
of Mn in this case). The following theorem highlights another situation in which
EMn does not have the form αn + β logn + O(1):

THEOREM 4. Given a supercritical branching random walk satisfying con-
ditions (I) and (II), above, if X is bounded from below and additionally P{X =
ess infX} > 1/EB , then

E{Mn|S} = (ess infX) · n + O(1)

and there exist constants C′ > 0, δ′ > 0 depending only on X such that for all
x > 0, P{Mn > (ess infX) · n + x|S} ≤ C′e−δ′x .

Theorem 4 is not particularly difficult. It may be proved using the techniques
developed by Hammersley, Kingman and Biggins in the course of proving the
Hammersley–Kingman–Biggins theorem, and is also essentially contained within
Dekking and Host [16]. We provide a proof that allows us to highlight, in a sim-
plified setting, a technique we later use in proving Theorem 3. We remark that
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together with the aforementioned result of Bramson [8], Theorems 3 and 4 com-
pletely determine the possible behavior of Mn in the case that X is bounded from
below.

If X is not bounded from below, then condition (III) essentially imposes that
the left tail of X decays “sufficiently” (and in particular, at least exponentially)
quickly. In particular, if X is not bounded from below and all exponential moments
(X − EX)− are finite, then (III) will hold.

Condition (II) is essentially necessary for our result to hold; in general, a re-
laxation of condition (II) may require a corresponding relaxation of the upper tail
bound in (8). In particular, it may be the case that

P{the root r has exactly one child|S} > 0,

in which case it is not hard to see that the upper tail of Mn can decay no more
quickly than the upper tail of X.

Condition (I) is a requirement imposed by our particular use of the second mo-
ment method in the course of the proof. Independently of the current work, Hu and
Shi [24] have shown that assuming bounded step size, assuming that (III) holds and
that E{B1+ε} < ∞ for some ε > 0, then (Mn − �′(n))/ logn → (−3/2t) in prob-
ability on S but that, surprisingly, (Mn − �′(n))/ logn does not converge almost
surely. It seems very likely, particularly in view of the former result, that condi-
tion (I) should not be necessary for the results of Theorem 3 to hold. However, we
would expect different behavior in the case EB = ∞.

REMARK 1. Condition (III) allows us to apply Theorem 1 to obtain precise
estimates for tail probabilities. However, there are certain situations in which such
estimates are available without recourse to Theorem 1, for example, by direct com-
putation. The key properties we require are the following: there exist constants
c ∈ R and a, a′ > 0 such that

P{Sn ≤ cn − x} = 	(e−ax · EB−n · n−1/2),

uniformly over all x = o(
√

n), and P{Sn ≤ cn − x} = O(e−a′x · EB−n) for all
x > 0. Whenever X satisfies these properties [and still assuming that (I) and (II)
hold], we obtain an analogue of Theorem 3. More precisely, letting x∗ = x∗(n)

solve e−ax∗ · n−1/2 = n, Theorem 3 holds (and with an identical proof) if we
replace (7) by the conclusion that E{Mn|S} = cn + x∗ + O(1). (The reason for
this choice of x∗ will become clear over the course of the paper.) In particular, if
X = − log(U) where U is from the family of Beta distributions, such estimates
are available by direct computation; this case is of particular interest due to its link
with a variety of search trees arising in computer science (see, e.g., Chauvin and
Drmota [13], Devroye [19], Drmota [21], Reed [28]).
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1.1. Our approach. We observe that it clearly suffices to prove Theorem 3
when EX = 0, and we shall hereafter assume this is the case. To begin to describe
our approach, we observe that for �(EB)n� independent random walks with step
size X, the expected minimum value EM ind

n of any node w at depth n in this “forest
of random walks” is within O(1) of the smallest m for which

E
{|{nodes w at depth n such that Sw ≤ m}|} ≥ 1.

In other words, EM ind
n is within O(1) of inf{m : P{Sw ≤ m} ≥ 1/�(EB)n�}, a value

we can easily derive to within O(1) using Theorem 1. To get an idea why this is
the case, choose t ∈ Do

�, t < 0, and such that t�′(t)−�(t) = log EB . For any real
number a which is o(

√
n), by Theorem 1 and a union bound we have

P{M ind
n ≤ �′(t)n − a} ≤ (

1 + o(1)
)�(EB)n� · eat−n(t�′(t)−�(t))

√
�′′(t) · 2πn

= (
1 + o(1)

)�(EB)n�
(EB)n

eat

√
�′′(t) · 2πn

= eat−(logn)/2−O(1),

so P{M ind
n ≤ �′(t)n − a} is exponentially small in ((logn)/2t − a) when a =

o(
√

n) and a > 0. Similarly, if M ind
n > �′(t)n − a then each of the �(EB)n� ran-

dom walks S must have Sn ≥ �′(t)n − a. By the independence of the random
walks and by Theorem 1, we have

P{M ind
n > �′(t)n − a} = (

1 − P{Sn ≤ �′(t) − a})�(EB)n�

=
(

1 − (
1 + o(1)

)eat−(logn)/2−O(1)

(EB)n

)�(EB)n�

≤ exp
{−(

1 + o(1)
)
eat−(logn)/2−O(1)},

so P{M ind
n ≥ �′(t)n − a} is doubly exponentially small in (a − (logn)/2t) when

a = o(
√

n) and a < 0. These inequalities do not quite yield a bound on EM ind
n , but

they do show that an extremely high proportion of the probability mass of M ind
n lies

near �′(t)n + (logn)/2t , and by combining these bounds with a Chernoff bound
for the lower tail of M ind

n , it is not hard to show that in fact

E{M ind
n } = �′(t)n − logn

2t
+ O(1).

We denote by m∗ = m∗
n the quantity �′(t)n− logn/2t , and call m∗ the breakpoint.

Whenever we write m∗ without subscript we always mean m∗
n. By linearity of

expectation, it follows easily from Theorem 1 that in the branching random walk,

E
{|{w at depth n :Sw ≤ m}|}  1 when m − m∗  1,

E
{|{w at depth n :Sw ≤ m}|} � 1 when m∗ − m  1.



1052 L. ADDARIO-BERRY AND B. REED

Intuitively, then, the equation (7) can be understood by splitting the term
(3/2t) logn into two pieces and writing

E{Mn|S} = m∗ − logn

t
+ O(1);(9)

the term (logn)/t must then be explained by the dependence in the branching
random walk model. The bulk of the work of this paper is in understanding and
explaining why this dependence should contribute a term of just this form.

At a high level, to explain this term, we shall apply the second moment method
to bound the number of certain “special” nodes of T . We will introduce a notion
of “goodness” of nodes; whether or not a node v is good will depend only on the
shape of the random walk from r to v. We shall study the properties of the good
subset G of the nodes of T at depth n, first showing that |G| is tightly concentrated
around its mean, and then, with some additional work, showing that EMn is in
fact within O(1) of infm E{|{w ∈ G :Sw ≤ m}|} ≥ 1. To begin to make this more
concrete, we first explain the key property that “good” nodes will satisfy.

1.2. Leading nodes. Given exchangeable random variables X1, . . . ,Xn with
associated partial sums S1, . . . , Sn, we say that Sn is leading (or that S is leading
after n steps) if

Si ≥ E{Si |Sn} for all i = 1, . . . , n;(10)

equivalently, if Si ≥ Sn · (i/n) for all i = 1, . . . , n. (This terminology was intro-
duced by McDiarmid [27].) Similarly, we say that Sn is strictly leading if the in-
equality in (10) is strict for all i = 1, . . . , n. Given a node v at depth n in T , we say
that v is a leading (resp. strictly leading) node if the random walk from the root
to v is leading (resp. strictly leading).

The intuition for why leading nodes are useful may be gleaned from exam-
ples (A) and (C) of the preceding section. If a node v at depth n is leading, then
knowing that Sv ≤ m does not increase the expected number of nodes w at depth n

with Sw ≤ m by too much. This fact allows us to use the second moment method
(i.e., some variant of Chebyshev’s inequality) to bound from below the probability
that some such node exists when the expected number of such nodes is 
(1). (This
line of argument via Chebyshev’s inequality is quite common in combinatorial set-
tings; see, for example, Alon and Spencer [1], Chapter 4.)

It turns out that E{Mn} is within O(1) of the smallest value mn for which the ex-
pected number of leading vertices v at depth n with Sv < mn is at least 1. Though
it may not be immediately obvious, the assertion of the previous sentence is in fact
equivalent to (7); we now explain this equivalence.

To bound the probability that a vertex is leading, we use a classic combinatorial
technique introduced by Andersen [2] (and first used in the context of branching
random walk by Devroye and Reed [20]), that we call a rotation argument, which
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involves considering cyclic permutations of the random variables X1, . . . ,Xn; we
will explain this approach in more detail in Section 3.

By this method, we will straightforwardly be able to show that for all v ∈ Nn

and for values m ≤ EMn that are not too far from the breakpoint m∗,

P{Sv ≤ m and v is a leading node} = 	

(
P{Sv ≤ m}

n

)
.(11)

(We shall make this more formal in Section 3.) It follows that for such m,

E
{|{v ∈ Nn,Sv ≤ m,v is leading}|} = 	

(
E{|{v ∈ Nn,Sv ≤ m}|}

n

)
(12)

= 	

(
(EB)n

n
· P{Sv ≤ m}

)
,

so we are in fact asserting that EMn is within O(1) of the smallest value m for
which, for nodes v at depth n in T , P{Sv ≤ m} ≥ (EB)n/n. It follows immediately
by Theorem 1 that m is within O(1) of m∗ + (logn)/t , in accordance with (7)
and (9). We may then view the term (logn)/t as the correction required in order
to find a leading node. One of the key steps in proving Theorem 3 will be to
understand the shape of random walks that end in leading nodes, and in particular
how much time such walks spend near their (conditional) means.

1.3. A little notation and a basic fact. Let Tn be the subtree of T consisting
of all nodes of depth at most n. We may view Tn as a subtree of a rooted, labeled
d-ary tree T ′

n with n levels and with root r , in the following manner. For a given
node v of T ′

n with children w1, . . . ,wd , let Bv be a copy of the offspring random
variable B , and let Xv,1, . . . ,Xv,Bv be independent copies of X. Let σv be a uni-
formly random permutation of {1, . . . , d}; we assign label Xv,i to edge vwσv(i) for
1 ≤ i ≤ Bv and assign label ∞ to edge vwσv(i) for Bv < i ≤ d . (This permutation
gives the model a useful symmetry property that will be explained shortly.) We
repeat this procedure for all nodes of T ′

n, and label each node v with the sum Sv of
all edge labels on the path from r to v (setting Sv = ∞ if any of these labels are
infinite). With this labeling, the subtree of T ′

n induced by nodes v with Sv < ∞ is
distributed precisely as Tn, and we hereafter view Tn = Tn(T

′
n) as a subtree of such

a d-ary tree T ′
n.

For 1 ≤ i ≤ n and for any m ∈ R, let Ni (resp. N ′
i ) be the set of nodes of Tn

(resp. T ′
n) at depth i, and let Ni,m be those nodes v in Ni with Sv ≤ m. To each

v ∈ T ′
n we assign a label Sv that is the sum of the edge labels Xe on the path from r

to v—so it is possible that Sv = ∞ for some nodes v. We observe that for any
integer m ≥ 0, Mn is the smallest m ≤ +∞ for which Nn,m 	= ∅.

For the sake of our analysis, it will be useful to fix a distinguished path P in
T ′

n with nodes r = v0, v1, . . . , vn (it may be useful to think of this path as running
“along the left-hand side” of T ′

n). Each node vi has one child vi+1 = v
(0)
i+1 in P —

let its other children be called v
(1)
i+1, . . . , v

(d−1)
i+1 . Denote by T i,j the subtree of T ′

n
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rooted at v
(j)
i . Let T

i,j
n = T i,j ∩ Tn (which may be empty), and let N

i,j
n,m be the set

of nodes of Nn,m that are contained in T
i,j
n .

Given an automorphism α(T ′
n) of T ′

n, we may view α as acting on the labels
Xv,i and on the permutations σv , by viewing the permutations σv as fixed to the
nodes of T ′

n, the labels Xv,i as fixed to the edges of T ′
n, and both as being moved

by the automorphism a. The presence of the permutations σv ensures that for any
automorphism α(T ′

n) of T ′
n, the distribution of T ′

n (with both permutations and
labels attached) is identical to that of α(T ′

n) (with both permutations and labels
attached), and in particular, α induces a labeled isomorphism between Tn(T

′
n) and

Tn(α(T ′
n)). This symmetry, gained by the addition of the permutations, will greatly

simplify later calculations. In particular, it yields the following fact.

FACT 5. Let E,F and G be events in the σ -field generated by T ′
n with its

labeling such that E is invariant under automorphisms of T ′
n and there is some

automorphism α of T ′
n such that G = α(F ). Then P{E|F } = P{E|G}.

For example, if F is the event that Sv ≤ m for some m ∈ R and some given
v ∈ Nn, then G could be the event that Sv′ ≤ m for any given v′ ∈ Nn. We will
often use the phrase “by symmetry” in our arguments, rather than making explicit
reference to Fact 5.

1.4. Outline. In Section 2, we prove Theorem 4, and in doing so introduce the
idea of amplification, which also plays a role in the proof of Theorem 3. In Sec-
tions 3 and 4.1, we flesh out the high-level discussion of Reed’s approach given
above and explain some of the key ideas behind our proof of Theorem 3, particu-
larly the upper bound on Mn and the importance of leading nodes. In Section 4.2
we prove two key lemmas which allow us to control the shape of random walks
conditioned on their value after time n. Finally, in Sections 4.3 and 5, respectively,
we prove lower tail bounds and upper tail bounds on Mn that together prove The-
orem 3.

2. Proof of Theorem 4. To give an idea of how we will prove Theorem 4,
we first consider the special case that the offspring distribution B is deterministi-
cally d and that X is deterministically bounded from above, say X ≤ A for some
constant A. In this case P{S} = 1 so the conditioning in Theorem 4 vanishes. We
also presume for simplicity that ess infX = 0. We consider the related branching
process T0 in which the set of children of a node is the set of its children in T

for which the displacement is 0. As P{X = 0} > 1/EB = 1/d , T0 survives with
positive probability, so there is a positive probability p0 that Mn = 0 for every n.

Suppose that we want to bound the probability that Mn is greater than x, for
some given x. Since X ≤ A almost surely, if n is at most x/A then every node
at depth n has label at most nA ≤ x, so P{Mn > x} = 0. For larger n, we first
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observe that for any node v at depth �x/A�, the tree rooted at v whose nodes are
the descendants w of v with Sw = Sv is distributed precisely as T0; we temporarily
denote this tree T0(v).

The tree T0(v) survives with probability p0, and if T0(v) survives then in par-
ticular, there is a descendent w of v at depth n in T (E) for which Sw = Sv , so
Mn ≤ Sw = Sv ≤ x. It follows that

P{Mn > x} ≤ P

{ ⋂
v at depth �x/A�

{T0(v) does not survive}
}
.

Since the subtrees rooted at distinct nodes at depth �x/A� are independent and
there are d�x/A� such nodes, it follows that

P{Mn > x} ≤ ∏
v at depth �x/A�

P{T0(v) does not survive}
(13)

= (1 − p0)
d�x/A�

,

which in particular proves the tail bound of Theorem 4 and also immediately im-
plies that EMn = O(1). The key to the above line of reasoning is the idea of ana-
lyzing the subtrees of T rooted at depth �x/A� independently in order to strengthen
our probability bound. We will hereafter refer to this technique as an amplification
argument. McDiarmid [27] uses this idea in much the same fashion as above in his
analysis of the minima of branching random walks; it also plays a key role in both
Devroye and Reed [20] and Reed [28].

When P{B = d} < 1 and X is not necessarily bounded, we can not argue as
straightforwardly as above. However, we still have that P{T0 survives} = p0 for
some p0 > 0. For x ≥ 0 integers d ≥ 0, we temporarily let Fx,d be the set of nodes
at depth d with label at most x. Using an amplification argument just as we did
in deriving (13) immediately yields that for any integers c and n with c > 0 and
n ≥ d ,

P{Mn > x||Fx | = c} ≤ (1 − p0)
c.(14)

So, to handle this case, we really need to control the distribution of the number of
nodes at a given level of a supercritical branching process whose labels are not too
large. To do so, we use the following result of McDiarmid ([27], Lemma 1), who
showed that for any supercritical branching process there exist constants γ0 > 1,
c0 > 0, and δ0 > 0 such that for all integers i ≥ 1,

P{0 < |Ni | ≤ γ i
0} ≤ c0e

−δ0i .(15)

Fix γ0, c0 and δ0 as above, and define the function �(x) = �logγ0
x�. Since S occurs

precisely if |Ni | > 0 for all i, for n ≥ �(x),

P{Mn > x,S} ≤ P
{
0 <

∣∣N��(x)�
∣∣ ≤ x

} + P
{
Mn > x|∣∣N�(x)

∣∣ > x
}

(16)
≤ c0e

−δ0x + sup
x<k≤d�(x)

P
{
Mn > x|∣∣N�(x)

∣∣ = k
}
.
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For fixed k in the above range, we have

P
{
Mn > x|∣∣N�(x)

∣∣ = k
}

=
k∑

i=0

(
P

{
Mn > x|∣∣N�(x)

∣∣ = k,
∣∣Fx,�(x)

∣∣ = i
}

· P
{∣∣Fx,�(x)

∣∣ = i
∣∣∣∣N�(x)

∣∣ = k
})

(17)

≤
k∑

i=0

(1 − p0)
iP

{∣∣Fx,�(x)

∣∣ = i
∣∣∣∣N�(x)

∣∣ = k
}

≤ (1 − p0)
k/2 + P

{∣∣Fx,�(x)

∣∣≤ k/2
∣∣∣∣N�(x)

∣∣ = k
}
.

Now fix u > 0 such that EeuX = a < ∞; such u and a exist by condition (II). We
then have

P
{
v�(x) /∈ Fx,�(x)

∣∣v�(x) ∈ N�(x)

} = P
{
x < Sv�(x)

< ∞}
≤ [EeuX]�(x)

eux

(18)
= e

(loga)�logγ0
x�−ux

≤ c1e
−δ1x,

for some c1 > 0 and δ1 > 0 and for all x > 0. It follows that

E
{∣∣N�(x) \ Fx,�(x)

∣∣∣∣∣∣N�(x)

∣∣ = k
} ≤ c1e

−δ1x · k,

so by Markov’s inequality

P
{∣∣Fx,�(x)

∣∣ ≤ k/2
∣∣∣∣N�(x)

∣∣ = k
} ≤ 2c1e

−δ1x.(19)

Combining (16), (17) and (19), we thus have

P{Mn ≥ x,S} ≤ c2e
−δ2x,(20)

for some c2 > 0 and δ2 > 0 and all x > 0. Finally, since T is supercritical, we have
P{S} = p > 0. Letting c3 = c2/p, by (20) we thus have P{Mn > x|S} ≤ c3e

−δ2x

for n ≥ �(x). For n < �(x), since given S there is at least one node in Nn, by
symmetry and arguing as in (18) we have

P{Mn > x|S} ≤ P{x < Svn < ∞}
≤ c1e

−δ1x.

This proves the exponential tail bounds of Theorem 4 and also shows that
E{Mn|S} = O(1) = ess infX + O(1). We remark that since we are assuming
ess infX = 0, there is a shorter proof in the case that n < �(x) since M�(x) ≤ x

implies Mn ≤ x. We have given the above argument since it does not use the fact
that X is bounded from below, and we will appeal to it when proving Theorem 3.
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3. Typical leading nodes. We recall that a node v ∈ Tn is strictly leading if
the random walk ending at v stays strictly above its conditional expected value
given Sv , that is, if it satisfies (10) with strict inequality. For m ∈ R, we let

Gn,m = {v ∈ Nn :m − 1 ≤ Sv ≤ m,Sv is strictly leading}.(21)

We impose the requirement that m − 1 ≤ Sv as it gives us more precise control
over the random walk; however, when m is near m∗, Theorem 1 implies that
P{Sv ≥ m − 1|Sv ≤ m} is bounded away from zero. Furthermore, by replacing the
constant m − 1 by m −C for some large constant C, we could make this probabil-
ity arbitrarily close to 1. Intuitively, therefore, we can think of Gn,m as the set of
“typical” leading nodes in Nn with Sv ≤ m. The following lemma is the promised
formalization of (11).

LEMMA 6. Given a random walk S with steps distributed as X, and real num-
bers a, c with c > EX ≥ a and for which P{EX < X ≤ c} > 0,

P{Sn ≤ an,Sn is strictly leading} ≤ P{Sn ≤ an}
n

and

P{Sn ≤ an,Sn is strictly leading} ≥ P{EX < X ≤ c} · P{Sn−1 ≤ an − c}
n − 1

.

PROOF. The proof of Lemma 6 is an adaptation of proofs from Andersen [2]
and Reed [28]. For fixed n, and n′ with n < n′ ≤ 2n, let

Sn′ = Sn + Sn′−n =
n′∑

i=1

Xi(modn).

We first note that if Sn is strictly leading, then for any j = 0, . . . , n−1, the random
walk S(j) with S

(j)
i = Sj+i − Sj for i = 1, . . . , n is not leading, since S

(j)
n = Sn

and

S
(j)
n−j = Sn − Sj < Sn

(
n − j

n

)
.

More strongly, an identical argument shows that at most one of the random walks
S = S(0), S(1), . . . , S(n) is strictly leading. Furthermore, as the random variables
X1, . . . ,Xn are independent and the event {Sn ≤ an} is fixed by permutations of
X1, . . . ,Xn, it follows that for all j = 1, . . . , n,

P{Sn ≤ an,Sn is strictly leading} = P
{
Sn ≤ an,S(j)

n is strictly leading
}
,
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and so

n · P{Sn ≤ an,Sn is strictly leading}

= P

{
n−1⋃
j=0

{
Sn ≤ an,S(j)

n is strictly leading
}}

≤ P{Sn ≤ an},
proving the upper bound of the lemma.

Next, for i = 1, . . . , n− 1, let Ŝi = Si+1 −X1. In order that Sn ≤ an and that Sn

is strictly leading, it suffices that:

• EX < X1 ≤ c,
• Ŝn−1 ≤ an − c and
• Ŝn−1 is leading.

As X1 is independent from Ŝ1, . . . , Ŝn−1, it follows that

P{Sn ≤ an,Sn is strictly leading}
(22)

≥ P{EX < X1 ≤ c} · P{Ŝn−1 ≤ an − c, Ŝn−1 is leading}.
For j = 0, . . . , n − 2, define the random walk Ŝ(j) by Ŝ

(j)
i = Ŝj+i − Ŝj , for i =

1, . . . , n − 1 (where, letting n′ = j + i, if n′ > n − 1 then Ŝ′
n = Ŝn−1 + Ŝn′−(n−1)).

Again we have that Ŝ
(j)
n−1 = Ŝn−1 for all j = 0, . . . , n − 2. Furthermore, if Ŝn−1

is not leading then, letting j∗ be an index for which Ŝj∗ − Ŝn−1(j
∗/(n − 1)) is

minimized, it follows immediately that for all i = 1, . . . , n − 1,

Ŝ
(j∗)
i = Ŝi+j∗ − Ŝj∗

= Ŝi+j∗ − Ŝn

(
i + j∗

n − 1

)
+ Ŝn

(
i + j∗

n − 1

)
− Ŝj∗

(23)

≥ Ŝj∗ − Ŝn

(
j∗

n − 1

)
+ Ŝn

(
i + j∗

n − 1

)
− Ŝj∗

= Ŝn

(
i

n − 1

)
= Ŝ(j∗)

n

(
i

n − 1

)
,

that is, Ŝ(j) is leading at time n − 1. Therefore, at least one of the random walks
Ŝ(0) = Ŝ, Ŝ(1), . . . , Ŝ(n−2) is leading at time n − 1. Since X2, . . . ,Xn are indepen-
dent and the event {Ŝn−1 ≤ an − c} is fixed by permutations of X2, . . . ,Xn, we
thus have

P{Ŝn−1 ≤ an − c} = P

{
Ŝn−1 ≤ an − c,

n−2⋃
j=0

{
Ŝ

(j)
n−1 is leading

}}

(24)
≤ (n − 1)P{Ŝn−1 ≤ an − c, Ŝn−1 is leading}.
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Combining (22) and (24), it follows that

P{Sn ≤ an,Sn is strictly leading} ≥ P{EX < X1 ≤ c} · P{Ŝn−1 ≤ an − c}
n − 1

,

proving the lower bound of the lemma. �

By combining the above argument with the bounds from Theorem 1, the fol-
lowing lemma is immediate:

LEMMA 7. Given any function g(n) tending to infinity with n, for any v ∈ Nn

and any m for which |m∗ − m| ≤ √
n/g(n),

P{v ∈ Gn,m} = 	

(
P{Sv ≤ m}

n

)
,

uniformly over all m in the above range.

We omit the proof of Lemma 7 as it is essentially identical to that of Lemma 6
(taking a = m/n and choosing any fixed c > EX for which P{EX < X ≤ c} > 0;
such c exists since X is nonconstant).

4. The upper bound.

4.1. A warmup. To prove an upper bound on Mn, we will eventually show that
if E|Gn,m| = 
(1) then P{|Gn,m| > 0} = 
(1) [the definition of Gn,m appears in
(21)]. In order to demonstrate one of the key techniques of the lower bound in a
simplified setting, we prove:

LEMMA 8. For m > m∗ for which m∗ −m = o(
√

n), if E|Gn,m| = 
(1/n5/2)

then P{|Gn,m| ≥ 1} = 
(1/n5/2) = 
(1/m5/2).

To prove Lemma 8, we use a version of the second moment method often called
the Chung–Erdős inequality (see Chung and Erdös [15] and also Devroye and Reed
[20] and Alon and Spencer [1], Chapter 2), which in our setting can be stated as
follows: for any integer i ≥ 1 and any random set R ⊆ N ′

n (recall that N ′
n is the set

of nodes at depth n in T ′
n),

P{|R| > 0} ≥ E|R|
1 + supv∈N ′

n
E{|R||v ∈ R} .(25)

We will apply (25) both here and later in the section. Recall that each vi on the
distinguished path v0, . . . , vn−1 has children vi+1 = v

(0)
i+1, v

(1)
i+1, . . . , v

(d−1)
i+1 in T ′

n.
For i = 0, . . . , n, j = 0, . . . , d − 1, and m ∈ R we hereafter denote

Ni,j
n,m = {

v ∈ Nn,m :v is a descendent of v
(j)
i

}
,(26)
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and define G
i,j
n,m similarly.

PROOF OF LEMMA 8. By the symmetry of T ′
n, E{|Gn,m||v ∈ Gn,m} is identi-

cal for all v ∈ N ′
n, so letting R = Gn,m in (25), we obtain

P{|Gn,m| ≥ 1} ≥ E{|Gn,m|}
1 + E{|Gn,m||vn ∈ Gn,m} .(27)

By symmetry,

E{|Gn,m|} = dnP{vn ∈ Gn,m}
(28)

= dnP{vn ∈ Gn,m|vn ∈ Nn}P{vn ∈ Nn}.
Given that vn ∈ Nn, Svn is just a sum of n i.i.d. random variables distributed as X,
so by Lemma 7 and Theorem 1,

P{vn ∈ Gn,m|vn ∈ Nn} = 	

(
P{Svn ≤ m|vn ∈ Nn}

n

)
(29)

= 	

(
e−t (m−m∗)

n · [EB]d
)
,

where t < 0 has been chosen such that t�′(t) − �(t) = log(EB). Now, for any
edge e = vw of the tree T ′

n,

P{Xe < ∞} =
d∑

i=0

P{Xe < ∞|Bv = i}P{Bv = i}
(30)

= 1

d

d∑
i=1

iP{Bv = i} = EB

d
.

As the variables {Bv}v∈T ′
n

are independent, it follows that for distinct edges e = vw

and f = xy, Xe and Xf are independent unless v = x, that is, unless w and y are
siblings. In particular, it follows from this independence and from (30) that

P{vn ∈ Nn} = P

{
n⋂

i=1

{Xvi−1vi
< ∞}

}
=

(
EB

d

)n

.(31)

By combining (28), (29) and (31), we obtain the bound

E|Gn,m| = 	

(
e−t (m−m∗)

n

)
.(32)

[A brief remark: we will usually omit the sorts of arguments leading to (31) when
such calculations arise in later proofs; we have included them once for com-
pleteness.] We now turn to bounding E{|Gn,m||vn ∈ Gn,m}. By symmetry, we
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have

E{|Gn,m||vn ∈ Gn,m} ≤ E{|Nn,m||vn ∈ Gn,m}

= 1 +
n−1∑
i=0

d−1∑
j=1

E{|Ni+1,j
n,m ||vn ∈ Gn,m}(33)

= 1 + (d − 1)

n−1∑
i=0

E{|Ni+1,1
n,m ||vn ∈ Gn,m}.

Since vn ∈ Gn,m, for i with 0 ≤ i ≤ n we have Svi
≥ (m − 1)(i/n) ≥ mi/n − 1. It

follows that for such i, Ni+1,1
n,m is at most the number of descendants v of v

(1)
i+1 for

which Sv − Svi
is at most m(n − i)/n + 1. We recall that m∗

i = �′(t)i − log i/2t .
Let i = mi/n + 1 − m∗

i for i = 1, . . . , n, and fix some distinguished descen-

dant v of v
(1)
i+1 at depth n. By the previous observation, linearity of expectation and

symmetry we have

E{|Ni+1,1
n,m ||vn ∈ Gn,m}
≤ |Ni+1,1

n |P{
Sv − Svi

≤ m∗
n−i + (n−i)|vn ∈ Gn,m

}
= dn−(i+1) ·

(
EB

d

)n−(i+1)

(34)

· P
{
Sv − Svi

≤ m∗
n−i + (n−i)|v ∈ Ni+1,1

n

}
= (EB)n−(i+1) · 	

(
e−tn−i

(EB)n−i

)
= 	(e−tn−i ).

We now claim that for all i = 1, . . . , n,

e−tn−i = O
(
n1/2e−t (m−m∗)).(35)

From (33)–(35), it follows that

E{|Gn,m||vn ∈ Gn,m} ≤ 1 + O
(
n3/2e−t (m−m∗)).(36)

Combining (32) and (36) we see that if E|Gn,m| = 
(1/n5/2) then

E{|Gn,m||vn ∈ Gn,m} ≤ 1 + O(n5/2 · E|Gn,m|),
which together with (28) proves the fact. To see that (35) holds, we write

n−i = m(n − i)

n
− m∗

n−i + 1

= m(n − i)

n
− �′(t)(n − i) − log(n − i)

2t
+ 1

= m − mi

n
+ �′(t)i − �′(t)n − logn

2t
+ logn − log(n − i)

2t
+ 1
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= m − m∗ + �′(t)i − mi

n
+ logn − log(n − i)

2t
+ 1

< m − m∗ + i

n

(
�′(t)n − m

) + 1

≤ m − m∗ − logn

2t
+ 1,

the final inequality holding as m ≥ m∗ = �′(t)n + logn/(2t) (recall that t is neg-
ative). Thus n−i ≤ m − m∗ − logn/2t , from which (35) follows immediately.

�

By Lemma 8 and a standard amplification argument, we could show that
P{|Nn,m+a logn| ≥ 1} = 
(1) for some a = O(1) and thereby show that
E{Mn|S} ≤ m∗ + a logn; we will not do so as we are headed toward stronger
upper bounds, the key step of which is to strengthen Lemma 8. We now state this
aim formally.

LEMMA 9. For all values of m for which m∗ − m = o(
√

n),

E{|Gn,m||vn ∈ Gn,m} = E|Gn,m| + O(1).(37)

Assume for the moment that Lemma 9 holds, and let

m′ = m∗ − logn

2t
= �′(t)n − 3 logn

2t
.

By Lemma 7 and linearity of expectation, we see that m′ is within O(1) of the
smallest value m for which E|Gn,m| ≥ 1. Applying (25) with R = Gn,m′ , it fol-
lows immediately that P{|Gn,m′ | > 0} = 
(1). Since Gn,m ⊆ Nn,m for all m, it
follows that P{|Nn,m′ | > 0} = 
(1), so P{Mn ≤ m′} = 
(1). By applying an am-
plification argument exactly as we did when proving Theorem 4, we immediately
obtain exponential tail bounds for the upper tail of Mn:

COROLLARY 10. There exist constants C1 > 0, δ1 > 0 such that for all x > 0,

P{Mn ≥ m′ + x|S} ≤ C1e
−δ1x.

To obtain the upper tail bounds of Theorem 3, it thus remains to prove Lemma 9.

4.2. The shape of random walks. The proof of Lemma 9 is based on estab-
lishing finer control over the behavior of a given random walk in T than that given
by Lemma 7. In this section, we prove the two lemmas that accomplish this. In
Lemma 11, we bound the probability that a walk S0, S1, . . . , Sn is ever very far
below its conditional mean given Sn; in Lemma 12, we bound the probability that
such a random walk is ever close to its conditional mean, given that it is never very
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far below its conditional mean. These results are rather straightforward; the only
technicalities are due to the fact that we must apply Theorem 1 in the course of the
proofs. We now proceed to the details.

For a ≤ 0, we say that S stays above a up to time n, and write {Sn abo a}, if

Si > Sn · i

n
+ a for all i = 1, . . . , n.

In particular, {Sn abo 0} is simply the event that Sn is strictly leading.

LEMMA 11. Given any function g(n) tending to plus infinity with n, any m

for which |�′(t)n − m| = √
n/g(n), and any a ≤ −1,

P{Sn abo a|m − 1 ≤ Sn ≤ m} = O

( |a|9
n

)
,(38)

uniformly over all m and a in the above ranges.

PROOF. For simplicity we assume that a is an integer, that m = �′(t)n, and
that g(n) ≤ logn; this eases the notational burden without changing the essence
of the proof. The probability in (38) increases as a decreases; it thus suffices to
prove (38) when |a| is at least some large fixed constant C. We assume |a| is large

enough that |a| ≤
√

|a|3/ log(|a|3) ≤ √|a|/g(|a|).
We remark that if |a| > n1/9 then (38) holds trivially; we thus assume that |a| ≤

n1/9. Let n1 = n+ 2|a|3, and let m1 = �′(t)n1; as |a| ≤ n1/9, we have n1 = 	(n).
Let S′ be the random walk with S′

i = S|a|3+i − S|a|3 (the original walk “started at
time |a|3”). The walk S′ is distributed as S; we will show that

P{S′
n abo a|m − 1 ≤ S′

n ≤ m} = O

( |a|9
n

)
,(39)

which proves the lemma. We proceed by comparing the following two probabili-
ties:

P{m1 − 3 ≤ Sn1 ≤ m1, Sn1 abo 0} and P{m − 1 ≤ S′
n ≤ m,S′

n abo a}.
By Lemma 7,

P{m1 − 3 ≤ Sn1 ≤ m1, Sn1 abo 0} = 	

(
P{m1 − 3 ≤ Sn1 ≤ m1}

n1

)
(40)

= 	

(
P{m1 − 3 ≤ Sn1 ≤ m1}

n

)
.

By Theorem 1,

P{m1 − 3 ≤ Sn1 ≤ m1} = 	

(
e−�′(t)n1

√
n1

)
= 	

(
e−2|a|3�′(t)e−�′(t)n

√
n

)
(41)

= 	
(
e−2|a|3�′(t)P{m − 1 ≤ S′

n ≤ m}),
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so, letting E∗ be the event {m1 − 3 ≤ Sn1 ≤ m1, Sn1 abo 0}, (40) and (41) yield
that

P{E∗} = 	

(
e−2|a|3�′(t)P{m − 1 ≤ S′

n ≤ m}
n

)
.(42)

We will show that

P{E∗} = 


(
e−2|a|3�′(t)P{m − 1 ≤ S′

n ≤ m,S′
n abo a}

|a|9
)
.(43)

Equation (39) follows immediately from (42) and (43); it thus remains to prove
(43). We claim that for E∗ to occur it suffices that the following events occur:

(1) �′(t)|a|3 + |a| + 1 ≤ S|a|3 ≤ �′(t)|a|3 + |a| + 2, which we denote E1;
(2) �′(t)|a|3 −(|a|+3) ≤ Sn1 −Sn1−|a|3 ≤ �′(t)|a|3 −(|a|+2), which we denote

E2;
(3) m − 1 ≤ S′

n ≤ m, which we denote E3;
(4) S|a|3 abo 0;

(5) letting S
(1)
j = Sn1−|a|3+j − Sn1−|a|3 for j = 0,1, . . . , |a|3, S

(1)

|a|3 abo 0; and fi-
nally,

(6) S′
n abo a.

Events (1)–(6) are depicted in Figure 1. Informally, (1) and (4) ensure that the
first |a|3 steps of the walk do not prevent E∗ from occurring, (2) and (5) do the
same for the last |a|3 steps of the walk, and (3) and (6) do likewise for the middle
n1 − 2|a|3 = n steps of the walk. [This is not quite the whole story; the “extra
height” (between |a| + 1 and |a| + 2) gained in (1), as well as the extra height

FIG. 1. The events (1)–(6). For example, (1) occurs because after |a|3 steps the walk is between
the lowest two dashed horizontal lines, and (4) occurs because in the first |a|3 steps the walk stays
above the dashed line segment connecting its endpoints. The event E∗ occurs because after n1 steps
the walk is between m1 − 3 and m1 and has stayed above dashed line connecting its endpoints.
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gained in (2), are required so that (3) and (6) can do their job.] By the independence
of disjoint sections of the random walk, we thus have

P{E∗} ≥ P
{
E1,E2,E3, S|a|3 abo 0, S

(1)

|a|3 abo 0, S′
n abo a

}
(44)

= P
{
E1, S|a|3 abo 0

} · P
{
E2, S

(1)

|a|3 abo 0
} · P{E3, S

′
n abo a}.

As |a| ≤
√

|a|3/g(|a|), we may apply Theorem 1 and Lemma 7 to bound
P{E1, S|a|3 abo 0}:

P
{
E1, S|a|3 abo 0

} = 	

(
P{E1}
|a|3

)

= 	

(
e−|a|3�′(t)e−t |a|

|a|3
√

|a|3
)

(45)

= 	

(
e−|a|3�′(t)e−t |a|

|a|9/2

)
.

Likewise, we have

P
{
E2, S

(1)

|a|3 abo 0
} = 	

(
P{E2}
|a|3

)
= 	

(
e−|a|3�′(t)et |a|

|a|9/2

)
.(46)

Combining (44)–(46) yields that

P{E∗} = 


(
e−2|a|3�′(t)

|a|9 P{E3, S
′
n abo a}

)
,

which is precisely the claim in (43). �

Using Lemma 11, we can bound the conditional probability that S spends much
time near its mean, given that it is never much below its conditional mean up to
time n. More precisely: for 0 ≤ k ≤ n, let b(n, k) = min{k,n−k}, and let Ck be the
event that Sk ≤ Sn(k/n) + b(n, k)1/57 (that Sk is “close” to its conditional mean;
the meaning of “close” depends on how near k is to one of the ends of the random

walk). Given an integer a ≤ −1, let Ba = ⋃n−|a|57

k=|a|57 Ck (if |a|57 > n/2 then Ba is
the empty event). Then:

LEMMA 12. Given any function g(n) tending to plus infinity with n, for any m

for which |�′(t)n − m| ≤ √
n/g(n) and any integer a ≤ −1,

P{Sn abo a,Ba|m − 1 ≤ Sn ≤ m} = O

(
1

n|a|9
)
.(47)



1066 L. ADDARIO-BERRY AND B. REED

PROOF. As in the proof of Lemma 11, for the sake of readability we assume
that m = �′(t)n and that g(k) ≤ log k for all k. We may presume that |a|57 < n/2
or else the claim holds trivially. For any fixed K , for all a with |a| ≤ K , the claim
follows immediately from Lemma 11, so we may assume |a| is larger than any

fixed K ; we henceforth assume |a| is large enough that |a| ≤
√

|a|57/g(|a|).
Choose k with b(n, k) ≥ |a|57. If {m − 1 ≤ Sn ≤ m} and Ck are to both occur

then necessarily

Sk ≤ mk

n
+ b(n, k)1/57 = �′(t)k + b(n, k)1/57.(48)

Similarly, if {m − 1 ≤ Sn ≤ m} and {Sn abo a} are to both occur then necessarily

Sk ≥ �′(t)k + a − 1(49)

(recall that a is negative). More strongly, for Ck , {m−1 ≤ Sn ≤ m} and {Sn abo a}
to all occur, there must be some integer i with a − 1 ≤ i ≤ b(n, k)1/57 for which
the following four events occur:

• �′(t)k + i ≤ Sk ≤ �′(t)k + i + 1, which we denote Ai,k ;
• {Sk abo a − (i + 1)}, which we denote Di,k ;

and letting S′
j = Sk+j − Sj for 0 ≤ j ≤ n − k,

• �′(t)(n − k) − (i + 1) ≤ S′
n−k ≤ �′(t)(n − k) − i, which we denote Ei,k ;

• {S′
n−k abo a − (i + 1)}, which we denote Fi,k .

Restating the above using the names of these events, we have

Ck ∩{Sn abo a}∩ {m− 1 ≤ Sn ≤ m} ⊂
�b(n,k)1/57�⋃

i=a−1

Ai,k ∩Di,k ∩Ei,k ∩Fi,k.(50)

Since Ba = ⋃n−|a|57

k=|a|57 Ck , It follows by a union bound that

P{Ba,Sn abo a,m − 1 ≤ Sn ≤ n}
(51)

≤
n−|a|57∑
k=|a|57

�b(n,k)1/57�∑
i=a−1

P{Ai,k,Di,k,Ei,k,Fi,k}.

We will show that for each k with b(n, k) ≥ |a|57, for all i in the above range,

P{Ai,i,Di,k,Ei,k,Fi,k} = O

(
P{m − 1 ≤ Sn ≤ m} · b(n, k)18/57n1/2

(k(n − k))3/2

)
.(52)

We remark that the bound in (52) does not depend on i. Presuming for a moment
that (52) holds, by dividing through by P{m − 1 ≤ Sn ≤ m} in (51) and (52), we
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obtain

P{Ba,Sn abo a|m − 1 ≤ Sn ≤ n}

=
n−|a|57∑
k=|a|57

�b(n,k)1/57�∑
i=a−1

P{Ai,k,Di,k,Ei,k,Fi,k}
P{m − 1 ≤ Sn ≤ m}(53)

= O

(n−|a|57∑
k=|a|57

�b(n,k)1/57�∑
i=a−1

b(n, k)18/57n1/2

(k(n − k))3/2

)
.

Since b(n, k)1/57 ≥ |a|, the inner sum in (53) has at most 2b(n, k)1/57 +2 identical
terms. We thus have

P{Ba,Sn abo a|m − 1 ≤ Sn ≤ n} = O

(n−|a|57∑
k=|a|57

b(n, k)19/57n1/2

(k(n − k))3/2

)

= O

( �n/2�∑
k=|a|57

b(n, k)19/57n1/2

(k(n − k))3/2

)

= O

(
1

n

�n/2�∑
k=|a|57

k19/57

k3/2

)

= O

(
1

n

�n/2�∑
k=|a|57

1

k7/6

)

= O

(
1

|a|9 · n
)
,

which proves the lemma. It therefore remains to prove (52). To do so, we first write

P{Ai,k,Di,k} = P{Ai,k} · P{Di,k|Ai,k}.
Since |i| ≤ �b(n, k)�1/57 ≤ k1/57 ≤ √

k/g(k), and likewise |a| ≤ b(n, k)1/57, we
have |a− (i +1)| ≤ 2

√
k/g(k)+1. By Lemma 11 (applied with a slightly different

function g) it then follows that

P{Di,k|Ai,k} = O

(
(|a| + |i| + 1)9

k

)
= O

(
b(n, k)9/57

k

)
,(54)

so

P{Ai,k,Di,k} = O

(
P{Ai,k} · b(n, k)9/57

k

)
,(55)

and an identical derivation yields

P{Ei,k,Fi,k} = O

(
P{Ei,k} · b(n, k)9/57

n − k

)
.(56)
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By the independence of disjoint sections of the random walk, Ai,k and Bi,k

are independent of Ei,k and Fi,k , so P{Ai,k,Di,k,Ei,k,Fi,k} = P{Ai,k,Di,k} ·
P{Ei,k,Fi,k}, and by (55) and (56) we thus have

P{Ai,k,Di,k,Ei,k,Fi,k} = O

(
P{Ai,k}P{Ei,k} · b(n, k)18/57

k(n − k)

)
.(57)

Finally, the events Ai,k , Ei,k and {m − 1 ≤ Sn ≤ m} all simply restrict the value of
a certain random walk at its endpoint; by applying Theorem 1 to bound P{Ai,k},
P{Ei,k}, and P{m − 1 ≤ Sn ≤ m}, it is easily seen that

P{Ai,k} · P{Ei,k} = 	

(
P{m − 1 ≤ Sn ≤ m} · n1/2

(k(n − k))1/2

)
.

Combining this last equation with (57) proves (52) and completes the proof. �

It is interesting to compare Lemmas 11 and 12 with the work of Bramson [8]
in studying branching Brownian motion; he required quite similar bounds on the
behavior of a Brownian bridge (or equivalently, of Brownian motion conditioned
on its value after some time t). It would be interesting to find a proof of Theorem 3,
or at least of Lemmas 11 and 12, that proceeded via comparison with Brownian
motion. However, such an approach may be quite difficult, given the lack of suc-
cess to date at transferring Bramson’s argument to a discrete setting. At any rate,
with these lemmas under our belt we are ready to prove Lemma 9.

4.3. Proof of Lemma 9. The chain of reasoning is similar to that in the proof
of Lemma 8. We first recall that for a node v at depth n, by Lemma 7

P{v ∈ Gn,m′ } = 	

(
P{m′ − 1 ≤ Sv ≤ m′}

n

)
.(58)

Recalling the event Ba defined just before Lemma 12, we will write Ba(v) for
the event that Ba occurs for the random walk ending at v. Since |�′(t)n − m′| =
O(logn), by Lemmas 11 and 12, for all integers a < −1,

P{m′ − 1 ≤ Sv ≤ m,Sv abo a,Ba(v)} = 	

(
P{m′ − 1 ≤ Sv ≤ m}

n|a|9
)

= O

(
P{v ∈ Gn,m′ }

|a|9
)
.

It follows that there is some large constant C > 0 such that if v ∈ Gn,m′ then, letting
R0,R1, . . . ,Rn be the partial sums on the path to v, with probability at least 1/2

Rk ≥ Rn · k

n
+ b(n, k)1/57 for all C ≤ k ≤ n − C.(59)

If v ∈ Gn,m′ and v additionally satisfies (59), we say that v is well-behaved.
We write Wn,m′ for the set of well-behaved nodes in Gn,m′ . We emphasize that
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Wn,m′ ⊆ Gn,m′ ⊆ Nn,m′ . Furthermore, since each node in Gn,m′ is well-behaved
with probability at least 1/2, it follows from the definition of m′ that E|Wn,m′ | =

(E|Gn,m′ |) = 
(1). We claim that

E{|Wn,m′ ||vn ∈ Wn,m′ } = E|Wn,m′ | + O(1).(60)

Applying (25) with R = Wn,m′ , it immediately follows that P{|Wn,m′ | ≥ 1} =

(1), so since Wn,m′ ⊆ Nn,m′ we have P{|Nn,m′ | ≥ 1} = 
(1) as claimed. We
thus turn to proving (60).

We now remind the reader of some notation from earlier in the section, and
introduce a few new terms. We recall that node vi−1 has child v

(0)
i = vi that is on

the distinguished path P , and that its remaining children are v
(1)
i , . . . , v

(d−1)
i . Node

v
(j)
i is the root of a subtree of Tn that we shall call T

i,j
n . We let W

i,j
n,m be subset

of W
i,j
n,m contained in T

i,j
n ; this is consistent with the notation G

i,j
n,m and N

i,j
n,m

introduced in and just after (26). For each 0 ≤ i ≤ n − 1 fix an arbitrary node xi at
depth n that is a descendent of v

(1)
i+1, and let the partial sums of the labels on the

path from vi to xi be Sx0,0 = 0, Sxi,1, Sxi,2, . . . , Sxi,n−i . We remark that the edge
labels contributing to the sum Sxi,n−i are a subset of the edge labels contributing
to the vertex label Sxi

; more precisely,

Sxi
= Sxi,n−i + Svi

.(61)

Finally, to simplify notation, for 0 ≤ i ≤ n − 1 let Wi = W
i,1
n,m′ , and denote the

functions P{·|vn ∈ Wn,m′ } and E{·|vn ∈ Wn,m′ } by Pw{·} and Ew{·}, respectively.
We now mimic the portion of the proof of Lemma 8 that leads to (33), in our case
for the particular value m = m′. By symmetry, we have

Ew{|Wn,m′ |} = 1 +
n∑

i=1

d−1∑
j=1

Ew{Wi,j

n,m′ }
(62)

= 1 +
n∑

i=1

(d − 1)Ew{Wi}.

Since d does not depend on n and, for a given i, Wh′−i ≤ id , it follows that for any
fixed integer 0 < c = O(1),

∑n
i=n−c(d − 1)Ew{Wi} ≤ ∑c

i=1(d − 1)id = O(1). By
this fact, by (62), and since (d − 1) is constant, to prove the lemma it therefore
suffices to show that

h′−C∑
i=1

Ew{|Wi |} = O(1),(63)

where C is the same constant as in (59).
By symmetry, Ew{|Wi |} = dn−iPw{xi ∈ Wi}. In order for xi ∈ Wi to occur, we

must in particular have that Sxi
≤ m′, so by (61), we must have Sxi,n−i ≤ m′ − Svi

.
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The fact that vn is well-behaved allows us to bound m′ − Svi
from above. Fur-

thermore, Sxi,n−i is distributed as Svn−i
and is independent of Svi

. This inde-
pendence will allow us use Theorem 1 to bound the conditional probability that
Sxi,n−i ≤ m′ −Svi

. When i is far from 1 and from n−C, the bounds on Si given by
the fact that vn is well-behaved will ensure that Svi

is large enough that the condi-
tional probability that Sxi,n−i ≤ m′ −Svi

is extremely small. By slightly modifying
this same approach, we will prove similar bounds when i is near 1 or near n − C;
summing these bounds will prove (63). We now turn to the details.

Fix some function g with g(k) ≤ log k for all k and with g(k) tending to plus
infinity as k tends to infinity. For any i, for all c with |c| ≤ √

n − i/g(i), by Theo-
rem 1 and by the independence of Xv1, . . . ,Xvn from Sxi,n−i , we have

Pw{Sxi,n−i ≤ �′(t)(n − i) + c}
= P{Sxi,n−i ≤ �′(t)(n − i) + c|Sxi,n−i < ∞} · P{Sxi,n−i < ∞}(64)

= 	

(
e−tc

√
n

· 1

dn−i

)
.

Furthermore, by (61),

Pw{Sxi
≤ m′} = Pw{Sxi,n−i ≤ m′ − Si}.(65)

Let r = r(n) = �(2 logn/|t |)57�.

CASE 1 (r ≤ i ≤ n − r). For any k ≥ C, since vn ∈ Wn,m′ , we have Svk
≥

m′ · (k/n) − 1 + b(n, k)1/57, so

m′ − Svi
≤ m′ ·

(
n − i

n

)
+ 1 − b(n, i)1/57(66)

≤ �′(t)(n − i) + 3 logn

2|t | − b(n, i)1/57.(67)

[We will also use (66) in the case that i < n − r .] When b(n, i)1/57 ≥ 2 logn/|t |,
certainly logn/2|t | ≤ √

n − i/g(n − i), so by (64), (65) and (67) we have

Pw{Sxi
≤ m′} ≤ Pw

{
Sxi,n−i ≤ �′(t)(n − i) − logn

2|t | + 1
}

= 	

(
1

dn−in

)
,(68)

so by linearity of expectation and symmetry, Ew|Wi | = O(1/n) for such i. Letting
r = r(n) = �(2 logn/|t |)57�, then, we have

n−r∑
i=r

Ew|Wi | = O

(
n − 2r

n

)
= O(1).

This bounds the bulk of the sum (63); it remains to consider the cases when i is
either close to 1 or close to n − C.
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CASE 2 (n − r ≤ i ≤ n − C). Let k = n − i, so C ≤ k < r . Since k =
O((logn)57), m′ · (k/n) = �′(t)k + O(1), so from (65), (66) and the fact that
b(n, i) = k we have

Pw{xi ∈ Wn,m′ } ≤ Pw{Sxi
≤ m′} = P{Sxi,n−i ≤ m′ − Svi

}
= O

(
P{Sxi,n−i ≤ �′(t)k − b(n, i)1/57})

= O
(
P{Sxi,n−i ≤ �′(t)k − k1/57}),

which together with (64) gives

Pw{xi ∈ Wn,m′ } = O

(
etk1/57

dk

)
.

By linearity of expectation and by symmetry, it follows that Ew|Wi | = O(etk1/57
) =

O(k−3) (recall that t is negative). Therefore

n−C∑
i=n−r

Ew|Wi | = O

(
r∑

k=C

1

k3

)
= O(1).

CASE 3 (1 ≤ i ≤ r). Let i = Svi
− m′ · (i/n). Since vn ∈ Gn,m′ , necessarily

i ≥ −i/n ≥ −1. In order that xi ∈ Gn,m′ , it is necessary that:

• m′ · ((n − i)/n) − (i + 1) ≤ Sxi,n−i ≤ m′ · ((n − i)/n) − i (call this event
Ei ), and that

• Sxi,n−i abo − (i + 1),

so

Pw{xi ∈ Wn,m′ } ≤ Pw{xi ∈ Gn,m′ } ≤ Pw{Ei,Sxi,n−i abo − (i + 1)}.
We shall show that

Pw{Ei,Sxi,n−i abo − (i + 1)} = O

(
1

dn−i(n − i)

)
,(69)

from which it follows just as above that
∑r

i=1 Ew|Wi | = O(1). It thus remains to
prove (69). We first observe that by the same argument used to prove (68), we have

Pw

{
Ei,Sxi,n−i abo − (i + 1)

∣∣∣i ≥ 2 logn

|t |
}

≤ Pw

{
Ei

∣∣∣i ≥ 2 logn

|t |
}

(70)

≤ P
{
Sxi,n−i ≤ �′(t)(n − i) − logn

2|t |
}

= O

(
1

dn−i · n
)
.



1072 L. ADDARIO-BERRY AND B. REED

Furthermore, if i < 2 logn/|t |, then i ≤ √
n − i/g(n − i), so by applying

first Lemma 11, then Theorem 1, we obtain

Pw

{
Ei,Sxi,n−i abo − (i + 1)

∣∣∣i <
2 logn

|t |
}

= O

(
9

i Pw{Ei |i < (2 logn)/|t |}
n − i

)
(71)

= O

(
9

i e
i t

n − i

)

= O

(
1

dn−i(n − i)

)
.

Combining (70) and (72) proves (69) and completes the proof of Lemma 9.

5. The lower bound. We know that the naive approach to proving a lower
bound on P{Mn ≤ m}, namely, bounding P{vn ∈ Nn,m}, then applying a union
bound, will not work. It is the approach we used in Section 1.1 when discussing
many independent random walks, and only begins to yield tail bounds when m ≤
m∗ + O(1).

On the other hand, we observe that we can easily prove strong enough bounds
for one group of potential nodes of Nn,m when m ≤ m′ + O(1), namely, the set
Gn,m [we recall that m′ = �′(t)n − (3 logn)/2t]. By Lemma 11 (or, indeed, by
Lemma 7), when m is not too far from m′, P{vh ∈ Gn,m} = O(P{vh ∈ Nn,m}/n),
from which strong bounds on P{Gn,m 	= ∅} follow directly from Theorem 1 and
a union bound. Intuitively, this bound on Gn,m contains almost the whole “reason
for” the lower bound, in the following sense. Given a node v at depth n and m ≤ m′,
if Sv ≤ m is to occur, then either Sv is “close to being” a leading node, in the sense
that there is a “small” constant a for which Sv stays above −a, or Sv is “far from
being” a leading node, in which case there is a “large” constant c for which Sv

does not stay above −c (or something in between these two scenarios occurs). The
former scenario is unlikely due to the bounds in Lemma 11, and the latter scenario
is unlikely due to large deviations estimates (and everything in between is unlikely
due to a mix of these two reasons).

We prove our general bound by splitting Nn,m into many groups which differ-
entiate among the possibilities outlined in the above sketch. We then bound the
probability each group is nonempty using large deviations estimates and the Lem-
mas from Section 4.2. When we recombine the bounds we obtain for the individ-
ual groups (by union bound), the result will be strong enough to yield bounds on
P{Nn,m 	= ∅} that are exponentially small in m′ −m when m is not too far from m′.
For convenience, we restate the lower bound we are aiming to prove.

LEMMA 13. There are C2 > 0, δ2 > 0 such that for all x > 0 we have P{Mn ≤
m′ − x} ≤ C2e

−δ2x .
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Theorem 3 follows easily from the above lemma and Corollary 10; its proof
appears in Section 6, below. In proving Lemma 13, it will be useful to use Chernoff
[14] bounds as well as Theorem 1, as Chernoff bounds are not limited to windows
of size o(

√
n) around a linear slope. In particular, for our choice of t we have:

LEMMA 14 (Chernoff bound). For all r > 0 and all integers k ≥ 1,

P{Svk
≤ �′(t)k − r} ≤ etr

dk
.

Lemma 13 is a rather straightforward consequence of the following, weaker
lemma, plus Lemma 14:

LEMMA 15. There are C3 > 0, δ3 > 0 such that for all m < m′ with m′ −m ≤
(2 logn)/|t |,

P{∃v ∈ Nn :m − 1 ≤ Sv ≤ m} ≤ C3e
−δ3(m

′−m).(72)

PROOF OF LEMMA 13 ASSUMING LEMMA 15. Given m with 0 ≤ m′ − m ≤√
n/g(n), if m′ − m ≥ 2 logn/|t | then, letting  = �′(t)n − m, by the definition

of m′ we have  ≥ (m′ − m)/4. It follows by a union bound and by Theorem 1
that

P{Mn ≤ m} ≤ dnP{Svn ≤ �′(t)n − } = O(et) = O
(
et(m′−m)/4)

,

which proves Lemma 13 in the case that m′−m ≥ (2 logn)/|t | (since t is negative).
If 0 ≤ m′ − m < (2 logn)/|t |, then we have the following inclusion:

{Mn ≤ m} ⊆
{
Mn ≤ m′ − 2 logn

|t |
}

(73)

∪
�(2 logn)/|t |�⋃
i=�m′−m�

{∃v ∈ Nn :m′ − i − 1 ≤ Sv ≤ m′ − i}.

Since m′ − (2 logn)/|t | = �′(t)n− (logn)/2|t |, by Lemma 14 and a union bound,

P
{
Mn ≤ m′ − 2 logn

|t |
}

≤ 1√
n

= e− logn/2 ≤ et(m′−m)/4.(74)

By (73), (74), Lemma 15 and a union bound, we thus have

P{Mn ≤ m} ≤ et(m′−m)/4

+
�(2 logn)/|t |�∑
i=�m′−m�

P{∃v ∈ Nn :m′ − i − 1 ≤ Sv ≤ m′ − i}
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≤ et(m′−m)/4 + C3

�(2 logn)/|t |�∑
i=�m′−m�

e−δ3i

≤ et(m′−m)/4 + C3e
−δ3�m′−m�

(
1

1 − e−δ3

)
,

which proves Lemma 13 in the case that 0 ≤ m′ − m ≤ (2 logn)/|t |. �

We now turn our attention to proving Lemma 15. We first note that we need only
prove (72) for m′ −m larger than any fixed constant, as we may presume the bound
holds for m′ − m = O(1) by our choice of C3. For the remainder of the section,
we write  = �′(t)n − m and ′ = m′ − m > L for some large constant L. We
have ′ =  + (3 logn)/2|t |, so ′ ≤ (2 logn)/|t | and  ≤ (logn)/2|t |.

We now proceed to define the “homogeneous” groups discussed above, and
bound the probabilities they are nonempty, in a sequence of claims. The proof of
each claim will consist of straightforward applications of Theorem 1 and Lem-
mas 11 and 12, and Lemma 15 will be a trivial consequence of the bounds of the
claims.

Let a = �e|t |′/10�, and let Aa be the set of nodes v ∈ Nn for which m − 1 ≤
Sv ≤ m and for which {Sv abo − a} occurs.

CLAIM 16. P{Aa 	= ∅} = O(e9t (m′−m)/10).

PROOF. By Lemma 11,

P{vn ∈ Aa|m − 1 ≤ Sv ≤ m} = O

(
a9

n

)
= O

(
e9t (m′−m)/10

n

)
.

By Theorem 1, it follows that

P{vn ∈ Aa} = O

(
e9t (m′−m)/10

dn

)
.

The claim follows by a union bound over all v ∈ Nn. �

Next, let c = �log10 n�, and let Hc consist of the nodes v ∈ Nn with m − 1 ≤
Sv ≤ m and for which {Sv abo − c} does not occur.

CLAIM 17. P{Hc 	= ∅} = O(e−(m′−m)).

PROOF. If Hc 	= ∅ then for some 0 < k < n there is a node y ∈ Nk for which
Sy ≤ mk/n − c. We have

mk

n
− c = (�′(t)n − )k

n
− c = �′(t)k − k

n
− c.
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Therefore, by Lemma 14,

P
{
Svk

≤ mk

n
− c

}
= O

(
et(c+k/n)

dk

)
.(75)

Since c = �log10 n�, we may assume n is large enough that c − k/n ≥ log9 n, so
(75) yields

P
{
Svk

≤ mk

n
− c

}
= O

(
et log9 n

dk

)
.(76)

By a union bound, we obtain

P{Hc 	= ∅} ≤
n−1∑
k=1

dkP
{
Svk

≤ mk

n
− c

}

= O

(
n−1∑
k=1

et log9 n

)
= O(elogn+t log9 n) = O

(
e−(m′−m)).

�

For each integer b with a ≤ b ≤ c, we let Mb be the set of vertices v ∈ Nn for
which m−1 ≤ Sv ≤ m and for which {Sv abo −(b+1)} occurs but {Sv abo −(b+
1)} does not occur. We next define a subset of Mb which we call Mmid

b by saying
that vn ∈ Mmid

b if vn ∈ Mb and additionally, there is k with b57 ≤ k ≤ n − b57 for
which Svk

≤ mk/n−b. We extend this definition to all nodes v ∈ Nn by symmetry.
Similarly, for values k with k < b57 or with n − k < b57, we define a set Mk

b by
saying that vn ∈ Mk

b if vn ∈ Mb and additionally, k is the smallest value for which
Svk

≤ mk/n−b; again, we extend this definition to all nodes v ∈ Nn by symmetry.
The sets Mmid

b and {Mk
b : min(k, n − k) < b57} partition Mb. We now bound the

probabilities that these sets are nonempty.

CLAIM 18. P{⋃c
b=a{Mmid

b 	= ∅}} = O(et(m′−m)/11).

PROOF. Fix an integer b with a ≤ b ≤ c. By Lemma 12,

P{vn ∈ Mmid
b |m − 1 ≤ Svn ≤ m} = O

(
1

nb9

)
,

so by Theorem 1,

P{vn ∈ Mmid
b } = O

(
P{m − 1 ≤ Svn ≤ m}

nb9

)

= O

(
net(m′−m)

nb9dn

)

= O

(
et(m′−m)

b9dn

)
.
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By a union bound, it follows that

P{Mmid
b 	= ∅} = O

(
et(m′−m)

b9

)
,

so by summing over b with a ≤ b ≤ c, since a = e|t |(m′−m)/11 we obtain

P

{
c⋃

b=a

{Mmid
b 	= ∅}

}
= O

(
c∑

b=a

et (m′−m)

b9

)
= O

(
et(m′−m)

a10

)
= O

(
et(m′−m)/11)

.
�

CLAIM 19. P{⋃c
b=a

⋃b57−1
k=1 {Mk

b 	= ∅}} = O(e−(m′−m)).

PROOF. Fix b and k as above. For each node x at depth k, let Wx be the set of
descendents of x in Mk

b . By a union bound over Nk , P{Mk
b 	= ∅} ≤ dkP{Wvk

	= ∅}.
If Wvk

is nonempty, then necessarily mk/n − (b + 1) ≤ Svk
≤ mk/n − b. Since

k ≤ b57 ≤ c57 ≤ (logn)171,

mk

n
− b = �′(t)k + k

n
− b = �′(t)k − b + o(1).

It follows by Lemma 14 that

P{Wvk
	= ∅} = 	

(
P{Svk

≤ �′(t)k − b})
(77)

= O

(
etb

dk

)
.

By (77) and a union bound, we have that P{Mk
b 	= ∅} = O(etb), so by a second

union bound

P

{
c⋃

b=a

b57−1⋃
k=1

{Mk
b 	= ∅}

}
= O

(
c∑

b=a

b57etb

)
= O(a57eta) = O

(
e−(m′−m)).

�

CLAIM 20. P{⋃c
b=a

⋃b57−1
k=1 {Mn−k

b 	= ∅}} = O(e−(m′−m)).

PROOF. Fix b and k as above. For each node x at depth n − k, let Wx be the
set of descendants of x in Mn−k

b . By a union bound,

P{Mn−k
b 	= ∅} ≤ dn−kP{Wvn−k

	= ∅}.(78)

Suppose Wvr is nonempty—then necessarily

m(n − k)

n
− (b + 1) ≤ Svn−k

≤ m(n − k)

n
− b,

and in addition {Svn−k
abo − b} must occur (or else n − k is not the first time the

random walk ending at vn falls b below its conditional mean). Now, by Theorem 1,
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since  ≥ (3 logn)/2t ,

P
{
Svn−k

≤ m(n − k)

n
− b

}
= P

{
Svn−k

≤ �′(t)(n − k) − (n − k)

n
− b

}

= 	

(
et((n−k)/n+b)

dn−k
√

n − k

)
= 	

(
et(+b)

dn−k
√

n

)
(79)

= O

(
netb

dn−k

)
.

Furthermore, by Lemma 11,

P
{
Svn−k

abo − b
∣∣∣m(n − k)

n
− (b + 1) ≤ Svn−k

≤ m(n − k)

n
− b

}
(80)

= O

(
b9

n − k

)
= O

(
b9

n

)
.

Combining (79) and (80) yields that

P{Wvn−k
	= ∅} = O

(
b9etb

dn−k

)
= O

(
e9 logb+tb

dn−k

)
,

which combined with (78) implies that P{Mn−k
b 	= ∅} = O(e9 logb+tb). Just as in

the proof of Claim 19, summing this bound over b and k yields the result. �

We are now prepared for:

PROOF OF LEMMA 15. It is immediate from the definitions of the sets Aa ,
Hc, Mmid

b and Mk
b that any vertex v ∈ Nn with m − 1 ≤ Sv ≤ m is either in Aa ,

or in Hc, or in Mmid
b (for some integer a ≤ b ≤ c), or in Mk

b (for some integer
a ≤ b ≤ c and some integer k for which either 1 ≤ k ≤ b33 or h − b33 ≤ k ≤ h).
Applying Claims 16–20, respectively, to bound each of these events, it follows that

P{∃v ∈ Nn :m − 1 ≤ Sv ≤ m} = O
(
e9t (m′−m)/10) + O

(
e−(m′−m))

+ O
(
et(m′−m)/11) + O

(
e−(m′−m))

+ O
(
e−(m′−m))

= O
(
e−min(|t |/11,1)(m′−m)),

so the bound of Lemma 15 holds as long as we choose δ1 so that 0 < δ1 ≤
min(|t |/11,1) and choose C1 large enough. �

6. Proof of Theorem 3. By Corollary 10, there exist C1 > 0, δ1 > 0 such that
for all x > 0,

P{Mn ≥ m′ + x|S} ≤ C1e
−δ1x.
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By Lemma 13 and Bayes’ formula, there exist C2 > 0, δ2 > 0 such that for all
x > 0,

P{Mn ≤ m′ − x|S} ≤ P{Mn ≤ m′ − x}
P{S} ≤ C2

P{S}e
−δ2x.

Taking C4 = max{C1,C2/P{S}} and δ = min{δ1, δ2}, we obtain that for all x > 0,

P{|Mn − m′| ≥ x|S} ≤ C4e
−δx.

It follows immediately that

|E{Mn|S} − m′| ≤ E{|Mn − m′||S} ≤
∞∑
i=0

P{|Mn − m′| ≥ i|S}

≤ C4

1 − e−δ
,

proving (7); and letting  = C4/(1 − e−δ), for all x > 0 we have

P
{|Mn − E{Mn|S}| > x|S} ≤ P{|Mn − m′| > x − |S} ≤ C4e

δe−δx,

so (8) holds with this choice of δ and with C = C4e
δ .
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