
Minimal Assignments for Bounded Model Checking�

Kavita Ravi1 and Fabio Somenzi2

1 Cadence Design Systems
kravi@cadence.com

2 University of Colorado at Boulder
Fabio@Colorado.EDU

Abstract. A traditional counterexample to a linear-time safety property shows
the values of all signals at all times prior to the error. However, some signals
may not be critical to causing the failure. A succinct explanation may help human
understanding as well as speed up algorithms that have to analyze many such
traces. In Bounded Model Checking (BMC), a counterexample is constructed
from a satisfying assignment to a Boolean formula, typically in CNF. Modern SAT
solvers usually assign values to all variables when the input formula is satisfiable.
Deriving minimal satisfying assignments from such complete assignments does
not lead to concise explanations of counterexamples because of how CNF formulae
are derived from the models. Hence, we formulate the extraction of a succinct
counterexample as the problem of finding a minimal assignment that, together
with the Boolean formula describing the model, implies an objective. We present a
two-stage algorithm for this problem, such that the result of each stage contributes
to identify the “interesting” events that cause the failure. We demonstrate the
effectiveness of our approach with an example and with experimental results.

1 Introduction

The success of model checking as a verification technique for both hardware and software
depends to a large extent on the counterexamples that are produced for failing properties.
However, the time consuming process of devising appropriate stimuli to test a model is
often replaced by the laborious interpretation of the error trace returned by the model
checker. For circuits with many inputs and outputs, analyzing an execution trace—be it
a counterexample or a witness—may require examination of thousands of events. Not
all these events are important, as in Fig. 1, where the “full” trace produced by the model
checker is shown alongside a “reduced” counterexample from which irrelevant events
have been removed.

The traces of Fig. 1 describe the solution to a puzzle obtained by model checking a
property claiming that no solution exists. Four children (A, B, C, and D) must cross a
river over a bridge that can be passed by only two children at the time. They have only
one flashlight, which is needed to pass the bridge. When two children cross the river
together, they walk at the speed of the slower one. Given the speeds of the children (1,
2, 4, and 5 minutes for A, B, C, and D, respectively) one seeks the quickest way for all
four to cross the river. The model of the puzzle keeps track of the location of the children
� This work was supported in part by SRC contract 2003-TJ-920.

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 31–45, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



32 K. Ravi and F. Somenzi

full reduced
time left / right m-t-dest sel1 sel2 left / right m-t-dest sel1 sel2

0 ABCDL/ 0 A B ABCDL/ 0 A B
1 CD/ABL 1 B A CD/ABL 1
2 CD/ABL 0 B A CD/ABL 0 B
3 BCDL/A 1 B A BCDL/A 1
4 BCDL/A 0 C D BCDL/A 0 C D
5 B/ACDL 4 A C B/ACDL 4
6 B/ACDL 3 A C B/ACDL 3
7 B/ACDL 2 B A B/ACDL 2
8 B/ACDL 1 A A B/ACDL 1
9 B/ACDL 0 A A B/ACDL 0 A A or B

10 ABL/CD 0 A B ABL/CD 0 A B
11 /ABCDL 1 B A /ABCDL 1
12 /ABCDL 0 /ABCD 0

Fig. 1. Two ways to present a counterexample. The values of a variable that have not changed
since the previous time are shown in gray

and the light. When a child starts crossing the river, her location is immediately changed
to reflect her destination, and a counter (m-t-dest) is started to keep track of how many
minutes are needed to reach the destination. The model uses two inputs (sel1 and sel2)
to choose one or two children who are to cross the river. A child may be chosen only
if she is on the same bank as the flashlight. Moreover, the second child must be slower
than the first. If, for example, sel1=B and sel2=A, as in the “full” example at time 2,
then only B crosses the river.

Examination of the reduced trace shows that the selection inputs are only relevant
when m-t-dest is 0. It also shows that at time 2 the value of sel2 is immaterial, given that
sel1=B: Since A is faster than B, and C and D are on the opposite bank to the flashlight,
B will go alone back to the left bank. At time 4, the slowest children C and D will carry
the flashlight to the right bank. At time 9, C and D are slower than A and on the same
bank. Hence, for A to go alone, sel2 must be neither C nor D. Finally, the position of
the flashlight at time 12 is irrelevant, since the objective has been achieved. By contrast,
the “full” output of the model checker shows many needless transitions, for instance,
at time 5 for both sel1 and sel2. The elimination of irrelevant events can substantially
simplify the designer’s task, and is the subject of this paper.

In SAT-based Bounded Model Checking (BMC), the set of counterexamples to a
linear-time property is the set of solutions to a satisfiability (SAT) problem. A solution
to a SAT problem is an assignment of values (1 and 0, or true and false) to the variables
of a Boolean formula. A partial assignment will sometimes do: for instance, a = 1
is sufficient to satisfy (a ∨ b) ∧ (a ∨ c). However, modern SAT solvers usually return
complete assignments. Fig. 1 witnesses that they also pay no attention to minimizing
input changes over time. In both cases, the speed of the solver would likely suffer if
additional concerns were added to the basic one of finding a solution. In addition, SAT



Minimal Assignments for Bounded Model Checking 33

solvers are not designed to produce minimal solutions. Hence, detecting and removing
unnecessary values from an assignment is best done as a post-processing.

Since many problems can be cast as SAT problems, finding minimal satisfying as-
signments to CNF formulae may have several applications. Hence, in Sect. 3, we describe
that problem in some depth. In Sect. 4, however, we show why the minimization of model
checking counterexamples should not be formulated that way, and present a computa-
tion of minimal counterexamples in two steps. The one described in Sect. 4.4 provides a
stepping stone to the final solution, and is guaranteed to be verifiable by three-value sim-
ulation. In Sect. 5, we discuss related work. Section 6 reports experiments, and Sect. 7
concludes with a summary and future directions.

2 Satisfiability Solvers

An assignment A for a Boolean formula F over variables V is a function from V to
{0, 1}. An assignment A is total if the function is total; otherwise it is partial. An
assignment A′ is compatible with assignment A if A′ ⊆ A. A satisfying assignment A
for a formula F is one that causes F to evaluate to true. A minimal satisfying assignment
A for a Boolean formula F is a satisfying assignment such that no A′ ⊂ A satisfies F .
A minimal satisfying assignment for F corresponds to a prime implicant of F .

A least-cost assignment can be defined by assigning costs to the variables. Given
an assignment A satisfying F , a least-cost (least-size) assignment compatible with A is
a cheapest (smallest) subset of A that still satisfies F . Finding a least-size assignment
compatible with an assignment A corresponds to finding a largest cube of F that contains
A or, equivalently, a minimal blocking clause of F [9].

Given a Boolean formula F , the SAT problem involves finding whether a satisfying
assignment for F exists. This problem is NP-complete when F is in circuit form or is in
Conjunctive Normal Form (CNF). However, due to the wide variety of applications of
this problem, much research has been spent in developing fast and efficient SAT solvers.

A SAT solver typically computes a total satisfying assignment for F , if one exists,
otherwise returns an UNSATISFIABLE answer. In a SAT solver a Boolean formula F is
usually represented in CNF. For instance,

f = (a ∨ b) ∧ (¬b ∨ d) . (1)

A CNF formula is a conjunction of clauses. A clause is a disjunction of literals. A literal
is a variable or its negation. In the sequel, it is also convenient to consider the CNF
formula as a set of clauses and a clause as a set of literals. The literals in f above are
a, b, ¬b, and d; b and ¬b are the positive and negative literals (or phases) of variable
b. The clauses of the formula are (a ∨ b) and (¬b ∨ d). A satisfying assignment for f
is {(a, 0), (b, 1), (d, 1)}. It is also convenient to use literals to designate variable-value
pairs. For example, the above assignment is the set of literals {¬a, b, d}.

A literal l is true in assignment A if l ∈ A; it is false in A if ¬l ∈ A. A clause is
satisfied by an assignment when at least one of its literals is true. A clause is conflicting
if all of its literals are false. A clause that is neither satisfied nor conflicting is undecided.
A unit clause consists of a single literal. A pure literal of a CNF formula F is a variable
that has the same phase in all the clauses of F in which it appears.



34 K. Ravi and F. Somenzi

A new family of SAT solvers [12,14,10,7] have evolved that incorporate engineering
advances atop the basic DPLL algorithm [6,5] and can solve many industrial-strength
problems in applications such as BMC. The optimizations include non-chronological
backtracking, conflict-driven learning, and efficient Boolean constraint propagation us-
ing the two-literal watching scheme. (Refer to [15] for a survey.) We discuss our problem
and solution in the context of the Zchaff solver.

Boolean Constraint Propagation: Implications in these SAT solvers are computed
using Boolean Constraint Propagation (BCP). Each clause, except unit clauses, contains
two literals that are marked as watched literals [14,10]. In computing the satisfying
assignment, the SAT solver makes decisions or assignments by setting values to variables.
As decisions are made, a clause is updated only if one of the two watched literals in the
clause is rendered false by the decision. The clauses in which the false literal is watched
are examined to find another literal to watch instead. If such a literal is not found, then
the other watched literal is implied (unit clause rule). The clause then becomes the
antecedent clause of the implication. This implied value is again propagated using BCP.

Implication Graph: Given a satisfying assignment of a CNF formula, and a subset
of the assignment marked as decisions, one can construct an implication (hyper-)graph,
GI = (V, E). The nodes of this graph V represent the literals of the assignment and
the roots represent the decisions. Each directed hyperedge E ⊆ 2V × V represents an
implication, caused by an antecedent clause. A vertex (literal) can be the destination of
multiple hyperedges, associated with multiple antecedent clauses. Equation 1 yields the
following implication graph if ¬a is marked as decision.

¬a −→ b −→ d

The literal ¬a is the root of this graph. The first implication is caused by the antecedent
clause (a ∨ b) and the second implication is caused by (¬b ∨ d).

3 Minimal Satisfying Assignments for CNF Formulae

When a SATISFIABLE answer is found in a SAT solver, all variables are assigned a
value by either a decision or an implication, and at least one watched literal in each
clause is true. The two watched-literals scheme is critical for the efficiency of BCP:
It drastically reduces the number of clauses examined when a variable is updated. For
efficiency, the SAT solver does not keep track of the information required to detect a
partial assignment that is sufficient for the satisfaction of the formula. In any case, even
the termination criteria that check for the actual satisfaction of the formula (in either
CNF or circuit form), rather than checking for complete assignments, do not guarantee
a minimal satisfying assignment. (The assignments made after all clauses have been
satisfied are certainly redundant, but some assignments made before may also be.) It
is therefore interesting to discuss how SAT algorithms may be modified to meet that
requirement. It is also interesting to discuss the related issue of generating least-size
assignments.

Candidate Variables: Lifting is the process of removing literals or, equivalently,
variables from a satisfying assignment such that for each valuation of the lifted variables
the formula is still satisfied. Recall that implied variables result from BCP applied to



Minimal Assignments for Bounded Model Checking 35

decisions. It can be easily proved that implied variables cannot be lifted: Only decision
variables can be lifted. The literals in the unit clauses are considered to be implications,
hence cannot be lifted; the pure literals, on the other hand, are not implications.

Negligible variables and greedy removal: The observation that when a satisfying
assignment is found, at least one of the two watched literals in a clause must be true
can be used to lift some literals. For each literal, the SAT solver maintains the list of
clauses in which the literal is watched. The literals in the satisfying assignment that have
empty lists and that do not appear in unit clauses can be removed from the satisfying
assignment. All these negligible variables can be lifted simultaneously. Notice that none
of the negligible variables are implied. Further lifting may be achieved by marking one
true literal for each clause. All literals in the assignment that remain unmarked after
all clauses are scanned can be lifted. Neither the negligible-variable approach nor the
greedy approach yields a minimal assignment.

Brute-Force Lifting: One can check the possibility of lifting the remaining vari-
ables by flipping the value of each candidate variable while retaining the rest of the
assignment, and checking satisfiability of the formula. If the formula is satisfiable, the
variable can be lifted and the formula updated by dropping the literals associated with
this variable (universal quantification of this variable from the formula). The resulting
minimal assignment depends on the order in which the variables are considered and is
not necessarily of least-cost.

CoveringApproach: Least-cost assignments can be found by solving covering prob-
lems. A covering problem consists of minimizing

∑
1≤i≤n ci · xi, subject to constraint

Γ (x1, . . . , xn) = 1, where Γ is a Boolean formula, and the costs ci’s are non-negative
integers. We assume that Γ is in CNF. If all variables in Γ are pure literals, we talk
of unate covering; otherwise, of binate covering. Unate covering is also known as set
covering. Covering problems can be solved by generic 0-1 integer linear program solvers
[11], or by dedicated algorithms based on branch and bound [3].

A unate covering problem may be solved to find a least-cost solution compatible with
a starting assignment, while one independent of any particular satisfying assignment
from the SAT solver can be obtained by solving a binate covering problem with one
variable per literal in the CNF formula.

The above described techniques may be useful toward deriving minimal assignments
that are sufficient to show the satisfiability of the given formula. The removal of neg-
ligible variables and the greedy scheme are fast and efficient. Brute-force lifting can
be implemented in time quadratic in the size of the CNF formula. Finally, the covering
approach is expensive, especially when seeking a globally least-cost solution.

4 Bounded Model Checking and Minimal Assignments

In this section, we first introduce Bounded Model Checking and then discuss the problem
of minimal assignments for concise counterexamples.

4.1 Bounded Model Checking

Bounded model checking [1] is a technique to find bounded-length counterexamples to
linear time properties. Recently, BMC has been applied with great success by formulating



36 K. Ravi and F. Somenzi

it as a SAT instance and solving it with the improved SAT solvers mentioned in Sect. 2.
For simplicity, we only discuss invariant properties here.

We consider finite systems given as circuits composed of memory elements and
combinational gates. Nondeterminism in these circuits is only due to primary inputs.
Let T (X, W, X ′, U) be the formula for the transition relation where X , W , X ′, and U
are sets of variables representing the present states, primary inputs, next states, and gate
outputs of the system. The timed version Ti(Xi, Wi, Xi+1, Ui) represents the transitions
between the i-th and the (i + 1)-th step of the system.

Given a system with a Boolean formula I representing the initial states, a Boolean
formula Ti(Xi, Wi, Xi+1, Ui) representing the i-step transition relation and an invariant
with a Boolean formula Pk representing the failure states at step k, the length-k BMC
problem is posed as a SAT instance in the following manner:

F = I ∧ Pk ∧
∧

0≤i<k

Ti(Xi, Wi, Xi+1, Ui) . (2)

We assume that a Boolean formula is translated into CNF by introducing intermediate
dependent variables in the standard fashion. If the property may fail in k transitions,
the SAT solver computes a satisfying assignment that describes a counterexample to
the property. If the SAT solver produces a total assignment, all variables of the system
appear in the counterexample.

4.2 Motivation and Definitions

Applying the techniques described in Sect. 3 to minimize the set of variables in the coun-
terexample to the BMC problem does not give much reduction in the number of variables.
The experiments we performed using these methods yielded 2% to 7% reduction. We
explain the poor performance with the following example.

Example 1. Consider a tautologous circuit with input a, output g1, and such that g1 =
a ∨ g0 and g0 = ¬a. Suppose that a SAT solver is given the following CNF formula to
prove that g1 can be set to 1:

F = (a ∨ g0) ∧ (¬a ∨ ¬g0) ∧ (¬g0 ∨ g1) ∧ (¬a ∨ g1) ∧ (a ∨ g0 ∨ ¬g1) ∧ g1 .

Suppose the solver propagates g1 = 1, decides a = 1, which in turn implies g0 = 0.
This is minimal because the satisfying assignment has to express that the inverter output
is consistent with its input. Hence, it must contain both a and g0, though ∃g0 . F = g1
does not depend on a. The intermediate variable g0 constrains the satisfying assignment
beyond what is required to justify the objective g1.

The example shows why the methods of Sect. 3 are not appropriate for the compu-
tation of concise counterexamples: A counterexample shows a sequence of transitions
from the initial states to the failure states; the most important event in the counterex-
ample is the failure. Hence, “events” implying the failure are primary for the purpose
of debugging, whereas the others convey secondary information. We want to distill the
primary events out of a counterexample. Further, a user may choose to only see events



Minimal Assignments for Bounded Model Checking 37

related to an “interesting” set of variables. Our formulation is aimed at extracting an
assignment that implies the failure with a minimal set of “interesting” events, excluding
those that have no bearing on the justification of the objective.

To formalize these notions, we assume that we are given a satisfying assignment to
(2) and another formula

F̂ = Pk ∧
∧

0≤i<k

Ti(Xi, Wi, Xi+1, Ui) . (3)

We want the ability to lift the initial state literals in the satisfying assignment to focus
attention on those memory elements that are important to the counterexample. Hence, I
is absent from (3). Sometimes, a bounded model checker will add additional constraints
to (2) such as the non-existence of counterexamples of length less than k (

∧
0≤i<k ¬Pi)

to aid the SAT solver. It is important that these constraints be absent from (3) for maximal
freedom in lifting variables in the satisfying assignment. Each gate in the circuit, which
corresponds to a subformula, translates to a set of CNF clauses. We assume that the given
CNF is such that in each clause not in Pk, we can identify the literals that correspond to
the inputs and output of the gate that produced it.

We assume that we are given a set of roots R ⊆ V that correspond to the inputs
to the unrolled circuit in the BMC problem. These roots R form a set of independent
variables in the formula, in the sense that

∧
0≤i<k Ti is satisfiable for every assignment

to the variables in R. The values of the remaining variables V \ R in
∧

0≤i<k Ti are
determined by the valuation of R. In the BMC context, the roots are the variables
representing the initial states (X0) and the inputs (Wi, i < k). The user may mark some
variables S ⊆ V \ R as interesting. Typically, these are the state variables of the system
and therefore, of interest in the counterexample.

An objective of the formula is defined as a set of clauses whose variables are non-
overlapping with the set of roots R. For the sake of discussion, we assume that an
objective o is represented by a unit clause (a single literal) in the formula1. Henceforth,
we will refer to o and the literal in o interchangeably. The objective denotes conditions
that must be implied by the minimal assignment. In the BMC problem, the objective o
is a literal stating the failure of the formula at step k, Pk.

4.3 Lifting for a Minimal Assignment

In this section, we describe the lifting of literals from the given satisfying assignment A
relative to the objective o. We adapt the brute-force lifting method described in Sect. 3.
This is a powerful method to eliminate literals that yields a minimal assignment, albeit
order-dependent. Instead of lifting a literal if the resulting assignment still satisfies the
given formula, here we want to lift a literal if the resulting assignment is still sufficient
to imply the objective.

The procedure is described in Fig. 2. The arguments to this procedure are the formula
of (3), F̂ , the objective o, the root literals in the original assignment, AR, and the

1 There is no loss of generality in this assumption as we can augment the formula with the
definition of the literal o representing the conjunction of the clauses in the objective and adding
the literal itself to the formula.



38 K. Ravi and F. Somenzi

interesting literals in the original assignment, AS . The lifting of roots is tried first. For
each root literal l, the negation of the objective o is asserted in place of o in F̂ . Let∧

(AR \ {l}) denote the conjunction of literals in AR except l. A satisfiability check
(SAT Solve(F ′)) whether the literals in AR except l together with the formula F̂ fail to
imply the objective o. If the check results in a satisfiable assignment, then l cannot be
lifted; otherwise, both l and ¬l imply the objective and can therefore be lifted from the
existing assignment AR. AR is then updated by removing the lifted literal.

Once the lifting of the roots is determined, the remaining variables in AS are checked
for an implied value. If a variable in AS can take both values due to the reduced set of
roots AR, then it is not added to the assignment A′, else it is. The value of this variable
in the original complete assignment is known to be possible. An additional SAT check
determines whether the opposite value is consistent with the current partial assignment.
Since R is an independent set, F̂ is satisfiable for any value of the lifted roots. By
contrast, since S is dependent on R, all we can say about the absent variables of S in A′

is that they take different values as the values of the lifted roots are changed. Unlike the
literals in AR, those in AS \A′ are not really lifted according to our definition: They are
simply not implied by the partial root assignment.

Brute Force Lifting(F̂ , o, AR, AS)
F ′′ = substitute o with ¬o in F̂ ;
for each literal l in AR

F ′ = F ′′ ∧ ∧
(AR \ l);

if (SAT Solve(F ′) �= SATISFIABLE) AR = AR \ l ;
A′ = AR;
for each literal l in AS

F ′ = F̂ ∧ ¬l ∧ ∧
A′;

if (SAT Solve(F ′) �= SATISFIABLE) A′ = A′ ∪ l;
return A′;

Fig. 2. Brute-force lifting algorithm

This method of lifting roots is effective in deriving a minimal satisfying assign-
ment and isolating the primary events responsible for the failure of a property. Such
a counterexample may help in more effective debugging as in the example of Fig. 1.
Sometimes, however, the resulting counterexample may have discontinuities due to the
missing values of S variables, thereby requiring some reconstruction by the user. Con-
sider, for instance, a gate g2 = (g0 ≡ g1) such that, under the minimal assignment
A′, both {g0, g1} and {¬g0, ¬g1} are possible for some values of the lifted roots, but
{g0, ¬g1} and {¬g0, g1} are not possible. Then A′ would contain g2, but no literal for
either g0 or g1. In cases like these, it is useful to have an intermediate counterexample
where the trace has fewer holes yet lifts to the counterexample generated by Fig. 2. Ide-
ally, the intermediate counterexample should be three-valued simulatable (see Sect. 4.4)
for easy interpretation and validation.



Minimal Assignments for Bounded Model Checking 39

To prove that lifting a root does preserve the implication of the objective, the brute-
force lifting algorithm goes through a sequence of unsatisfiability checks. This prevents
the application of universal quantification after a successful lifting, which is what keeps
the satisfiability checks trivial and ultimately gives quadratic complexity to the lifting
algorithm of Sect. 3. The lifting procedure of this section requires solving one SAT
instance (one SAT Solve() call) per candidate variable. This may be expensive but it is
possible to solve the multiple SAT Solve() calls incrementally. Also, the variables of AS

implied by BCP of the reduced set of roots need not be considered for lifting. On the
other hand, an intermediate assignment, if cheap to compute, can reduce the number of
calls to SAT Solve() by providing a smaller assignment to start with. This is indeed true
of the intermediate assignment proposed in the following section.

4.4 Implication Graph and a Covering Solution

In three-valued logic simulation of a circuit, a signal has one of three values: 0 (false), 1
(true), and X (unknown). Boolean operators are extended to the three-valued domain in
a conservative manner. For instance, a ∨ ¬a = X if a = X . As a consequence, if three-
valued simulation assigns a signal in a combinational circuit value 0 or 1 for a certain
input assignment, then that signal is guaranteed to have the same value under all possible
replacements of X’s by 0’s and 1’s. One easily sees that BCP in a SAT solver is closely
related to three-valued simulation when “undecided” is interpreted as “unknown.” In
particular, three-valued simulation of a partial assignment to a CNF formula will imply
the value of the objective if and only if BCP does.

An assignment that can justify the objective by pure BCP has two important advan-
tages: On the one hand, it can be understood by a designer by a sequence of easy, local
steps. On the other hand, it can be verified in linear time by widely available independent
tools. The drawback of a three-valued simulatable assignment is, of course, that it may
not be minimal.

We obtain a three-value simulatable partial assignment from the original assignment
A produced by the SAT solver using an implication graph. Consider the implication
graph where the roots are AR, the root literals in the original assignment. We view these
as decisions since they are literals of the independent set R. Note that this implication
graph must contain the objective o since o is in A and is part of the dependent set.
Therefore, we can use this implication graph to obtain a subset of AR and the interesting
variables AS that transitively imply o. This is closely related to the work of [9] where a
similar technique is used to enumerate a cover of the formula in terms of a defined set
of roots (primary inputs and state variables). Our work is applied in a different context
and is extended as explained below.

Our method is described in Fig. 3. The arguments to this procedure are the formula
F̂ from (3), A, AR, o, and a cost function described below. First, the literals in AR are
added to the formula F̂ . The next step involves deriving the input-to-output implications.
Implications where the implied literal is the output of a gate are valid input-to-output
implications. (Note that the constructed CNF is such that there is only one output literal
per clause.) The part of the implication graph that leads to o is traced with a backward
search from o to the roots. (The input-to-output implication derivation can be combined
with this backward step.) The resulting hypergraph G is a connected sub-graph of GI



40 K. Ravi and F. Somenzi

since F ′ is constructed from a Boolean formula representing a circuit and o is a net in
the circuit.2 Its roots are a subset of AR and its nodes are a subset of V . The nodes of G
form a lifting of the original assignment A.

Implication Graph Based Lifting(F̂ , A, AR, o, weights)
F ′ = F̂ ∧ ∧

AR;
GI = derive input-to-output implications (F ′);
G = trace graph backwards(GI , o);
B = formulate binate covering problem(G);
B′ = Binate Covering Solver(B, weights);
A′ = map B′ onto literals of A;
return A′;

Fig. 3. Binate covering-based lifting algorithm

If G is a hyper-graph with at least one set of multiple implications to a literal, it is
possible to further lift literals from the assignment. For this, we use a binate covering
solver with a user-defined cost function weights that is

∑
1≤i≤n ci · xi, xi ∈ AR ∪ AS .

The cost function describes the relative importance of the variables to be lifted. For
example, a large ci associated with a root variable will result in it being lifted rather than
a variable with a small ci. Our goal is to lift as many roots as possible in order to identify
those roots that are critical in implying the objective.

The covering problem is formulated thus: Each node of the graph corresponds to a
variable. The variable is 1 if the node is in the subgraph that is selected. A subgraph must
satisfy the following constraints, which guarantee that the objective is satisfied: (1) The
objective variable must be true. (2) If a variable is true, and it is not in AR, then all the
variables of at least one hyperedge into it must be true.

As a simple example, if the objective is a, and a is implied by b ∧ c, or by c ∧ ¬d in
the implication hypergraph, the constraints are

a ∧ (a → c ∧ (b ∨ ¬d)) = a ∧ c ∧ (b ∨ ¬d) .

The optimal solution depends on the costs of b and d.
The result of the binate covering solver is mapped to a satisfying assignment A′ by

picking the literals corresponding to the variables in B′ from A. The result of Fig. 3 is
a least-cost assignment that forms a connected subset of nodes in the implication graph
G from the roots to the objective.

Such an assignment is three-valued simulatable. It can be presented to the user as a
series of implications that lead to the error. The counterexample is easy to understand,
yet pruned of the irrelevant implications. There are fewer variables to pay attention to.

Though the restriction to three-valued simulatability means that the implication graph
approach is incomplete, it may remove literals from the assignment that the lifting

2 Here is where we depart from the approach of [9], which is based on a simple graph or,
equivalently, a hypergraph in which the in-degree of a node is at most 1.



Minimal Assignments for Bounded Model Checking 41

approach would retain. The latter never discards from AS a literal l implied by the
roots in A′. By contrast, the implication graph approach may do so when the value of l,
although known, is immaterial to the objective. An example is provided by the location
of the flashlight at time 12 in Fig. 1.

The implication graph in a SAT solver alone cannot exclude that a certain variable
may be lifted. For instance, the implication graph for Example 1 has one root, a, and
two leaves, ¬g0 and g1. Tracing back from the objective g1 shows that {a} is sufficient
to imply g1; however, this is not minimal. On the other hand, if we rewrote F as g1 ∧
(a ∨ g0) ∧ (¬a ∨ ¬g0) to highlight that g1 is implied by F , the implication graph would
have no edges, and the minimal empty assignment would be found.

The implication graph derived in the SAT solver is closely linked to the representation
of the circuit and to the translation of the design into the CNF formula. A redundant
circuit, an inefficient translation or state encoding may mask several implications.

Example 2. An 8-state finite state machine is shown in Fig. 4. The machine has one input
i. Each transition is annotated with the values of i that enable it. The three binary state
variables, c, b, and a, form the state vector state. If one is interested in the reachability
of G, the most interesting event, or objective, is the state vector taking value G; the
primary events of interest are those that are critical to causing it. It is easily seen that all
paths of length 3 from A lead to G. Hence, a minimal witness to the reachability of G in
terms of initial state and primary inputs is {¬c0, ¬b0, ¬a0}. (Each subscripted variable
represents the value of that variable at the time step of the subscript.)

Suppose we start with the following solution obtained by the SAT solver after quan-
tification of the internal variables: {¬c0, ¬b0, ¬a0, i0, ¬i1, ¬i2}. This corresponds to the
path A → C → E → G in Fig. 4. We analyze the implication graph caused by this
assignment in the SAT solver whose leaf is the literal representing G in the third step and
whose roots are the initial states and inputs. It shows that i2 and i1 can be lifted. Knowing
that the second state of the path is C is enough to infer that {c2, ¬b2}, which in turn is
enough to infer that the objective is satisfied. This works because E and F have adjacent
encodings. If we look at the internal nodes in the implication graph corresponding to
{¬c0, ¬b0, ¬a0, i0} we find that a2 is not included. That is, we have the path

D

111 001 101

000

1 0

1
F

GEA

B

100

110010

−
−

−−0

−

011

CH

−

Fig. 4. State diagram for minimal error trace ex-
ample

D

001 101

000

1 0

1
F

GEA

B

100

110011

−
−

−−0

−

010

C

−

111

H

Fig. 5. Another state diagram for minimal error
trace example



42 K. Ravi and F. Somenzi

A → C → {E, F} → G .

However, we cannot lift i0, for we would not know b1 and a1, and consequently
lose track of the fact that we are making progress toward G. Now let us change the
implementation of Fig. 4 as shown in Fig. 5. From state = A we can imply state = {B, C}
at the next time, because B and C have adjacent encodings, and from state = {B, C} we
can imply state = {D, E, F, H} at the next time. Finally, from state = {D, E, F, H}
we can imply state = G at the next time. (All without making assumptions about i.) This
corresponds to the path

A → {B, C} → {D, E, F, H} → G .

Note the importance of changing the successor of the unreachable state H .

In terms of run time, Implication Graph Based Lifting() involves deriving input-
output implications (cost is proportional to the size of the formula), one pass over the
implication graph backwards from o, which can be combined with the formulation of
the Binate Covering Problem, and one call to the Binate Covering Solver. In practice,
the combination of these three steps is often cheaper than the Brute Force Lifting()
algorithm for large CNF formulae. The assignment A′ can be provided as an argu-
ment A to the Brute Force Lifting() algorithm. As discussed in Sect. 4.3, the expense
of lifting may be mitigated by the reduction of literals by the algorithm in Implica-
tion Graph Based Lifting().

The techniques of Fig. 2 and Fig. 3 complement each other. While the former is
powerful, is unaffected by translation inefficiencies and is effective in finding the conse-
quences of the primary events responsible for causing failure, the latter counterexample
is three-valued simulatable, eliminates events that are implied but have no bearing on
the achievement of the objective, and can serve as a guide in interpreting the result of
the former by filling some holes.

5 Related Work

As mentioned in Sect. 4.4, the work of McMillan [9] is related to our lifting based on
analyzing the implication graph. While his work applies this technique toward enumer-
ating a cover, our work applies it to making traces more understandable. We extend this
technique by minimizing the set of implications that justify the objective using a binate
covering solver to find a minimal cover of a hypergraph. Brute-force lifting as described
in Sect. 4.3 is also feasible since we only need one satisfying assignment.

In general, our problem is related to Quantified Boolean Formulae in terms of ex-
istentially quantifying the non-interesting variables but is different in that we have the
notion of an objective, weights assigned to different variables, and causality between the
inputs (roots) and the output (objective).

Minimization of counterexamples is addressed in [8]. The authors there distinguish
between “control” and “data” signals in the counterexample and try to obtain long
segments of the counterexample in which the data signals have don’t-care values. Our
work does not need the partition of control and data signals. The advantage of our



Minimal Assignments for Bounded Model Checking 43

method is that when segments with data signal don’t-cares do not exist, different don’t
cares (perhaps control signals) will be extracted. On the other hand, the disadvantage is
that even if long segments of data don’t-cares exist, this algorithm may not find them
since it has no control on which don’t cares are found.

Minimization of counterexamples is useful in the context of abstraction-refinement
[4]. Refinement is often more effective when it is based on the simultaneous elimination
of a set of counterexamples rather than on elimination of one counterexample at a time
[13]. Therefore, our technique can be applied in this context also.

6 Experimental Results

We implemented the algorithms of Sections 4.4 and 4.3 by modifying Zchaff and its
interface to the model checker Vis [2]. The lifting based on the implication graph mech-
anism of Fig. 3 uses the binate covering solver Mincov [3]. The algorithm described in
Fig. 2 is implemented in a non-incremental manner.

To enable lifting, Vis generates an auxiliary file that contains the roots R, interesting
variables S, and the objective o. The R variables are the inputs of all the time frames
and the initial state variables. The S variables contain the state variables over the various
time frames. In case a satisfying assignment is found, this file is read by the SAT solver
to perform the lifting algorithm described in Sect. 4.4. The cost of each variable in R
is 1 and the cost of each variable in S is 0. The result of this algorithm is used as the
starting point of the algorithm as described in Sect. 4.3.

Table 1. Experimental results of lifting based on Fig. 3 and Fig. 2

Example Vars CE Original Mincov Heuristic Optimal
mincov lift mincov

R S Time R S Time R S Time R S Time
s1269b 67 3 12 21 0.01 0.50 0.71 0.00 0.50 0.71 0.00 0.50 0.71 0.00

avq 388 3 30 102 0.03 0.20 0.15 0.05 0.10 0.09 0.01 0.20 0.15 0.04
min 536 3 6 15 0.03 0.67 0.87 0.01 0.50 0.53 0.03 0.67 0.87 0.01
river 1952 5 32 67 0.12 0.66 0.69 0.04 0.47 0.42 0.88 0.66 0.69 0.05

vending 4266 2 35 93 0.23 0.57 0.35 0.03 0.46 0.26 0.63 0.57 0.35 0.05
flashlight 6110 12 56 152 4.45 0.93 0.97 0.10 0.46 0.80 14.17 0.93 0.97 0.09

b10 13466 8 103 223 1.33 0.59 0.58 0.20 0.17 0.33 19.25 0.57 0.52 0.19
b13 14073 10 52 372 0.83 0.38 0.42 0.58 0.29 0.34 25.81 0.31 0.36 8.44
b05 20238 7 33 215 1.23 0.58 0.71 0.54 0.12 0.53 13.74 0.21 0.49 0.55

s1423 30212 61 1105 5253 26.66 0.49 0.35 3.94 0.28 0.29 2336.92 — — >2h
b09 30650 20 47 587 1.92 0.30 0.40 0.43 0.09 0.30 44.78 0.21 0.39 0.46
ns1 43756 8 184 632 14.95 0.48 0.42 0.70 0.25 0.26 562.42 0.48 0.42 0.73
b07 56456 28 57 869 5.24 0.51 0.31 2.06 0.05 0.20 208.21 0.51 0.31 2.06

usb phy 71105 36 544 3280 19.87 0.22 0.31 1.82 0.14 0.26 1047.56 0.21 0.31 1.81
blackjack 117377 13 168 1507 54.38 0.60 0.27 1.94 0.48 0.15 861.38 0.59 0.27 1.98
Average 0.51 0.50 0.29 0.37 0.47 0.49



44 K. Ravi and F. Somenzi

All experiments were run on a Sun Fire 280R machine with 2GB of memory. The
results are presented in Table 1. We ran 15 examples of varying sizes. The first column
presents the name of the example, the second column contains the number of variables
presented to the SAT solver, and the third column shows the length of the counterexam-
ple. Each set of three columns subsequently presents results for the original satisfying
assignment, results for the three-valued simulatable counterexamples from Fig. 3 and
results of further lifting based on Fig. 2, respectively. Both a heuristic and an exact
solution were extracted from Mincov. The last three columns show the results of the
exact solution. The three columns in each set give the number of root variables R in
the resulting assignment, the number of interesting variables S, and the time in seconds
taken to extract the assignments. The R and the S columns for the last three sets are
presented as the fractions of the original numbers of R and S literals in the “full” set.

The results in the table show that applying the algorithm of Sect. 4.4 can provide
as much as 80% reduction in the number of root literals and 85% reduction in the
number of interesting literals with the average reduction being 49% and 50% of the
original literals, respectively. The data for brute-force lifting are even more impressive,
the average reduction in root count being 71% of the initial literals. In most cases the
Mincov heuristic solutions result in reductions in literals comparable to those of the
optimal solutions and can be found quickly for all examples. Further, the run time of the
Implication Graph Based Lifting algorithm is often only a fraction of the original run
time and the subsequent lifting phase recovers most of the differences between heuristic
and exact solutions. We also compared the heuristic solution to a greedy selection of an
implication graph. The two methods produce similar literal reductions, but the greedy
selection puts a larger burden on the lifting algorithms, and is therefore slower.

The CPU times for the brute-force lifting of the literals are large due to the cost of one
call to SAT Solve() per candidate literal to be lifted. The performance of the brute-force
lifting method may improve by the use of an incremental SAT solver. Applying BCP in
the brute-force lifting algorithm to the the roots selected by binate covering may also
help decrease the run time by reducing the candidate literals.

7 Conclusions

We have discussed and presented algorithms for minimal satisfying assignments for CNF
formulae, both in general and in the context of Bounded Model Checking. Our experi-
ments show that our technique is effective in terms of reduction of literals. The reduced
counterexamples are often more instructive in debugging designs. Although lifting is
sometimes expensive, there is room for improvement of its performance. Besides, the
Implication Graph Based Lifting is quite effective in the reduction of literals.

In Example 2 of Sect. 4.4, the failing property states that G is never reached. This is
a form of vacuous failure, because, in fact, G occurs along all paths from the initial state.
Vacuity is related to the inputs’ playing no role in the failure of the property. The precise
nature of this connection remains the subject of future investigation together with the
extension to full LTL model checking.



Minimal Assignments for Bounded Model Checking 45

Acknowledgment. We thank Mohammad Awedh, HoonSang Jin, and Bing Li for help
with Vis and Zchaff.

References

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In Fifth International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’99), pages 193–207, Amsterdam, The Netherlands, Mar. 1999. LNCS
1579.

[2] R. K. Brayton et al. VIS:A system for verification and synthesis. Technical Report UCB/ERL
M95/104, Electronics Research Lab, Univ. of California, Dec. 1995.

[3] R. K. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In Proceedings
of the IEEE International Conference on Computer Aided Design, pages 316–319, Santa
Clara, CA, Nov. 1989.

[4] E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement using
ILP and machine learning. In E. Brinksma and K. G. Larsen, editors, Fourteenth Conference
on Computer Aided Verification (CAV 2002), pages 265–279. Springer-Verlag, July 2002.
LNCS 2404.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

[6] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
Association for Computing Machinery, 7(3):201–215, July 1960.

[7] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 142–149, Paris, France, Mar.
2002.

[8] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. In International Conference
on Tools and Algorithms for Construction and Analysis of Systems (TACAS’02), pages 445–
459, Grenoble, France, Apr. 2002. LNCS 2280.

[9] K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In
E. Brinksma and K. G. Larsen, editors, Fourteenth Conference on Computer Aided Verifi-
cation (CAV’02), pages 250–264. Springer-Verlag, Berlin, July 2002. LNCS 2404.

[10] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the Design Automation Conference, pages 530–535,
Las Vegas, NV, June 2001.

[11] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley, New
York, 1988.

[12] J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithm for satisfiability. In
Proceedings of the International Conference on Computer-Aided Design, pages 220–227,
San Jose, CA, Nov. 1996.

[13] C. Wang, B. Li, H. Jin, G. D. Hachtel, and F. Somenzi. Improving Ariadne’s bundle by
following multiple threads in abstraction refinement. In Proceedings of the International
Conference on Computer-Aided Design, pages 408–415, Nov. 2003.

[14] H. Zhang. SATO: An efficient propositional prover. In Proceedings of the International
Conference on Automated Deduction, pages 272–275, July 1997. LNAI 1249.

[15] L. Zhang and S. Malik. The quest for efficient Boolean satisfiability solvers. In Four-
teenth International Conference on Computer Aided Verification, (CAV’02), pages 17–36,
Copenhagen, Denmark, 2002. LNCS 2404.


	Introduction
	Satisfiability Solvers
	Minimal Satisfying Assignments for CNF Formulae
	Bounded Model Checking and Minimal Assignments
	Bounded Model Checking
	Motivation and Definitions
	Lifting for a Minimal Assignment
	Implication Graph and a Covering Solution

	Related Work
	Experimental Results
	Conclusions

