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Abstract For a particular experimental design, there is interest in finding which
polynomial models can be identified in the usual regression set up. The algebraic
methods based on Gröbner bases provide a systematic way of doing this. The alge-
braic method does not, in general, produce all estimable models but it can be shown
that it yields models which have minimal average degree in a well-defined sense and
in both a weighted and unweighted version. This provides an alternative measure to
that based on “aberration” and moreover is applicable to any experimental design. A
simple algorithm is given and bounds are derived for the criteria, which may be used
to give asymptotic Nyquist-like estimability rates as model and sample sizes increase.

Keywords Corner cut · Design ideal · Factorial design · Latin hypercube sampling ·
Linear aberration · State polytope

1 Introduction

It is of considerable value to represent an experimental design as the solution of a set
of polynomial equations. In the terminology of algebraic geometry a design is a zero-
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674 Y. Berstein et al.

dimensional variety and the corresponding ideal comprising all polynomials which are
zero on every design point is called an “ideal of points”. Pistone and Wynn (1996) first
used explicit methods from algebraic geometry and in particular introduced Gröbner
bases into designs. Issues to do with identifiability of polynomial regression models,
or interpolators, can be translated into problems about such varieties and ideals (see
Pistone et al. 2001).

The purpose of this paper is to introduce the notion of linear aberration of a poly-
nomial model. Linear aberration is defined only for polynomial models, which are
used routinely in statistical literature. A polynomial model with low order terms has
low aberration, thus engaging low aberration with the standard practice of preferring
polynomial models with low order terms. The preference for models with low order
terms has been acknowledged in recent papers, see Li et al. (2003) and Balakrishnan
and Yang (2006), although they do not refer to linear aberration.

Letα = (α1, . . . , αd)be a nonnegative d-dimensional integer multi-index. A mono-
mial in the indeterminates x1, . . . ,xd is the power product xα = xα1

1 · · ·xαd
d . A model

basis is a collection of distinct monomials {xα, α ∈ L}, where L is a finite set of
multi-indices. By combining linearly monomials in L we form polynomials:

ηL(x) =
∑

α∈L

θαxα,

where θα are real coefficients. The polynomial ηL(x) is a candidate for interpolation
or statistical modelling.

This paper is concerned with the following concept.

Definition 1 Let L be a model basis with n elements and let w = (w1, . . . , wd) be a
collection of non-negative weights with

∑d
i=1 wi = 1. We define the weighted linear

aberration of L as

A(w, L) = 1

n

∑

(α1,...,αd )∈L

d∑

i=1

wiαi . (1)

The weight vector in Definition 1 regulates preference of variables for inclusion
in the model. For instance, if all the components of w are similar, then it shows even
preference of variables. Preference of a variable or group of variables over the remain-
ing variables occurs when the respective components of w are bigger than those for
remaining variables.

We are interested in studying aberration for models identifiable by an experimental
design and along this paper, we compare models and designs of the same size n.

Definition 2 An experimental design D, of sample size n = |D|, is a set of points
in R

d .

We say that a model basis L with cardinality |L| = n is identifiable by D if the
design model matrix X = [xα]x∈D,α∈L is invertible.

The term aberration is used to acknowledge the work on “minimum aberration”
for regular fractional factorial designs of Wu and others (see Fries and Hunter 1980;
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Minimal degree aberration 675

Wu and Wu 2002). For fractional factorial designs, the notion of estimation capac-
ity is related to the ability of a design to identify models of low degree (see Cheng
and Mukerjee 1998; Chen and Cheng 2004). We do not make a direct mathematical
comparison with that work but simply point to a common motivation.

In Sect. 2, we review the basic ideas on algebraic identifiability. The search for
identifiable models is driven by a divisibility condition, which makes the search prob-
lem tractable. We then introduce the state polytope, whose vertices correspond to the
models identified using the algebra. In Sect. 3 we study aberration. The basic ideas
on aberration are closely linked with the algebraic work on corner cut models and
state polytopes in Onn and Sturmfels (1999). We are specially interested in obtain-
ing minimal values for aberration for which we establish upper and lower bounds.
An approximate approach to minimal aberration is discussed. In Sect. 4, we discuss
various examples. In Sect. 5, we discuss possible extensions of the theory and, by
example, a connection with the notion of aberration by Wu and others is discussed.

2 The G-basis method and the state polytope

The aberration A(w, L) has remarkable connections with the algebraic method in
experimental design introduced by Pistone and Wynn (1996) and developed in the
monograph Pistone et al. (2001) and the joint work of Onn and Sturmfels (1999). In
this section, we present the basic ideas on identifiability using algebraic techniques.

Let the set of all monomials in d indeterminates be T d = {xα, α ∈ Z
d≥0}, where

Z≥0 is the set of non-negative integers and Z
d≥0 is the set of all vectors in d-dimensions

and with entries in Z≥0. A polynomial is a finite linear combination of monomials in
T d with real coefficients. The set of all polynomials is denoted as R[x1, . . . ,xd ]. It
has the structure of a ring with the usual operations of sum and product of polynomials.

A term ordering � on R[x1, . . . ,xd ] is a total ordering on T d such that (1) xα � 1
for all xα ∈ T d , α �= (0, . . . , 0) and (2) for all xα,xβ,xγ ∈ T d if xα � xβ then
xαxγ � xβxγ . The leading term of a polynomial is the largest term with non-zero
coefficient with respect to �. For a polynomial f ∈ R[x1, . . . ,xd ], we write its leading
term as LT�( f ).

A partial order on T d is defined by a vector w ∈ R
d≥0 as xα �w xβ if wT α ≥ wT β,

where wT is the transposed vector of w, and xα,xβ ∈ T d . Under some conditions on
w (see Babson et al. 2003; Cox et al. 1997) this defines a term order. Given a term
order �, there are w such that xα � xβ if and only if xα �w xβ .

A design D, considered as a zero-dimensional variety gives rise to a design ideal,
I (D), which is the set of all polynomials which have zeros at all the points of D. We
have that I (D) ⊂ R[x1, . . . ,xd ]. The polynomial ideal I is generated by the set of
polynomials G = {g1, . . . , gs} if I = {∑s

i=1 figi : fi ∈ R[x1, . . . ,xd ]} and we write
I = 〈g1, . . . , gs〉.

An important set of generators for the design ideal is the Gröbner basis. Gröbner
bases were introduced by Buchberger (1966) and they have become a powerful com-
putational tool in many fields (Cox et al. 1997, 2005). A Gröbner basis of I (D) with
respect to a term order � is a finite subset G�(D)⊂ I (D) such that 〈LT�(g) : g ∈
G�(D)〉 = 〈LT�( f ) : f ∈ I (D)〉. The computation of Gröbner bases is implemented

123



676 Y. Berstein et al.

in standard computer programs such as CoCoA, Singular or Maple (see CoCoA Team
2007; Greuel et al. 2005; Monagan et al. 2005).

Two polynomials f and g in R[x1, . . . ,xd ] are equivalent with respect to I (D) if
the following equivalent conditions hold:

(1) f − g ∈ I (D)

(2) f (x) = g(x) for all x ∈ D

Given a term ordering �, the quotient ring R[x1, . . . ,xd ]/I (D) has a unique R-vector
space basis given by the monomials in T d that cannot be divided by the leading terms
of the polynomials in G�(D) for I (D). The monomial basis so obtained, or equiva-
lently, the set of its exponents L = L(D,�), has a staircase (also echelon, order ideal)
property: for α ∈ L , if β ≤ α componentwise, then β ∈ L . Equivalently we say that
for any xα ∈ L , if xβ divides xα then xβ ∈ L . We call bases which have a staircase
structure staircase models. The dimension of R[x1, . . . ,xd ]/I (D) as R-vector space
is n, see Pistone and Wynn (1996), i.e. the number of points in D and of multi-indices
in L is n.

Example 1 Consider the design D = {(0, 0), (1, 0), (0, 1), (−1, 1), (1,−1)} and its
design ideal I (D). For a term ordering in which x1 � x2, consider the set of poly-
nomials G = {x2

1 + 2x1x2 + x2
2 − x1 − x2,x

3
2 − x2,x1x

2
2 − x1x2 − x2

2 + x2} ⊂
I (D). The monomial ideal generated by the leading terms of G, 〈x2

1,x
3
2,x1x

2
2〉, equals

the ideal of leading terms 〈LT�( f ) : f ∈ I (D)〉, i.e. G is a Gröbner basis for
I (D). The monomial basis is given by the following monomials 1,x1,x2,x1x2,x

2
2

which are not divisible by leading terms of G, and we have its exponent set L =
{(0, 0), (1, 0), (0, 1), (1, 1), (0, 2)}.

For a given basis of the quotient ring with exponents in L and a set of real values
(data) Yx,x ∈ D, there exists a unique interpolator ηL(x) such that Yx = ηL(x),x ∈
D. Other non-saturated statistical sub-models can be constructed from subsets of L
(see Holliday et al. 1999; Peixoto 1987).

Definition 3 The algebraic fan of D is La(D) = {L(D,�), where � is a term order-
ing in R[x1, . . . ,xd ]}. This is the collection of staircases L(D,�) arising from a fixed
design D by varying all monomial orderings.

The algebraic fan of a design was proposed by Caboara et al. (1997), constructing
upon the algebraic fan of an ideal of Mora and Robbiano (1988). Babson et al. (2003)
proposed a polynomial time algorithm to compute La(D). They compute an efficient
set of weight vectors and perform a change of basis which stems from the so-called
FGLM algorithm (see Faugère et al. 1993). In Sect. 3.1, an algorithm is presented to
identify a model in the algebraic fan using a weight vector.

It is important to note that not all staircase models identified by D are in La(D).
The set of all identifiable staircase models for a design D is denoted as Ls(D). In fact
the algebraic fan is small relative to Ls(D), that is La(D) ⊆ Ls(D), see Chapter 6
in the unpublished Ph.D. thesis by Maruri-Aguilar (2007) and Sect. 4 in Pistone et al.
(2008).
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Minimal degree aberration 677

We now establish the link between the algebraic fan of a design and the state poly-
tope of the design ideal. For a model basis L = {α1, . . . , αn}, αi ∈ Z

d≥0 define

αL =
∑

αi ∈L

αi .

This vector appears in the definition of A(w, L) and we can write A(w, L) = (wT αL)/

n. The set all such vectors over La(D) gives the state polytope.

Definition 4 The state polytope S(D) of a design D, or equivalently of the design
ideal I (D) is the convex hull

S(D) := conv ({αL : L is a staircase in La(D)}) .

The following theorem (Sturmfels 1996, Chap. 2) summarizes the connection
between the state polytope and the set of models La(D), i.e. the relation between
a design and its algebraic fan.

Theorem 1 Let D be a design and let S(D) be its state polytope. Then the set of
vertices of the state polytope of D is in one to one correspondence with the algebraic
fan of D.

The state polytope does not only contain information concerning models in the
algebraic fan of a design, but it also provides information about the term ordering
vectors needed to construct it. We recall that a d-dimensional polytope is a bounded
subset of R

d , which corresponds to the solutions of a system of linear inequalities.
The normal cone of a face of a polytope is the relatively open cone of those vectors in
R

d uniquely minimised over the face of the polytope. The normal fan of a polytope
is the collection of all the normal cones of the polytope.

Two ordering vectors w and w′ are said to be equivalent (modulo I (D)) if L(D,

�w) = L(D,�w′). The normal fan of the state polytope partitions R
d≥0 into equiva-

lence classes of ordering vectors (see Babson et al. 2003; Fukuda et al. 2007; Sturmfels
1996). Indeed every vertex of S(D) corresponds to a model in La(D). Moreover, the
interior of the normal cone of a vertex in S(D) contains those vectors w which corre-
spond to the same equivalence class.

We motivate Theorem 2 below with a simple example. The black dots in Fig. 1 give
a 5-point design in two-dimensions, D. They also give the set of exponents L obtained
for any term ordering, indeed the size of the algebraic fan of D is one. The triangles
represent the exponents of the leading terms of the Gröbner basis: (2, 0), (1, 2), (0, 3).
The line separates the model exponents, L , from these leading terms. This is an example
of a corner cut model. Note that equivalently the line separates L from its complement
in Z

2≥0.

Definition 5 A model L , of size |L| = n, is said to be a corner cut model if there is a
(d − 1)-dimensional hyperplane separating L from its complement Z

d≥0\L .
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678 Y. Berstein et al.

Fig. 1 Corner cut and separating hyperplane

Not all staircases are corner cuts, for example L = {(0, 0), (1, 0), (0, 1), (1, 1)} is
a staircase that cannot be separated by a hyperplane from its complement in Z

2≥0.
The set of exponents of a corner cut model is referred to as a corner cut staircase or

simply, as a corner cut. Corner cuts were introduced by Onn and Sturmfels (1999). A
generating function for the number of bi-dimensional corner cuts is given in Corteel
et al. (1999), while the order of the cardinality of the set of corner cuts is proven
bounded by (n log n)d−1 in Wagner (2002). A special class of designs is composed
with those designs that identify all corner cut models of a given size.

Definition 6 A design D ⊂ R
d comprised of n distinct points is said to be generic if

all corner cut models of size n = |D| are identifiable.

A special polytope is constructed with the exponents for corner cut models. It will
be used to compute the algebraic fan of generic designs.

Definition 7 The corner cut polytope is CC(n, d) := conv({αL : L is a corner cut
staircase in d-dimensions and of size n}).

For a discussion on the properties of bi-dimensional corner cut polytopes see the
paper by Müller (2003). The algebraic fan of generic designs corresponds to the set
of corner cut models, as stated in the following theorem.

Theorem 2 (Onn and Sturmfels 1999) Let D ⊂ R
d be a generic design with n points.

Then

(1) S(D) = CC(n, d) and
(2) the algebraic fan of D is the set of corner cut models in d dimensions and with n

elements.

We remark that the corner cut polytope is an invariant object for the class of all
the ideals generated by generic designs with the same sample size n and number of
factors d and all generic designs have the same state polytope.

3 Minimal linear aberration

An important feature of the state polytope is that its vertices are automatically “lower”
vertices in the sense of convexity. State polytopes relate directly to models with min-
imal linear aberration. In Sect. 3.1, an algorithm to compute a models of minimal
aberration is presented.
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Minimal degree aberration 679

Theorem 3 Given a design D ⊂ R
d with n distinct points and a weight vector

w ∈ R
d
>0, there is at least one vertex α∗ ∈ S(D) which minimises A(w, L) over all

identifiable staircase models Ls(D), that is

1

n
(wT α∗) = A(w, L∗) = min

L∈Ls (D)
A(w, L)

for all L∗ such that αL∗ = α∗. Moreover, given a vertex of S(D), there is at least one
w∗ ∈ R

d
>0 such that this vertex (model) minimizes A(w, L), that is,

A(w∗, L) = min
w∈R

d
>0

A(w, L)

for L̄ such that αL = αL .

Proof First, for given w we minimise wT αL for L ∈ La(D), which is a finite set, see
Mora and Robbiano (1988). The αL for L ∈ La(D) are vertices of S(D) by definition.
Furthermore, because we restrict L to the algebraic fan of D, vectors αL can only be
aligned when they are vertexes of a facet of S(D), i.e. they cannot be interior points,
see (Sturmfels 1996, Chap. 2). For the second claim, it is sufficient to take a vector
wL in the interior of a normal cone for αL . By definition, A(w, L) is minimised for
vectors on the interior of the normal cone. ��

Theorem 4 follows directly from Theorem 3.

Theorem 4 For every weight vector w there is a design D ⊂ R
d which minimizes

A(w, L), among all designs with sample size n and identifiable staircases.

This is stated compactly as:

A∗(w, n) = min
D:|D|=n

min
L∈La(D)

A(w, L)

is achieved for a generic design, i.e. there exists a design (generic design) that achieves
this minima at every vertex of its state polytope. In other words, if a design is generic
then automatically its algebraic fan contains models of minimal aberration.

3.1 Computation of the minimal aberration model

The model minimizing linear aberration can be found by a greedy algorithm. Let D
be a design; let w be a fixed weight vector in R

d
>0 and let � be the following set of

potential exponents

� :=
{

α = (α1, . . . , αd) ∈ Z
d≥0 :

d∏

i=1

(αi + 1) ≤ n

}
.
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680 Y. Berstein et al.

The set � contains all staircase models with n terms, see Babson et al. (2003). Now
define the weight of α ∈ � to be ω(α) := 1

n

∑d
i=1 wiαi = (wT α)/n. Order the vectors

in � by their weight ω(·) in increasing order, that is, index them as α1, . . . , α|�| such
that ω(α1) ≤ · · · ≤ ω(α|�|), where |�| is the cardinality of �. Then the set L ⊆ �

with the first n terms of � which are identifiable by D has minimum aberration.
The model basis L is constructed by the following procedure, which can be seen

as a sequential method for constructing the design-model matrix X : initialize L := ∅;
while |L| < n, find αi of smallest index with respect to ω(·) such that the column
vectors xα, α ∈ L ∪ {αi },x ∈ D, are linearly independent; update L := L ∪ {αi } and
repeat until |L| = n. We have the following theorem.

Theorem 5 Let D ⊂ R
d be a design; let w be a fixed weight vector with positive

entries and let L be the model basis constructed by the greedy algorithm. Then L
belongs to the algebraic fan of the design.

Example 2 Consider the design D = {(0, 0), (1, 0), (0, 1), (−1, 1)} and the weight
vector w = (4, 1). The set of potential exponents, � contains 8 elements, which are
sorted out using the weight function ω(·) as

� = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (2, 0), (3, 0)}
nω(·) = 0 1 2 3 4 5 8 12

The first 4 elements in � such that their design columns are linearly independent
are L = {(0, 0), (0, 1), (1, 0), (1, 1)}. Thus the set L of minimal linear aberration
corresponds to the model with terms {1,x1,x2,x1x2}.

3.2 Examples

We can compare different designs using aberration as long as they have the same num-
ber of factors d and the number of points n. For a design D, the state polyhedron of D
is obtained by (Minkowski) addition of R

d≥0 to the state polytope S(D) (see Babson
et al. 2003). The state polyhedron yields the same information as the state polytope.
Indeed the normal fan of the (negative) state polyhedron yields automatically the first
orthant (see Fukuda et al. 2007).

Example 3 Consider a central composite design (CCD by Box and Wilson 1951) with
two factors, one observation at the origin and axial distance α = √

2. The CCD has
nine runs and its algebraic fan contains exactly two models, namely

{
1,x1,x

2
1,x

3
1,x

4
1,x2,x1x2,x

2
1x2,x

2
2

}
(2)

together with the model obtained by permuting the roles of x1 and x2. Let L1 be the
set of exponents of the model support in Eq. (2). Clearly, αL1 = (13, 5) and the state
polytope for the design ideal of the CCD is conv({(13, 5), (5, 13)}), see left graph
of Fig. 2. Now consider a generic design with the same number of runs as the CCD.
In Corteel et al. (1999) and Onn and Sturmfels (1999), it is shown that there are 12
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Minimal degree aberration 681

Fig. 2 The left graph depicts S(D) and the state polyhedron for the CCD of Example 3. The right graph
shows state polyhedra for the three designs of Example 3. The empty dots correspond to vertexes/models
identified by the generic design only, while the triangle is for the sole model in the algebraic fan of the 32

design

Fig. 3 Minimal aberration for three designs in
two factors and nine runs, see Example 3

corner cut models for d = 2 and n = 9. By Theorem 2, the algebraic fan of the generic
design contains all the 12 corner cut models, including those in the algebraic fan of the
CCD. We consider also a full factorial design 32, which identifies only the model with
support {1,x1,x

2
1}⊗{1,x2,x

2
2}, where ⊗ is the Kronecker product. Its state polytope

is the point (9, 9). In the right graph of Fig. 2, we depict the state polyhedra for the
three designs and in Fig. 3, we plot minL∈La(D) A(w, L) for w = (w1, w2) ∈ [0, 1]2

and w1 + w2 = 1. For the CCD, this is

{(
(w1, 1 − w1)(13, 5)T

)
/9 = (8w1 + 5)/9 if w1 ≤ 1/2(

(w1, 1 − w1)(5, 13)T
)
/9 = (−8w1 + 13)/9 if w1 > 1/2

For the generic design, the aberration curve is a piecewise linear function with
12 segments. Finally, the aberration for the design 32 is constant for all weights.
As expected, the aberration takes its minimum value for the generic design, over all
possible weights.

Example 4 Consider the design D = {(0, 0), (1, 1), (2, 2), (3, 4), (5, 7), (11, 13),

(α, β)}, where (α, β) ≈ (1.82997, 1.82448) is the only real solution of a system
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682 Y. Berstein et al.

Fig. 4 Minimal aberration for
G (solid line) and D (dashed
line), see Example 4

of polynomial equations (see Onn and Sturmfels 1999, p. 47). The algebraic fan of
the above design has ten models and its state polytope is

conv({(21, 0), (15, 1), (11, 2), (9, 3), (6, 5), (5, 6), (3, 9), (2, 11), (1, 15), (0, 21)}).

Now consider a generic design G with the same number of runs and factors. The alge-
braic fan of G is the set of corner cut models which for seven points in two-dimensions
has eight elements, see Corteel et al. (1999) and Onn and Sturmfels (1999) and thus
its state polytope is the corner cut polytope:

CC(7, 2) = conv({(21, 0), (15, 1), (11, 2), (7, 4), (4, 7), (2, 11), (1, 15), (0, 21)}).

In Fig. 4, we graph the aberration for both designs as a function of w1. Although the
size of the algebraic fan of D is bigger than that for a generic design, the weighted
aberration takes minimal value for the generic design for all possible weight vectors
(w1, 1 − w1).

Example 5 The aberration of some sets of multi-indices does not depend on w. For
instance, consider the following sets in two dimensions

Ln = {(i, i) : i = 0, . . . , n − 1}
Mn = {(i, j) : i, j = 0, . . . , n − 1}
Nn = {(i, j) : 0 ≤ i + j ≤ n}

for which the aberrations are A(w, Ln) = (n − 1)/2, A(w, Mn) = (n − 1)/2 and
A(w, Nn) = n/3. To properly compare the above aberrations, the sets L , M, N must
have the same size. In Table 1, values m, n and p = m2 are presented such that
#L p = #Mm = #Nn for m up to 8,000. As sample size grows, the aberration of the
triangular set Nn remains smaller than for the square set Mm .

3.3 Bounds for the aberration

Although the minimal value of the aberration A∗(w, n), depends on the weight vector
w = (w1, . . . , wd), we can carry out a special normalisation which leads to bounds for
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Minimal degree aberration 683

Table 1 Aberration for sets of
multi-indices Ln , Mn and Nn

m n A(w, L p) A(w, Mm ) A(w, Nn)

1 0 0 0 0

6 8 17.5 2.5 2.6

35 49 612.0 17.0 16.3

204 288 20807.5 101.5 96.0

1,189 1,981 7.0 × 105 594.0 560.3

6,930 9,800 2.4 × 107 3,464.5 3,266.6

40,391 57,121 8.1 × 108 20,195.0 19,040.3

Fig. 5 Bidimensional corner cut together with upper (left diagram) and lower cells (right diagram) Q and
Q. In both diagrams the vector w, a separating hyperplane and equivalent simplexes S(w) and S(w) were
added

the minimal aberration. These bounds depend only on a simple function of the weights,
surprisingly the geometric mean. Our construction is based upon the expected value
of auxiliary random variables which are suitably constructed.

For the rest of this section, let D ⊂ R
d be a generic design with n points. Let w be a

fixed weight vector with positive elements and let L be the corner cut model identified
by w. We recall that |L| = n.

For an integer multindex α define its upper cell as the unit cube with lower vertex
at α

c(α) = {v ∈ R
d : αi ≤ vi ≤ αi + 1}

and similarly the lower cell of α is

c(α) = {v ∈ R
d : αi − 1 ≤ vi ≤ αi }.

Define Q = ∪α∈L c(α) and Q = ∪α∈L c(α). See Fig. 5 for a depiction of lower and
upper cells with L a corner cut.
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684 Y. Berstein et al.

Clearly, the volume of Q and of Q equals n, that is the cardinality of L . We now
create a simplex S(w) ⊂ R

d which is directed by the vector w and has volume n. We
call this simplex and the subset of the first orthant below it the equivalent simplex,
which is formally S(w) = {v ∈ R

d≥0 : ∑d
i=1 viwi ≤ c}. The volume of S(w) is

determined up to the constant c > 0. We find the value of this constant by setting the
total volume of the equivalent simplex equal to n:

n = cd

d! ∏d
i=1 wi

,

giving

c = (nd!) 1
d g(w), (3)

where

g(w) =
(

d∏

i=1

wi

) 1
d

is the geometric mean of the components of the weight vector w. We call H(w) an
hyperplane, orthogonal to w, which limits the equivalent simplex, that is H(w) =
{v ∈ R

d≥0 : ∑d
i=1 viwi = c}.

The expected value of a random variable with uniform support over S(w) will be
used now to compute bounds for aberration. We can compute a notional value of A, the
linear aberration as the expectation A(w, S(w)) = E(

∑
wi Xi ), for the random vector

(X1, . . . , Xd) with uniform distribution over S(w). Thus for the equivalent simplex
we have that

A(w, S(w)) = 1

n

d

(d + 1)!
cd+1

∏d
i=1 wi

= (nd!) 1
d

d

d + 1
g(w), (4)

after substituting Eq. (3) in A(w, S(w)).

We observe that the region Q is obtained from Q by a negative shift (−1, . . . ,−1).
As before, we consider a random vector with joint uniform distribution over Q. We
then use the expected value of

∑
wi Xi as the aberration A(w, Q). Analogously, we

define A(w, Q) and we have

A(w, Q) = A(w, Q) − 1.

Similarly, we can create a region S(w) by the same downward shift, and we have

A(w, S(w)) = A(w, S(w)) − 1.

As D is generic and thus L is a corner cut there exist cutting hyperplanes separating L
from its complement in Z

d≥0. Moreover if w is in the interior of the normal cone of the
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corner cut polytope, then we can select a cutting hyperplane H which is orthogonal
to w and thus parallel to H(w) (see Onn and Sturmfels 1999).

Example 6 Consider D = {(0, 0), (1, 2), (2, 1)}, which is a generic design with
d = 2, n = 3. Take L = {(0, 0), (1, 0), (2, 0)} and w = (1, 2). The weight
vector w is not in the interior of a normal cone of the corner cut polytope CC(2, 3) =
conv({(3, 0), (1, 1), (0, 3)}). Indeed w is on the boundary of the normal cone sepa-
rating L from the corner cut model {(0, 0), (1, 0), (0, 1)}, i.e. none of the hyperplanes
perpendicular to w is a cutting hyperplane for L .

By a simple argument the simplex SH with faces xi = 0, (i = 1, . . . , d) and H lies
wholly within the upper quadrant region Q because otherwise, the cutting hyperplane
hypothesis for H would be violated and thus SH has volume less than n. Recall that
the equivalent simplex S(w) has volume n.

There is one additional argument that leads to our first inequality. Since the region Q
and the equivalent simplex S(w) have the same volume n, it must be that Q protrudes
beyond S(w). Equivalently we may move mass from Q inside S(w). As this mass
occurs orthogonally to w, we claim that this movement diminishes the aberration,
thus

A(w, S(w)) ≤ A(w, Q).

This property is also inherited by the downward shifted version, and we have A(w,

S(w)) ≤ A(w, Q). The same argument, based on Q being below S(w) shows the
middle inequality in the following sequence:

A(w, S(w)) ≤ A(w, Q) ≤ A(w, S(w)) ≤ A(w, Q).

By Theorem 4, as the design is generic and L is the model identified by w, clearly we
have

A(w, Q) ≤ A∗(w, n) ≤ A(w, Q).

By comparing continuous mass to point masses of the model L , we see that A(w, Q) ≤
A(w, S(w)) + 1. Collecting the above inequalities, we have our result.

Theorem 6 Let D ⊂ R
d be a generic design with n points; let w ∈ R

d be a vector
of positive weights. Then the minimal aberration A∗(w, n) satisfies the bounds

A(w, S(w)) − 1 ≤ A∗(w, n) ≤ A(w, S(w)) + 1, (5)

where A(w, S(w)) is computed in Eq. (4).

There are various kinds of asymptotic that this formula leads to. From the inequality
between geometric and arithmetic mean we have g(w) ≤ 1

d . This suggests the condi-
tion limd �→∞ g(w) = β/d for some constant 0 ≤ β ≤ 1. Now for wi = (1 + δi )/d,
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Fig. 6 Minimal aberration
A∗(w, n) (solid line) for a
generic design with
d = 2, n = 4; bounds
A(w, S(w)) and
A(w, S(w)) ± 1 of Theorem 6
(dashed lines). We also show
approximate aberration Ã using
Theorem 7 (thin dashed line)

Fig. 7 Minimal aberration
A∗(w, n) (solid line) for a
generic design with
d = 2, n = 20; bounds
A(w, S(w)) and
A(w, S(w)) ± 1 and (dashed
lines) of Theorem 6. The figure
also shows approximate
aberration Ã of Theorem 7 (thin
dashed line) which almost
overlaps the solid line

with
∑

δi = 0, and assuming convergence of
∑

δ2
i and n = kd , k > 0, we use

Stirling’s approximation to obtain

lim
d �→∞ A∗(w, n) = kβ

e
.

Such limits may be considered as asymptotic identifiability rates, analogous to the
more familiar Nyquist rates in Fourier analysis.

Example 7 For small d and n the bounds of Eq. (5) are rather coarse. Figure 6 shows
the bounds A(w, S(w)) ± 1 of Theorem 6 together with the minimal aberration
A∗(w, n), plotted as function of w1 for d = 2 and n = 4. Notice that, as function
of w, the minimal aberration A∗(w, n) is a piece-wise linear graph (this is a general
fact, consequence of Definition 1), each segment corresponding to a different vertex
(different corner cut) of the corner cut polytope. Figures 7 and 8 give the bounds and
minimal aberration for n = 20 and n = 100. In Figs. 6, 7 and 8, we also added a curve
for the approximate aberration which is presented in Theorem 7 below.
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Fig. 8 Minimal aberration
A∗(w, n) (solid line) for a
generic design with
d = 2, n = 100; bounds
A(w, S(w)) and A(w, S(s)) ± 1
(dashed lines). The approximate
aberration Ã of Eq. (8) (thin
dashed line) is also plotted, but
is undistinguishable from the
minimal aberration

3.4 Approximated state polytope for generic designs

Note that as w changes the hyperplanes H(w) are tangent to the surface defined by

d∏

i=1

xi = cd = nd!
dd

and the (normalised) centroids of the equivalent simplices lie on the surface defined
by

d∏

i=1

xi = b+ = nd!
(d + 1)d

. (6)

We can solve an equivalent optimisation problem to the computations of A(w, S(w))

in terms of the tangent surfaces: for all centroids lying above or on the surface of Eq. (6),
the minimum value of A(w, S(w)) is achieved at the centroid of the tangent.

In the above argument, we are essentially using the surface inEq. (6) to approximate
the lower border of the state polytope for a generic design, i.e. the lower border of
the corner cut polytope. In order to improve the bounds given in Theorem 6, it seems
natural simply to take a surface defined by

d∏

i=1

(xi + a) = b (7)

with fixed a, b. In Theorem 6, we have set a = ±1 and b = b+ of Eq. (6). In Appendix
B we discuss an approach to select the values a, b to obtain a good approximation
of the corner cut polytope. The following theorem estimates minimal aberration for
generic designs using the approximation of Eq. (7). The proof is given in Appendix A.

Theorem 7 Let D ⊂ R
d be a generic design with n points; let w = (w1, . . . , wd) be

a fixed positive weight vector with
∑d

i=1 wi = 1. Let the state polytope of I (D) be
approximated by Eq. (7). Then the value
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Ã(w) = db1/dg(w) − a (8)

is an approximation of A∗(w, n).

We recall that g(w) is the geometrical mean of the components in w. Figures 6, 7
and 8 give examples (d = 2 factors, n = 4, 20, 100) of the minimal aberration Ã(w)

in Theorem 7. The values a, b for each case were selected using the technique in
Appendix B.

4 Examples

In this section, we discuss through extended examples other possible uses of the ideas
on generic designs and aberration. In Sect. 4.1, we explore and conjecture the existence
of generic designs over Latin hypercubes for all factors and sample sizes. In Sect. 4.2,
we compare fractional factorial designs through their state polytopes.

4.1 Latin hypercube design

Latin hypercube designs (LH) were first proposed by McKay et al. (1979) in the con-
text of computer experiments. Latin hypercubes are designs with reasonable space
filling properties and good projections in lower dimensions.

Theorem 4 relates minimal aberration to generic designs, i.e. if the design is generic,
then it identifies models of lower weighted degree (and minimal aberration) for any
weight vector w. In what follows we study LH using Definition 6 of generic designs.

The construction of a Latin hypercube design can be summarised as follows.

1. Divide the range of each factor into n equal segments.
2. Select a value in each segment using a random uniform distribution, or any other

continuous distribution.
3. Randomly permute the list for each factor.

By Theorem 30 in Pistone et al. (2001), a Latin hypercube design constructed as
above is generic with probability one.

We now consider a special type of LH designs. This type is constructed by selecting
a fixed value in every segment in Step 2. For instance, we could select the minimum,
maximum or the midpoint value for every segment. We show by example that for this
type of LH designs, the probability of being generic is close, but generally not equal
to one.

There are a few obvious cases of LH designs which are not generic, for example
when the points of the design lie on a line. We have performed exhaustive search for a
few cases of LH in two-dimensions. Our search points out to the existence of generic
LH for different values of d, n. In fact for the values we tried the proportion of generic
LH tends clearly to one. See Figs. 9 and 10 for a depiction of the results, where we
additionally plot the proportion of maximal fan designs among LH, i.e. LH designs that
identify all possible staircase models for given d, n. We have the following conjecture
for the existence of generic LHS for any value of d, n.
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Fig. 9 Percentage of generic LHS designs for d = 2 and n ≤ 15

Fig. 10 Minus logarithm of the percentage of non generic LHS designs for d = 2 and n ≤ 15

Conjecture 1 For every d ≥ 2 and n ≥ 2 there exists at least one generic LH design,
constructed by setting a fixed value for every one of the n segments in the above
procedure.

Experimentally we observed that when the sample size is n = (k+1
d

)
for k ≥ 1,

the genericity of a LH design is closely linked to the identification of a model of total
degree k − 1. For example for k = 4, d = 2, n = 10 there are 10! LH of which 99%
are generic. Of the remaining 1% which are not generic only 6 designs (up to reflection
and rotation), which are given in Fig. 11, identify the cubic model with exponent set

L = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}.

4.2 Orthogonal fractions

In this section, we consider some of the techniques of this paper for the class of frac-
tional factorial designs with two levels. We first explore the relation between state
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Fig. 11 LH on [0, 1]2 for d = 2, n = 10 which are not generic and identify L

polyhedron and then later propose a tool to compare the identification capability of
designs.

In Examples 3 and 4, we observed that in general, nesting of state polyhedra for two
designs does not imply any easy relation between the algebraic fan of the designs. If
instead we restrict to the family of designs with two levels then there is a clear relation
between such nesting and algebraic fans. We have the following Lemma from Chapter
6 in the Ph.D. thesis by Maruri-Aguilar (2007).

Lemma 1 Let F1 and F2 be two fractional factorial designs with two levels and let
S1 and S2 be their corresponding state polyhedra of I (F1), I (F2). Then the nesting
of state polyhedra S1 ⊂ S2 implies nesting of algebraic fans La(F1) ⊂ La(F2).

The following example is based upon Lemma 1 and presents an interesting relation
between resolution and identifiability. That is, bigger resolution points to more models
in the algebraic fan.

Example 8 Let F1 and F2 be the 24−1
IV and 24−1

III fractional factorial designs with eight
runs in four factors and respective generators x1x2x3x4 −1 = 0 and x1x2x3 −1 = 0.
The subindices III, IV refer to the resolution of the fraction, see Box and Hunter
(1961a,b). Their corresponding state polyhedra are nested, i.e. S(F2) ⊂ S(F1) and by
direct computation, we confirm that the algebraic fans are also nested. The algebraic
fan La(F2) has four models, while La(F1) includes 12 elements.

For fractional factorial designs, the estimation of interactions in a design was related
to the resolution of the design through the property termed hidden projection (see
Evangelaras and Koukouvinos 2006; Wang and Wu 1995). We conjecture the nesting
of algebraic fans of two designs 2k−p with different resolution. However, exploit-
ing this nesting property of fans to compare designs using aberration might need
additional considerations.

Example 9 Let F1, F2 be the fractions 27−2
IV given by generators x6 − x1x2x3 =

0,x7 − x2x3x4 = 0 and x6 − x1x2x3x4 = 0,x7 − x1x2x3x5 = 0, respectively.
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Although both fractions have the same resolution, the fraction F2 corresponds to a
minimum aberration design using the definition of Fries and Hunter (1980). The state
polyhedron S(F1) has 133 vertices while S(F2) has 1,708. There is no nesting of the
state polyhedra and La(F1) ∩ La(F2) �= ∅.

A proposal to compare two designs D1, D2 of the same size through their state
polytopes is to map the vertices of the state polytopes S(D1), S(D2) with a func-
tion f : R

d → R. In this way the state polytopes of D1 and D2 are compared by
the univariate projections of their vertices. We propose a weighted sum of the vertex
coordinates

f (v1, . . . , vd) =
d∑

i=1

wivi , (9)

with positive weights wi > 0. We use wi = 1 for i = 1, . . . , d and thus Eq. (9) allows
for direct comparison of designs based on the distribution of total degrees for models
in the algebraic fan.

Example 10 (Continuation of Example 9) We transform the vertices of the state poly-
topes for F1 and F2 using Eq. (9). In Table 2 in Appendix B, we summarize the results
for each fraction as the distribution of absolute and relative frequencies. Clearly, the
fraction F2 with minimum aberration for generators identifies models with a smaller
total degree than that for F1 and in that sense it has smaller linear aberration. See
Fig. 12 for a histogram of the relative frequencies for F1 and F2.

5 Discussion

5.1 Generalised concave aberration

This paper is partly concerned with a problem of linear programming, i.e. optimising
a linear function f : R

d → R over a convex polytope. We now discuss extensions
of our work using other types of aberration. When we consider concave aberration
criteria, some of our results still hold.

Consider any concave function f : R
d → R. Now, given a model L , define its

aberration by

A( f, L) := f

(
∑

α∈L

α1, . . . ,
∑

α∈L

αd

)
.

The linear aberration of Definition 1 is the special case where f is the following linear
(hence concave) function,

f : R
d −→ R

x = (x1, . . . ,xd) �→ 1

n

d∑

i=1

wixi .
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Table 2 Absolute (AF) and relative (RF) frequencies of total degrees for models identified by fractions F1
and F2 of Example 10 and F3 of Example 11

Total degree AF F1 AF F2 AF F3 RF F1 RF F2 RF F3

58 − − 2,290 − − 0.84

59 − − 5,437 − − 1.99

60 − − 15,036 − − 5.51

61 − 8 34,574 − 0.47 12.66

62 − 52 55,025 − 3.04 20.15

63 − 108 57,848 − 6.32 21.18

64 − 124 47,851 − 7.26 17.52

65 − 220 28,511 − 12.88 10.44

66 − 268 13,928 − 15.7 5.1

67 − 204 6,837 − 11.94 2.5

68 72 340 3,378 54.55 19.91 1.24

69 − 60 1,596 − 3.51 0.58

70 − 136 567 − 7.96 0.21

71 − 8 140 − 0.47 0.05

72 48 144 33 36.36 8.43 0.01

73 − − 12 − − 0.00

74 − 20 5 − 1.17 0.00

80 12 16 − 9.09 0.94 −
Total 132 1,708 273,069 100.00 100.00 100.00

− zero

Fig. 12 Histograms of relative frequencies for fractions F1 and F2, see Example 10. We added F3 of
Example 11

Since we only appealed to convexity, Theorem 3 is valid when we replace A(w, L)

by the more general form A( f, L). That is to say, the set of lower vertices of the state
polytope (corresponding to models in the algebraic fan) contains the solution to mini-
mising any concave aberration function. This can be understood as minimisation over
a matroid, which was studied further in Berstein et al. (2008). A further development
is to consider aberration A(w, S(w)) with respect to other distributions rather than the
uniform.
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Table 3 Design F3 of Example 11

x1 x2 x3 x4 x5 x6 x7

+ + + + − − +

+ − + − − + +

+ − + + − + −
+ + + − + + −
+ + − − − − +

+ − + + − − +

+ − − − + + +

+ − − + − − +

− + + − + − −
+ − − + − + −
+ − + − + − −
− + + + − − +

− + + + + − −
+ − − + + + −
− − − − − − −
+ − − − + − −
− + + + + − +

− − + + − + −
+ − − − − + −
− − − − + + +

− − + − − + +

+ − + − + + −
− + + − + + −
− + − − − + +

− − − + + − +

+ + − − + + +

+ + + + − + +

− − − − − − +

− − + − + − +

+ + − − + − +

− − − − − + +

+ + − − − − −
The signs + and − correspond to +1 and −1

5.2 Connection with aberration of Wu and others

In the statistical literature, the word aberration has been used to refer to properties
of the generators for fractional factorial designs (see Chen and Hedayat 1998; Fries
and Hunter 1980; Wu and Wu 2002). A topic of future research is to link minimal
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aberration of Definition 1 with the traditional measure based on generators for a frac-
tional factorial design.

We conjecture that among the class of orthogonal fractions of 2d designs there is
some kind of correspondence between the minimal linear aberration of this paper and
minimum generator aberration of Wu and others. If we select non-orthogonal fractions,
the situation is more complex, as the next example shows.

Example 11 Let F3 be the non-orthogonal fraction with size n = 32 of a 27 design
given in Table 3 of Appendix B. We also consider the designs F1 and F2 of Exam-
ples 9 and 10. The three designs have the same size, but the design F3 cannot be
compared with F1 or F2 in traditional terms as it is not even orthogonal. However, we
can compare the designs based in the distribution of degrees in their algebraic fans.

An interpolation as presented in Appendix B suggests that the minimum degree of
models identified by a generic design with n = 32, d = 7 is 53.5 ≈ 54. This number
is a lower bound for the total degree of models identified by designs F1, F2 and F3.
In other words, the set of total degrees for models in algebraic fan of F1, F2 and F3 is
lower bounded by 54, e.g. 54 ≤ min({∑d

i=1 ᾱL : L ∈ La(Fi )}) for i = 1, 2, 3.
Initial results show that

(i) the size of La(F3) is much longer (it has around 3 × 105 models) than that for
designs F1 and F2, see Table 2 in Appendix B;

(ii) the algebraic fans of F1 and F2 are not contained in the algebraic fan of F3, and
(iii) the design F3 identifies model of lower degree than F1 or F2 (indeed of total

degree 58), and the bound 54 is verified.

The design F3 has smaller minimal linear aberration than F1 and F2, see Fig. 12. We
also note that the histogram for F3 presents more symmetry than F1 and F2.

The authors appreciate that it would be very useful to relate the notations of aberra-
tion, both those in this paper and in work of other authors, to measures of complexity
of models. That is to say low aberration implies low complexity in the same sense.
There are more refined measures of complexity based on the topological structure of
the monomial ideal 〈LT�( f ) : f ∈ I (D)〉 (of Sect. 2), tackled in recent research by
the authors. It is a challenging problem to relate this work to aberration.

Appendix A: Proof of Theorem 7

Proof We minimise
∑d

i=1 wixi over the first orthant, subject to the constraint∏d
i=1(xi + a) = b. The change of coordinates x′

i = xi + a for i = 1, . . . , d

turns the problem into minimisation of
∑d

i=1 wix
′
i subject to

∏d
i=1 x′

i − b = 0.

The Lagrange multiplier L(x′, λ) = ∑d
i=1 wix

′
i − λ(

∏d
i=1 x′

i − b) is constructed and

the system of equations ∇L(x′, λ) = 0,
∂L(x,λ)

∂λ
= 0 is solved. The solution vector is

x∗′ = (x∗′
1 , . . . ,x∗′

d ) where

x∗′
i = b1/d

∏d
i=1 w

1/d
i

wi
.
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The convexity of the functions
∑d

i=1 wix
′
i and

∏d
i=1 x′

i = b over the first orthant

guarantees that x∗′
is indeed the minimum. The aberration at this minimum point is∑d

i=1 wix
∗′
i = db1/dg(w). The final value Ã of Eq. (8) is achieved by substituting

back x∗
i = x∗′

i − a. ��
We remark that for a fixed w,x∗

i serves as an approximation to the centroid of the
corresponding corner cut model and therefore Ã is an approximation to A∗(w, n).
Although the approximate aberration Ã does not depend on the actual corner cut iden-
tified by L , the minimal aberration A∗(w, n) does depend on it. If L is the corner cut
directed by w, the practical validity of the approximate aberration Ã relies on x∗

i being
close enough to 1

n

∑
α∈L αi . This closeness depends ultimately on a, b. See Appendix

B for a proposal to compute a, b.

Appendix B: Computing values a, b for the approximate corner cut polytope

In Sect. 3.4, we proposed the continuous function of Eq. (7) to approximate the cor-
ner cut polytope (which is piecewise linear surface). In this section, we discuss on
the selection of the values a, b so that the approximation is good enough. In general,
the values a, b will depend on the number of dimensions d and number of points in
the design n. However, for fixed d, the approximation will be coarse for small values
of n.

For our approximation, we use the following properties of the corner cut polytope,
which have been studied as well in Müller (2003) and Onn and Sturmfels (1999).

Lemma 2 The corner cut polytope satisfies the following properties.

(i) The intersection of the corner cut polytope with the axes occurs at the point
(n

2

)
.

(ii) When for k ≥ 1, the sample size n satisfies

n =
(

k + d − 1

d

)
(10)

then the corner cut polytope is pointed.

Proof (i) The intersection is the the sum of exponents for any marginal model of the
form {1,xi ,x

2
i , . . . ,x

n−1
i }. Therefore the intersection must occur at

∑n−1
i=0 i =(n

2

)
.

(ii) The corner cut polytope is pointed when the sample size is the same as the
size of a model of total degree k − 1, that is, there are

(d+1− j
j

)
terms of degree

j in the model where j = 0, . . . , k − 1. Therefore the sample size must be
n = ∑k−1

j=0

(d+1− j
j

) = (k+d−1
d

)
.

��
Remark 1 When Eq. (10) is satisfied, the tip of the pointed corner cut polytope has

coordinates αL =
((k+d−1

d+1

)
, . . . ,

(k+d−1
d+1

))
.
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Fig. 13 Minimal aberration using the corner cut polytope. The corner cut polytope is the piecewise linear
solid curve, while the approximation is the dashed curve. The minimal aberration is the projection over the
direction of w of the vertex (dotted line), and an approximate value uses Eq. (7) (dashed line)

We propose to force Eq. (7) to satisfy the condition of Item 1 in Lemma 2 and pass
through the tip point αL for the model of total degree k − 1. To summarize, when
sample size satisfies Eq. (10) then a, b must satisfy the following equations:

b = ad−1
(

n − 1

2
+ a

)
and b = (s + a)d ,

where s = 1
n

(k+d−1
d+1

)
is the scaled tip of the corner cut polytope. When design size, n,

is not of the form n = (k+d−1
d

)
for some k ≥ 1, we propose to interpolate the value

for s, the scaled tip of the polytope, that is to solve Eq. (10) for k and interpolate the
corresponding tip with 1

n

(k+d−1
d+1

)
.

For two-dimensions (d = 2) by interpolation and solving the two conditions above
we obtain the following formulæ for a, b in terms of n:

a = 5 − 3
√

1 + 8n + 4n

3(3 − 2
√

1 + 8n + 3n)
, b = a

(
n − 1

2
+ a

)
.

See Fig. 13 for a depiction of the corner cut polytope and the approximate curve for
d = 2, n = 7. The interpolation above is difficult to manipulate for d > 2 and we
have to rely on approximations. The following formulæ are rough approximations for
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a, b obtained by truncation of the binomial expansions

a ≈
(

2d!n
(d + 1)d(n − 1)

) 1
d−1

, b = ad−1
(

n − 1

2
+ a

)
≈ d!n

(d + 1)d
.
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