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Minimal-Change Order and Separability in Linear 
Codes 

A. J. van Zanten 

Abstract-A linear code E? is said to he in minimal-change order if 
each codeword differs from its predecessor by a word of minimum 
weight. A rule is presented to construct such an order in case that i? has 
a basis of codewords with minimum weight. Some consequences concem- 
ing the ranking and separability in 5F are mentioned. 

Index Terms-Minimal-change order, Gray codes, ranking problem, 
separability. 

I. PRELIMINARIES 

It is well known that the set of all binary words of length n 
can be ordered in a list such that each word differs from its 
predecessor by precisely 1 bit. Such a list is called a Gray code. 
For any value of n,  there are many such lists possible. The best 
known example is the so-called binary rejlected or normal Gray 
code (cf. [3, pp. 172-1771]. We denote this code by the matrix 

r 1 
(1) 

If we write g, := g,,-lg,,-2 ... g,", and if b, = b,,-lb,,_2 ... 
b,,, is the binary representation of the index i, then the following 
rules hold for 0 I i < 2" and 0 I j < n: 

and 
n -  1 

b,, = g,, (mod21 (3) 
I = ]  

with b,,, := 0 (cf., e.g., [3]). Rules (2) and (3) solve the ranking 
problem of G(n). 

A related question in this context is the separabilityproblem. If 
two codewords g, and gl have Hamming distance m, one can 
ask how they are located with respect to each other in the 
ordered list G(n) or, more specifically, one can ask for bounds 
for their Gray distance Ii - j l .  Actually, one has 

[2"/3] I Ii - j l  I 12" - 2"'/31. (4) 

Both bounds are sharp. The lower bound was derived by Yuen 
[6] and the upper bound by Cavior in [l]. 

Similar results have been obtained for the constant weight 
Gray code G(n, k ) ,  consisting of words of length n and weight k 
(cf. [7]). In this code, each word differs from its predecessor by 
precisely 2 bits. 

Both G(n)  and G(n,  k )  are examples of lists ordered by a 
minimal-change principle. There are many more combinatorial 
objects (permutations, compositions, graphs, etc.) which can be 
ordered according to a minimal-change principle. For a review, 
we refer to [5]. 
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In Section 11, we show that there is also a wide class of linear 
error-correcting codes, which can be ordered in this way. 

11. LINEAR CODES IN MINIMAL-CHANGE ORDER 

Let F? be an arbitrary linear binary code, and let this code be 
ordered. We shall say that E' is in a minimal-change order, or is 
ordered according to a minimal-change principle, if each code- 
word differs from its predecessor by a word of minimum weight. 
A necessary and sufficient criterion for the existence of such an 
order in a given code can easily be given. It is the special case 
with w = d of the following theorem. 

Theorem: A linear [ n ,  k ,  d]-code 55' can be ordered such that 
each codeword differs from its predecessor by precisely w bits if 
and only if E' has a basis of codewords by weight w. 

Proof: It is obvious that the condition is necessary, since the 
existence of the described order implies that E' can be gener- 
ated by codewords of weight w. 

The condition is also sufficient. To  show this, we assume that 
A := (a",  a,; . . ,  a k -  is a basis, such that each a, has weight w,  
for 0 I j I k - 1. Let g, be the ith codeword of the normal 
Gray code G ( k )  (cf. Section I). We define 

k- 1 

, = O  
c, = glial, 0 I i < 2k. (5) 

If i runs through its value set, we obtain all linear combina- 
tions of the words of A .  Furthermore, since g, and g L + l  differ 
by 1 bit, it follows that c, and c , + ~  differ by one word of the 
basis A ,  which has weight w,  for all relevant values of i .  This 

From now on, we assume that A is a basis of words of 
minimum weight d,  and furthermore, that the code 55' is in 
minimal-change order according to the construction in the above 
proof. The ranking problem for F? can easily be solved. To  
determine c, for a given value of I ,  one first converts i to  its 
Gray representation, using (2), and next applies (5) .  As an 
alternative, one can equally well use the generator matrix 

completes the proof. 0 

- - 

G(55') = 

and apply the relation 
ci = b,G(t?), 

(6) 

(7) 
which directly converts the binary representation of i to the ith 
codeword of g. 

Finally, we present bounds for the Gray distance in 55'. These 
follow from the inequalities (4). If c, and c, are codewords of 
the ordered code g with Hamming distance m, then 

(8) 
where m' := [m/dl .  Whether these bounds are sharp depends 
on the code E' and on the chosen basis A .  

Remark: There are many codes that have a basis of words of 
minimum weight, e.g., Hamming codes and Reed-Muller codes. 
Furthermore, all codes that meet the Griesmer bound have such 
a basis (cf. [2], [4]). 

/2"'/3] 5 (i - j l  I 12" - 2"'/31 
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The Number of Nonlinear Shift Registers That 
Produce All Vectors of Weight I t 

Harold Fredricksen , Member, IEEE 

Abstract-It has been shown that it is possible to generate a cycle on a 
nonlinear shift register to contain all vectors of length n and Hamming 
weight 5 t. We show how to count the number of different ways this can 
be done on a truth table of minimum density. 

Index Terms-BEST theorem, binary sequence, de Bruijn graph, cycle 
joining, shift register, spanning tree, truth table. 

I. INTRODUCTION 
In [l], it is shown that a nonlinear shift register can be 

designed to generate all of the vectors of length n having no 
more than a Hamming weight of t ones. Applications for such 
functions are discussed there. Examples for all n I 7 and 1 I t 
I n are given. The authors also give an example of a shift 
register feedback function to produce one such sequence, with 
each binary vector appearing exactly once for each appropriate 
n and t .  Similar approaches were used [2]-[4] to connect all 
vectors of length n into a single de Bruijn cycle. In this note, we 
show in how many ways cycles of a given length and weight may 
be joined for a certain subclass of shift register feedback func- 
tions. Our class is that for which each feedback truth table 
contains the minimum possible density of ones. 

In order to ensure that any feedback function f(xo,x1;..,  
x,,- produces only cycles, it suffices that f be of the form 
f = x g  + g(x , ; . . ,  x,- ,) [5].  The feedback function f = xu is of 
the branchless type with g(xl;.., xu- 0 and is called the 
pure cycling register. The factor created consists of cycles de- 
fined as the cyclotomic cosets of vectors formed as equivalence 
classes under the cyclic rotation of the bits of the vectors of 
GF(2)“. The density of the truth table of this pure cycling 
register is zero. The cycles formed are enumerated by Z(n) ,  
Z ( n )  = (l/n)C,,n,&(d)2”/d where the summation is over all 
positive integer divisors d of n and & is Euler’s totient function. 
The cycles are all cycles of vectors of length d for each divisor d 
of n. These cycles form the fundamental building blocks for the 
theory developed in [l]. Here, we note simply that two of these 
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pure cycles may be joined together if there is an adjacency 
between them. 

We refer the reader to [l], [3]-[5] for any additional required 
shift register theory. The cycle decompositions of the underlying 
de Bruijn graph, cycle adjacencies, and joins are well covered 
there and need not be duplicated here. 

11. SEQUENCES OF VECTORS OF WEIGHT I t 

The sequences of [l] are formed by joining all of the cyclo- 
tomic cycles of vectors of length n and having 5 t ones. If there 
are C such cycles, they may be joined together in several ways, 
but this surgery will always require that at least C - 1 positions 
of the truth table of g be changed from zero to one. If we 
restrict the truth tables to have no more than a density of C - 1 
ones, then we can count the number of ways to generate such a 
sequence. We employ a result of de Bruijn, Ehrenfest, Smith, 
and Tutte described in [6]-[8], and used in [4] to generate de 
Bruijn cycles by joining all of the cycles of the pure cycling 
register together. 

Theorem I (BEST): The number of spanning subtrees of a 
labeled connected graph is evaluated by computing the determi- 
nant of the cofactor of a root in the associated adjacency matrix 
of the graph. 

To  use the theorem to find the number of sequences we seek, 
we call each cyclotomic coset a node in a graph, and we label the 
edge between cosets C, and C, with the number of vectors on C, 
having a conjugate on C,. The problem of adjacencies in the 
pure cycling register has been studied previously [9], [ 101. Then, 
the spanning subtrees give the smallest number of changes to g 
that can be made to join all of the cycles into a single cycle. It 
may be possible to join cycles in another way by splitting the 
cycle created and then rejoining the pieces in a different way. 
We do not include these cycles in our count. 

Two examples of cycles formed in this way are given in [ 11. Sec 
also [4], where all of the pure cycles are joined to form a de 
Bruijn cycle. For the case at hand, only the subset of the cycles 
of weight I t are used. Then, the subgraph H(n ,w)  is con- 
structed. H ( n , w )  is obtained from the graph G(n)  of all pure 
cycles and their edges under adjacency by removing all vertices 
of weight bigger than w. Thus, the vertices of the graph H ( n ,  t )  
are the cycles of the pure cycling register with weight less than 
t + 1. There is an edge in H(n,  t )  between nodes x and y if 
there is an adjacency between the cycles represented. 

The BEST theorem states that the number of spanning trees 
of these graphs is found by computing the determinant of the 
cofactor of a root of the graph. In all such graphs, the node 0 
will be a root, so we need only evaluate the determinant of the 
cofactor of the (0,O) entry of the matrix. 

The matrix size grows with n and t ,  but the determinants are 
easily evaluated with Maple. In Table I, the factored forms of 
the determinants are given. No obvious patterns emerge for the 
cosets of weight t = 3 and higher. For any n, when t = 1, there 
is obviously only one way to add the coset (00 ... 01) to the coset 
(0). For t = 2, there is a twofold choice of how to add each of 
the cosets of weight 2 when n is odd. When n is even, there is 
also a coset of size n / 2  which can be added to the cycle in a 
unique way. Hence, the number N ( n ,  2) = 2[’f-2/21. 

111. CONCLUSIONS 

We have shown how a theorem on spanning subtrees on a 
graph can be  used to evaluate the number of sequences that 
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