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Minimal codewords in Reed-Muller codes

J. Schillewaert, L. Storme and J.A. Thas

January 13, 2009

Abstract

Minimal codewords were introduced by Massey [8] for cryptographical pur-
poses. They are used in particular secret sharing schemes, to model the access
structures. We study minimal codewords of weight smaller than 3·2m−r in binary
Reed-Muller codes RM(r,m) and translate our problem into a geometrical one,
using a classification result of Kasami, Tokura, and Azumi [5, 6] on Boolean
functions. In this geometrical setting, we calculate numbers of non-minimal
codewords. So we obtain the number of minimal codewords in the cases where
we have information about the weight distribution of the code RM(r,m).

The presented results improve previous results obtained theoretically by
Borissov, Manev, and Nikova [3], and computer aided results of Borissov and
Manev [2].

This paper is in fact an extended abstract. Full proofs can be found on the
arXiv.

1 Introduction

First we give some definitions and theorems required for a good statement of the
problem. We will associate geometrical objects to the codewords. This will allow us
to translate the problem into an equivalent geometrical problem.

Definition 1.1 For any m and r, 0 ≤ r ≤ m, the binary r-th order Reed-Muller code
RM(r,m) is defined to be the set of all binary vectors f of length n = 2m associated

with Boolean polynomials f(x1, x2, ..., xm) of degree at most r.

Definition 1.2 If f(x1, ..., xm) is a Boolean function, then T (f) is the collection of

vectors X = (x1, ..., xm) such that f(X) = 1.

Definition 1.3 The support of a codeword c ∈ RM(r,m), denoted by supp(c), is the

set of positions in which the non-zero digits appear.

Definition 1.4 Let C be a q-ary linear code. A non-zero codeword c ∈ C is called

minimal if its leftmost non-zero component is a 1 and if it has a support that does not

contain the support of any other non-zero codeword with leftmost component 1 as a

proper subset. The support of a minimal codeword c ∈ C is called minimal with respect

to C.
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The following properties can be found in [1]; we will use the second one later on.

Lemma 1.5 Let C be a binary linear [n, k, d]-code.

(i) Every support of a codeword of weight ≤ 2d− 1 is minimal with respect to C.

(ii) The codeword c is a non-minimal codeword in C if and only if there is a pair of

non-zero codewords c1, c2, with disjoint supports contained in the support of c,

such that c = c1 + c2.

(iii) If c is a minimal codeword in C, then wt(c) ≤ n− k + 1.

So a naturally arising question is what happens for weights in between the above
bounds. The smallest non-trivial case is wt(c) = 2d. This was solved by Borissov,
Manev, and Nikova for RM(r,m) [3], by interpreting the non-minimal codewords of
weight 2d geometrically as a union of two disjoint affine spaces AG(m−r, 2). To state
their result, we first introduce some notations.

Definition 1.6 The quantity known as q-ary Gaussian coefficient is defined by:

[

m

i

]

=

∏i−1
j=0

qm−qj

qi−qj ,

[

m

0

]

= 1, for i = 1, 2, . . . , m.

Furthermore, we use the following notations:

Ar,m = 2r−1

[

m

m− r + 1

]

.

Br,m =
2r+1 − 4

4

(

2r+1

3

) [

m

m− r − 1

]

.

Sr,m = (2m−r+1 − 1)Ar,m + 3Br,m.

Pr,m = 2r−1

[

m

m− r

]

(2r

[

m

m− r

]

−
m−r
∑

k=max{0,m−2r}

2(m−r−k)(m−r−k+1)

[

m− r

k

] [

r

m− r − k

]

).

Now we can state their main theorem.

Theorem 1.7 The number of non-minimal codewords of weight 2d = 2m−r+1 in

RM(r,m) is Ar,m +Br,m + Pr,m − Sr,m.

We translate the problem for larger values wt(c) into a geometrical one, making
use of the following result of Kasami, Tokura, and Azumi [5, 6].

Theorem 1.8 Let f(x1, ..., xm) be a Boolean function of degree at most r, where r ≥ 2,
such that |T (f)| < 2m−r+1. Then f can be transformed by an affine transformation

into either

f = x1 · · ·xr−2(xr−1xr + · · ·+ xr+2µ−3xr+2µ−2), 2 ≤ 2µ ≤ m− r + 2, or

f = x1 · · ·xr−µ(xr−µ+1 · · ·xr + xr+1 · · ·xr+µ), 3 ≤ µ ≤ r, µ ≤ m− r.
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We call codewords of the forms above codewords of first and second type respectively. It
is not hard to determine the weight of these codewords. As is well-known, the smallest
weight vectors in RM(r,m) are the ones of weight 2m−r which can be interpreted as
the incidence vectors of (m− r)-dimensional affine spaces, see [7].

We need the following lemma which can be found in [7].

Lemma 1.9 The number of values (x1, ..., x2h) for which

h
∑

i=1

x2i−1x2i = 0

is equal to 22h−1 + 2h−1.

¿From this it is easy to deduce the following.

Lemma 1.10 The weight of codewords of first type is equal to

2m−r−2µ+2(22µ−1 − 2µ−1) = 2m−r−µ+1(2µ − 1).

The weight of codewords of second type is equal to

2m−µ−r+1(2µ − 1).

These weight functions are both increasing in µ, so the smallest weights are found for

the smallest values of µ.

The second smallest weight of the code RM(r,m) is 3 · 2m−r

2
. We will count the

number of non-minimal codewords c = c1 + c2 of weight smaller than 3 · 2m−r. This
implies that either c1 or c2 can be interpreted as an affine (m− r)-dimensional space.

We can regard vectors (x1, ..., xm) as points of the affine space AG(m, 2). So by
adding an extra variable X0, we can consider the problem in the projective space
PG(m, 2); this means we set xi = Xi

X0

and hence we are working in a projective space
where X0 = 0 denotes the space at infinity. For µ = 1, the set T (f) of a codeword of
first type is defined by the equations

X1 = X0, . . . , X0 = Xr,

so represents an (m− r)-dimensional space. So let µ > 1. The first object then can be
considered as the incidence vector of the geometrical object defined by the following
equations:

X1 = X0, ..., Xr−2 = X0, X
2
0 = Xr−1Xr + · · ·+Xr+2µ−3Xr+2µ−2.

The first r − 2 equations all describe hyperplanes, so their intersection is a PG(m −
r+2, 2). The remaining equation is the standard equation of a non-singular parabolic
quadric in 2µ dimensions. If we look at the intersection with infinity, we get

X0 = 0,
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Xr−1Xr + · · · +Xr+2µ−3Xr+2µ−2 = 0.

This is the standard equation of a non-singular hyperbolic quadric in 2µ−1 dimensions.
Furthermore we see that the coordinates Xr+2µ−1, . . . , Xm can be chosen freely, so in
the PG(m − r + 2, 2) defined by X1 = X0, . . . , Xr−2 = X0, this codeword defines a
cone Ψ with as vertex a PG(m − r + 1 − 2µ, 2) at infinity, and base a non-singular
parabolic quadric Q(2µ, 2) in 2µ dimensions having a non-singular hyperbolic quadric
at infinity. We must also keep in mind that the codeword defines the affine part of
this cone Ψ.

The object of second type is easily seen to define all affine points lying inside the
union of two (m − r)-dimensional affine spaces α and β, but not in the (m − r − µ)-
dimensional affine intersection space α∩β; we will call this kind of object a symmetric

difference.
A codeword c of RM(r,m) is non-minimal if and only if c = c1 + c2, where c1

and c2 are non-zero codewords having disjoint supports. Since we are interested in
counting the number of non-minimal codewords of weight less than 3 ·2m−r, we take c1
to be a non-zero codeword of smallest weight, namely 2m−r, and c2 to be a codeword
of first or second type with small µ. We don’t take weight 2m−r for both codewords
since this case has already been solved by Borissov, Manev, and Nikova [3]; their
result is stated here in Theorem 1.7. So a non-minimal codeword corresponds to a
pair (c1, c2) of geometric objects having no affine intersection points, where c1 is an
(m− r)-dimensional space, and where c2 is a quadric or a symmetric difference. Call
such a pair a skew pair. This geometrical problem of counting the number of skew
pairs will be solved more generally over GF(q) than over GF(2).

2 Counting the number of objects

In this section, we first determine how many basic objects of each type, namely quadrics
and symmetric differences, there are. From now on, we work more generally over
GF(q) instead of over GF(2). Hence, we will no longer use the term codeword, since
only for q = 2 do the geometric objects correspond to codewords.

However, we will still use sentences like ”the projective space defined by c1”, and
such sentences will be used to indicate that we are talking about the generalization
over GF(q) of the geometric object over GF(2) that corresponds to the codeword c1.

Denote the number ofm-dimensional spaces PG(m, q) lying inside an n-dimensional
space PG(n, q) by φ(m;n, q), the number of non-singular hyperbolic quadrics Q+(2µ−
1, q) inside a (2µ − 1)-dimensional space PG(2µ − 1, q) by O(Q+(2µ − 1, q)), and
the number of non-singular parabolic quadrics Q(2µ, q) inside a 2µ-dimensional space
PG(2µ, q) by O(Q(2µ, q)).

These numbers can be found in [4].
If we denote

qr−2φ(m− r + 1;m− 1, q)φ(m− r + 1 − 2µ;m− r + 1, q)

φ(2µ− 1; 2µ, q)

by Fh, then we get for the number F of cones Ψ with as vertex a PG(m−r+1−2µ, q)

4



at infinity, and base a non-singular parabolic quadric Q(2µ, q) in 2µ dimensions having
a non-singular hyperbolic quadric at infinity the following.

F = Fh|O(Q(2µ, q))||Q+(2µ− 1, q) on a given Q(2µ, q)|

Since for q = 2, the weight distribution for the codewords of RM(r,m) of weight
less than 2.5d = 5

2
2m−r is known [6], we also have the number S of symmetric difference

objects in this case, but not for general q.
However, it is not hard to calculate this number S in general. The number of

choices for the first affine space forming the symmetric difference is

F1(m, r, µ, q) =
qm(qm − 1)(qm − q) · · · (qm − qm−r−µ−1)

qm−r−µ(qm−r−µ − 1)(qm−r−µ − q) · · · (qm−r−µ − qm−r−µ−1)
.

The number of choices for the second affine space forming the symmetric difference
is then

F2(m, r, µ, q) =
(qm − qm−r)(qm − qm−r+1) · · · (qm − q(m−r)+(µ−1))

(qm−r − qm−r−µ)(qm−r − qm−r−µ+1) · · · (qm−r − qm−r−1)
.

Hence, we get

S =
φ(r − 1;µ− 1 + r, q)F1(m, r, µ, q)F2(m, r, µ, q)

2
.

for the number of symmetric differences defined by two affine (m − r)-dimensional
spaces α and β having an (m− r − µ)-dimensional intersection.

Next, we will count the number of skew pairs (c1, c2), c1 an affine (m−r)-dimensional
space in AG(m, q) and c2 a cone or a symmetric difference as counted for the deter-
mination of F and S.

2.1 The second codeword c2 is a quadric Ψ

Suppose that we have fixed a quadric Ψ in AG(m, q), where Ψ is a cone having
an (m − r − 2µ + 1)-dimensional vertex Γ at infinity and having as base B a non-
singular parabolic quadric Q(2µ, q), and that we wish to determine how many (m−r)-
dimensional affine spaces AG(m− r, q) are skew to the affine part of the quadric Ψ.

Let Π be the (m − r + 2)-dimensional projective space containing the quadric Ψ
and let α be the projective completion of the (m− r)-dimensional affine space corre-
sponding to the codeword c1 of smallest weight. The intersection of Π with the space
at infinity is denoted by Π∞. We describe the different situations in AG(m, q) which
occur if we want to count the pairs (Ψ, α) having no affine points in common, where
Ψ is the quadric and where α is a projective space PG(m− r, q) not lying at infinity.
Note that in the case q = 2, the affine part of α defines the codeword c1 and the affine
part of Ψ defines the codeword c2.

Case (1) The spaces α and Π have no affine points in common. So α certainly
does not have affine points in common with Ψ.
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Denote the number of c-dimensional projective spaces lying inside an a-dimensional
projective space Πa that are skew to a given b-dimensional projective space of Πa by
Skew(a, b, c).

Lemma 2.1 The number Skew(a, b, c) is equal to

c−1
∏

k=−1

qa−k − qb+1

qk+2 − 1
.

Hence, in this case, we get

Lemma 2.2 The number P of AG(m− r, q) skew to a given space AG(m− r+ 2, q)
in AG(m, q) is equal to

P =
m−r−1
∑

x=−1

φ(x;m− r + 1, q)T (x),

where

T (x) = Skew(m−x−1, m−r+1−x,m−r−x−1)−Skew(m−x−2, m−r−x,m−r−x−1).

Case (2) The spaces α and Π intersect in an l-dimensional space Πl, l ≥ 0, not
lying completely in Π∞. If l = 0, we count how many (m−r)-dimensional affine spaces
have a projective completion that intersects Π exactly in an affine point not lying on
Ψ. If l > 0, we will start from a given intersection at infinity.

The following lemma severely restricts the number of possibilities for this intersec-
tion with Π∞.

Lemma 2.3 Let α be an (m − r)-dimensional affine space in AG(m, q) having a

non-empty intersection with the (m− r+2)-dimensional affine space Π containing the

quadric Ψ. Assume that α∩Π is skew to Ψ, then α∩Π∞ is either contained in Ψ∩Π∞

or α ∩ Π∞ ∩ Ψ is a hyperplane of α ∩ Π∞.

Terminology. For the rest of the paper, we refer to these two cases as the cases

”hyperplane” and ”hyperplane in the hyperplane”.

Call an (s+k+1)-dimensional space Πs+k+1 at infinity, lying on Ψ and intersecting
the vertex Γ of Ψ in an s-dimensional space and the base Q+(2µ− 1, q) of Π∞ ∩Ψ in
a k-dimensional space, a starting configuration from now on.

Case (2.a) The ”hyperplane case”.
We count in how many ways we can extend a starting configuration to an affine

space Πs+k+2 lying in Π = PG(m − r + 2, q) and skew to the affine part of Ψ, and
intersecting Π∞ in this given starting configuration Πs+k+1.
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Lemma 2.4 Through an (s+ k+ 1)-dimensional space Πs+k+1 at infinity, completely

lying on Ψ, that intersects the vertex Γ in an s-dimensional space Πs, there pass

H(s, k) =
qm−r+2−2µ(q2µ−2k−2 − q2µ−2k−3 + qµ−k−2)

qs+1

affine (s+ k + 2)-dimensional spaces of Π skew to the affine part of the quadric Ψ.

Case (2.b) The case ”hyperplane in the hyperplane”.
We count in how many ways we can extend a starting configuration to an affine

space Πs+k+3 lying in Π = PG(m − r + 2, q) and skew to the affine part of Ψ, and
intersecting Π∞ in an (s+ k + 2)-dimensional space only sharing Πs+k+1 with Ψ.

Lemma 2.5 Through an (s+ k+ 1)-dimensional space Πs+k+1 at infinity, lying com-

pletely on Ψ, that intersects the vertex Γ of Ψ in an s-dimensional space Πs, there are

in Π

HIH(s, k) =
q2m−2r−3µ−2s−k(qµ−k−1 − 1)((q − 1)q2µ−2k−4 + qµ−k−2)

2

affine (s+ k + 3)-dimensional spaces Πs+k+3 skew to the affine part of the quadric Ψ,

and intersecting Π∞ in an (s+k+2)-dimensional space only intersecting Ψ in Πs+k+1.

We now determine how many starting configurations there are. In the lemma
below, the following notation is used:

[r, s]+ = (qr + 1)(qr+1 + 1) · · · (qs + 1) if s ≥ r,

[r, s]− = (qr − 1)(qr+1 − 1) · · · (qs − 1) if s ≥ r.

If s < r, then [r, s]+ = [r, s]− = 1.

Lemma 2.6 The number of (s+k+1)-dimensional spaces Πs+k+1 at infinity lying on

the quadric ΓQ+(2µ− 1, q) and intersecting the vertex Γ in some s-dimensional space

Πs is equal to

S(s, k) = φ(s; v, q)q(k+1)(v−s) [µ− 1 − k, µ− 1]+[µ− k, µ]−
[1, k + 1]−

, with v = m− r − 2µ+ 1.

The remaining problem consists of determining the number of ways the extended
starting configurations Πx′, x′ ≥ 0, x′ = s+k+2 or x′ = s+k+3, can be extended to
(m− r)-dimensional affine spaces in the space AG(m, q), that intersect the affine part
AG(m− r+2, q) of Π exactly in the space Πx′ , and determining the number of spaces
AG(m− r, q) that are affinely completely skew to the AG(m− r+ 2, q). The number
of ways to extend Πx′ to an (m− r)-dimensional space intersecting AG(m− r + 2, q)
in Πx′ is

ExtQ(x′) =
(qm − qm−r+2) · · · (qm − q(m−r+2)+m−r−x′−1)

(qm−r − qx′) · · · (qm−r − qm−r−1)
.

Since we have determined for all dimensions x how many affine spaces AG(m−r, q)
intersect AG(m− r + 2, q) in a given x-dimensional affine space, x ≥ 0, and since we
know the number of AG(m − r, q) skew to AG(m − r + 2, q), the number of affine
(m−r)-dimensional subspaces of AG(m, q) skew to the affine part of Ψ can be counted.
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Theorem 2.7 The number of affine (m−r)-dimensional subspaces of AG(m, q) skew

to the affine part of a given cone Ψ = ΓQ(2µ, q), where Γ is the (m − r − 2µ + 1)-
dimensional vertex at infinity of Ψ, is equal to

A1 = P +
∑

(s,k)∈R(s,k)

S(s, k)(H(s, k)ExtQ(s+ k + 2) +HIH(s, k)ExtQ(s+ k + 3)),

where

R(s, k) = {(s, k)| − 1 ≤ s ≤ m− r + 1 − 2µ, −1 ≤ k ≤ µ− 1},

and where P is defined in Lemma 2.2.

Proof First of all, by Lemma 2.2, we have P distinct (m−r)-dimensional affine spaces
that have no affine points in common with Π = AG(m − r + 2, q). By Lemma 2.6,
the number of (s + k + 1)-dimensional spaces at infinity Πs+k+1 lying on the quadric
ΓQ+(2µ− 1, q) and intersecting the vertex Γ in some s-dimensional space Πs is equal
to S(s, k). We recall Lemma 2.4. Through an (s+ k+1)-dimensional space Πs+k+1 at
infinity that intersects the vertex Γ in an s-dimensional space Πs, and supposing that
we are in the case hyperplane, there pass H(s, k) affine (s+ k+ 2)-dimensional spaces
in Π skew to the affine part of the quadric Ψ. Another case is treated in Lemma 2.5.
Through an (s+ k+ 1)-dimensional space Πs+k+1 at infinity that intersects the vertex
Γ in an s-dimensional space Πs, and supposing that we are in the case hyperplane in
the hyperplane, there are HIH(s, k) affine (s + k + 3)-dimensional affine spaces in Π
skew to the affine part of the quadric Ψ.

So suppose that we already have such an (s + k + 2)- or (s + k + 3)-dimensional
affine space Πx in Π. A given space Πx, x ≥ 0, can be extended to (m−r)-dimensional
affine spaces in the space AG(m, q), that intersect the affine part AG(m− r + 2, q) of
Π exactly in the space Πx, in ExtQ(x) ways. �

2.2 The second codeword c2 is a symmetric difference

We are going to count the number of (m− r)-dimensional affine spaces AG(m− r, q)
having no affine points in common with a fixed symmetric difference. We repeat that
a symmetric difference is equal to (α ∪ β) \ (α ∩ β), with α and β two affine (m− r)-
dimensional spaces, intersecting in an (m − r − µ)-dimensional affine space, where
3 ≤ µ ≤ r, µ ≤ m− r (Theorem 1.8).

We look at the projective completion Πm−r of such an (m− r)-dimensional affine
space. Denote the (m − r)-dimensional projective spaces forming the symmetric dif-
ference by α and β.

Since Πm−r is allowed to contain affine points lying in α∩β, we have to distinguish
between two cases.

Case (1) The (m− r)-dimensional space Πm−r has affine points in common with
α ∩ β.

Suppose that Πm−r has a k-dimensional projective intersection space Πk, Πk 6⊂ Π∞,
in common with α ∩ β, which is a space of dimension m− r − µ. There are

N(k) =
qm−r−µ(qm−r−µ − 1) · · · (qm−r−µ − qk−1)

qk(qk − 1) · · · (qk − qk−1)

8



choices for such a space Πk.
Suppose that we have fixed such a k-dimensional intersection space Πk. We are

going to extend it to an (m− r)-dimensional affine space without adding any point of
α ∪ β to it. We do this inductively on the dimension and we work in the projective
space PG(m, q). Such an (m− r)-dimensional space has a t-dimensional intersection
space with the space generated by α and β, further denoted by 〈α, β〉. Here we explain
the method of projection and induction. At other places we just mention the results.

We start from a given k-dimensional intersection space Πk and we first construct
the t-dimensional intersection spaces Πk,t with 〈α, β〉 that intersect α ∪ β exactly in
Πk ⊂ α∩ β. Suppose that we have already constructed all a-dimensional affine spaces
in 〈α, β〉 through Πk that have exactly Πk in common with α ∪ β. Let γ be an a-
dimensional space through Πk, having only Πk in common with α∪β. We project from
γ onto a complementary space of γ in the m-dimensional projective space PG(m, q);
this complementary space γ∗ has dimension m − a − 1. Denote the projections on
γ∗ of α, β, and 〈α, β〉 from γ by α∗, β∗, and 〈α, β〉∗ respectively. These spaces have
dimension m− r−k−1, m− r−k−1, and m− r+µ−a−1 respectively, and α∗∩β∗

has dimension m − r − µ − 2k + a − 1. So in order to have an extension of γ to an
(a + 1)-dimensional space lying in 〈α, β〉, such that the intersection space with α ∪ β
remains Πk, we must choose points in 〈α, β〉∗, but outside of α∗ ∪ β∗. In this way, we
get

Q(a, k) =
qm−r+µ−a − 1

q − 1
− 2

qm−r−k − 1

q − 1
+
qm−r−µ−2k+a − 1

q − 1

choices for an extension of this a-dimensional space γ to an (a+ 1)-dimensional space
in 〈α, β〉, intersecting α ∪ β in Πk.

Denote the number of a-dimensional affine spaces in 〈α, β〉 that intersect α ∪ β

exactly in Πk ⊂ α∩β by ψ(a, k). Then we have ψ(k, k) = 1, namely the k-dimensional
space Πk itself. This yields the induction formula

ψ(a+ 1, k) =
Q(a, k)ψ(a, k)

φ(0; a− k, q)
.

The number of t-dimensional affine spaces lying in 〈α, β〉 that intersect α ∪ β exactly
in a given affine space Πk of dimension k contained in α ∩ β is thus equal to ψ(t, k),
and the number of t-dimensional affine spaces that intersect α ∪ β exactly in some
k-dimensional space lying in α ∩ β, but not in Π∞, is equal to N(k)ψ(t, k).

Next we are going to count in how many ways we can extend a given t-dimensional
space Πt lying in 〈α, β〉, which intersects α ∪ β in a given k-dimensional affine space
Πk lying in α ∩ β, with Πk not lying completely in Π∞, to an (m − r)-dimensional
affine space without changing the intersection with 〈α, β〉. Let

R(a, k, t) =
qm−a − 1

q − 1
−
qm−r+µ−t − 1

q − 1
.

Denote the number of a-dimensional affine spaces γ that intersect 〈α, β〉 exactly in Πt,
and α ∩ β exactly in a k-dimensional space, k ≥ 0, not lying at infinity, by ρ(a, k, t).
Then we have ρ(t, k, t) = 1, namely the t-dimensional space Πt itself. We get the
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following induction formula

ρ(a + 1, k, t) =
R(a, k, t)ρ(a, k, t)

φ(0; a− t, q)
.

The number of (m − r)-dimensional affine spaces intersecting 〈α, β〉 in a given t-
dimensional affine space Πt, where Πt∩α∩β = Πk, k ≥ 0, is thus equal to ρ(m−r, k, t).

In order to find the total number of such (m− r)-dimensional spaces, we must sum
over all possible dimensions k and t, which yields the following theorem.

Theorem 2.8 The number of (m− r)-dimensional affine spaces in AG(m, q) having

no affine points in common with a fixed symmetric difference formed by two affine

(m− r)-dimensional spaces α and β, but having at least one affine intersection point

with the (m− r − µ)-dimensional space α ∩ β, is equal to

m−r−µ
∑

k=0

m−r
∑

t=k

N(k)ψ(t, k)ρ(m− r, k, t).

Case (2) Now suppose that all intersection points of Πm−r and α∪β lie at infinity.

We start from such an intersection at infinity. Denote the intersections of α and β
with the space at infinity by α∞ and β∞ respectively. These are (m−r−1)-dimensional
spaces intersecting in an (m− r − µ− 1)-dimensional space.

Suppose that the affine space Πm−r intersects α∞ in a k-dimensional space Πk,
β∞ in an l-dimensional space Πl, and α∞ ∩ β∞ in an u-dimensional space Πu. If
these intersection spaces are given, we call this a (k, l, u)-starting configuration. We
denote the number of a-dimensional spaces contained in Π∞, and intersecting α∞,
β∞, α∞ ∩ β∞, and 〈α∞, β∞〉 in a k-dimensional, l-dimensional, u-dimensional, and
f -dimensional space, respectively, by ψ(a, k, l, u, f).

The number S(k, l, u) of (k, l, u)-starting configurations is equal to

ψ(k + l − u, k, l, u, k + l − u) = φ(u;m− r − µ− 1, q)E1(k, u)E1(l, u),

where

E1(x, y) =

x−1
∏

a=u

(qm−r−a−1 − qm−r−µ−y−1)

qa−y+1 − 1
.

So suppose that we now have a certain (k, l, u)-starting configuration and we look at
the (k+ l−u)-dimensional space Πk+l−u generated by the spaces of this configuration.
Denote the (m−1)-dimensional space at infinity of AG(m, q) by Π̃∞. Similarly to the
previous case, we will inductively Πk+l−u in Π̃∞ to larger spaces without changing the
intersection spaces with α and β. We will do this in two steps: first we extend this
space to an f -dimensional space Πf lying completely in 〈α∞, β∞〉, then we extend Πf

to an (m − r − 1)-dimensional space in Π̃∞ without changing the intersection space
Πf with 〈α∞, β∞〉.

Denote by λ(k, l, u, s) the number of s-dimensional spaces lying completely in
〈α∞, β∞〉 which intersect α∞, β∞, and α∞ ∩ β∞ in a given k-, l-, and u-dimensional
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space respectively. We can calculate λ(k, l, u, s) by induction, with λ(k, l, u, k+l−u) =
1, and we find

λ(k, l, u, s+ 1) =
λ(k, l, u, s)ExtS(k, l, u, s)

φ(0; s− (k + l − u), q)
,

where

ExtS(k, l, u, s) =
qm−r+µ−s−1 − 1

q − 1
−
qm−r−k−1 − 1

q − 1
−
qm−r−l−1 − 1

q − 1
+
qm−r−k−l−µ+s−1 − 1

q − 1
.

We call an f -dimensional space constructed in this way a (k, l, u, f)-space. For each
(k, l, u, f)-space Πf we want to extend Πf without changing the intersection with
〈α∞, β∞〉. At infinity each Πf can be extended to an (m − r − 1)-dimensional space
Πm−r−1 intersecting 〈α∞, β∞〉 in Πf in ψ(m−r−1, k, l, u, f) ways. Since λ(k, l, u, f) is
the number of (k, l, u, f)-spaces we have as starting formula ψ(f, k, l, u, f) = λ(k, l, u, f).
The induction formula is

ψ(a+ 1, k, l, u, f) =
ψ(a, k, l, u, f)Q(a, k, l, u, f)

φ(a− f − 1; a− f, q)
.

where

Q(a, k, l, u, f) =
qm−1−a − 1

q − 1
−
qm−r+µ−f−1 − 1

q − 1
.

Suppose that we have an (m−r−1)-dimensional space ∆ lying at infinity, which is
the extension of a (k, l, u, f)-space. We still have to extend ∆ to an (m−r)-dimensional
space, not lying at infinity. This yields the following number of extensions:

E(k, l, u, f) = qr − qm−r−1−k − qm−r−1−l + qm−r−k−l−µ+f−1.

The total number of affine (m− r)-dimensional spaces intersecting a given symmetric
difference only at infinity is found by summing over all possible (k, l, u)-starting con-
figurations and the corresponding (k, l, u, f)-spaces. We collect the restrictions on k,
l, u, and f by introducing the following set:

Res(k, l, u, f) = {(k, l, u, f)| − 1 ≤ k, l ≤ m− r − 1; −1 ≤ u ≤ m− r − µ− 1;

max(k − µ, l − µ,−1) ≤ u ≤ k, l; k + l − u ≤ f ≤ m− r − 1}.

With the above introduced notations, we get the following theorem.

Theorem 2.9 The number of (m−r)-dimensional affine spaces having no affine points

in common with fixed (m − r)-dimensional affine spaces α and β, which intersect in

an affine (m − r − µ)-dimensional space and together form a symmetric difference is

equal to
∑

(k,l,u,f)∈Res(k,l,u,f)

S(k, l, u)ψ(m− r − 1, k, l, u, f)E(k, l, u, f).
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Proof We have S(k, l, u) possibilities to obtain a (k, l, u)-starting configuration Πk+l−u.
We have λ(k, l, u, f) ways to extend a given (k, l, u)-starting configuration to an f -
dimensional space Πf contained in 〈α∞, β∞〉 which intersects α∞ ∪ β∞ in the given
(k, l, u)-starting configuration. A given space Πf can be extended at infinity to an (m−
r− 1)-dimensional space Πm−r−1 intersecting 〈α∞, β∞〉 in Πf in ψ(m− r− 1, k, l, u, f)
ways. A given space Πm−r−1 can be extended to an affine space Πm−r having no affine
points in common with α ∪ β in E(k, l, u, f) ways. �

The previous two theorems together yield the following theorem.

Theorem 2.10 The number A2 of (m− r)-dimensional affine spaces having no affine

points in common with a fixed symmetric difference, formed by two (m−r)-dimensional

affine spaces α and β which intersect in an affine (m − r − µ)-dimensional space, is

equal to

m−r−µ
∑

k=0

m−r
∑

t=k

N(k)ψ(t, k)ρ(m−r, k, t)+
∑

(k,l,u,f)∈Res(k,l,u,f)

S(k, l, u)ψ(m−r−1, k, l, u, f)E(k, l, u, f).

3 Interchange

We want to obtain the number of minimal codewords in the coding-theoretical setting
corresponding with the case q = 2. In the geometrical translation of the problem,
we count the number of non-minimal codewords; geometrically they correspond to
two geometrical objects of AG(m, q) which have no affine points in common. The
non-minimal codeword then corresponds to the union of the affine point sets of the
two objects. It might happen however that a given affine point set corresponding to a
non-minimal codeword can be split in several ways into two disjoint affine point sets
forming the correct geometrical objects. Then we have counted these objects more
than once. With a slight abuse of terminology we will say that the pair (c1, c2) is
counted several times. In which cases this happens, is investigated in this section.

3.1 Interchange with the symmetric difference

Suppose that c1 ∪ c2 = c3 ∪ c4 considered as affine point sets, where c1 and c3 are two
(m − r)-dimensional affine spaces and where c2 is a symmetric difference, formed by
two (m− r)-dimensional spaces α and β.

Our arguments show that in case of an interchange c1+c2 = c3+c4, there is never a
swap from a sum c1 + c2 consisting of an (m− r)-dimensional space c1 = AG(m− r, q)
and a symmetric difference c2, to a sum c3 + c4 consisting of an (m − r)-dimensional
space c3 = AG(m− r, q) and a quadric c4.

The intersections c1 ∩ c3 and c2 ∩ c3 are investigated. First it is shown that c1 6= c3
and that c1 ∩ c3 cannot be empty. If c1 ∩ c3 is a t-dimensional space,0 ≤ t < m − r,
then we get,

|c2 ∩ c3| = qm−r − qt.
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Next, we consider the intersections of c3 with α, β, and α ∩ β. Then |c2 ∩ c3| can also
be expressed in terms of the dimensions of these intersections. Up to a few exceptions,
this always yields a contradiction.

We obtain the following theorem.

Theorem 3.1 Let S be the number of symmetric differences counted in Section 2.

There are

A3 =
m−r
∑

t=m−r−µ

ψ(t,m− r − µ)ρ(m− r,m− r − µ, t)S

pairs (c1, c2), where c1 is an affine (m− r)-dimensional space and where c2 is a sym-

metric difference, which are counted three times.

Furthermore, if q = 2, there are an extra

A4 = 2 ·(2µ−1)((2µ−1)(2r−2µ)+(2µ−1)(2r−2µ−1−1)+(2r+1−2µ+1)(2r−2µ−1))S

pairs (c1, c2), where c1 is an affine (m− r)-dimensional space and where c2 is a sym-

metric difference, which are counted three times.

Finally, if q = 2, there are an extra

A5 = 2 · (2r − 2µ)A

pairs (c1, c2), where c1 is an affine (m− r)-dimensional space and where c2 is a sym-

metric difference, which are counted 2 · (2µ − 1) + 1 times.

3.2 Interchange with quadrics

Suppose that c1 ∪ c2 = c3 ∪ c4 as affine point sets, where c1 and c3 are (m − r)-
dimensional affine spaces and where c2 is a quadratic cone. Recall that c1 ∩ c2 = ∅
and c3 ∩ c4 = ∅, if they are considered as affine point sets. From the previous section,
it follows that if this interchange effectively occurs, then also c4 is a quadric.

First it is shown that c1 ∩ c3 cannot be empty and that c1 6= c3. Hence, we may
suppose that |c1 ∩ c3| = qt, with 0 ≤ t < m− r and |c2 ∩ c3| = qm−r − qt.

Suppose that c3 intersects the projective completion Π of the (m−r+2)-dimensional
affine space spanned by the cone c2 = ΓQ(2µ, q) in an l-dimensional space Πl. Fur-
thermore, suppose that c3 shares a k-dimensional space Πk with the vertex Γ of the
cone c2 = ΓQ(2µ, q). Consider a space complementary to the space Πk in Πl; this
is an (l − k − 1)-dimensional space Πl−k−1 chosen in such a way that c2 ∩ Πl−k−1 is
maximal. Suppose that c3 intersects c2 ∩ Πl−k−1 in z affine points. This means that
|c2 ∩ c3| = zqk+1. Take a space Πb complementary to the vertex space of c2 in Π and
containing Πl−k−1. We will call this space the base space.

Comparing the two equations above for the number of affine intersection points of
c2 and c3, and rewriting them, yields the following equation,

qm−r−t = 1 + zqk+1−t.

An extended case-by-case analysis yields severe restrictions on the number of pos-
sibilities, described in the following theorem.
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Theorem 3.2 If µ > 2, then an interchange with a quadric Ψ is impossible. For

µ = 2, an interchange can only occur if the vertex of Ψ is contained in c3. If interchange

is possible for µ = 2, we have q = 2, t = m−r−2, z = 3, or q = 3, t = m−r−1, z = 6,
or q = 2, t = m− r − 1, z = 2.

The remaining cases are treated below.
(a) First, the case q = 2. The base of Ψ is a non-singular parabolic quadric Q(4, 2)

and the vertex Γ is of dimension k = m− r− 3. First we show that if we have a given
quadric c2, then in order to have an interchange, c1 always has to contain Γ. The rest
depends on the number of affine points of c1 contained in Πb.

Once we have determined in which cases there is an actual interchange and how
many times we have counted the same affine point set c1 ∪ c2 in these cases, the only
thing left to do is to count how many times these cases effectively occur. This yields
the following theorem concerning pairs (c1, c2) which are counted several times, where
c2 is a quadric ΓQ(4, 2) with Γ an (m−r−3)-dimensional space at infinity and Q(4, 2)
a 4-dimensional parabolic quadric not lying completely at infinity and with c1 an affine
(m− r)-dimensional space.

Theorem 3.3 Denote the number of quadrics c2, where c2 is a quadric ΓQ(4, 2), with

Γ an (m − r − 3)-dimensional space at infinity, which we calculated in Section 2, by

the same notation F . Let c1 be an affine (m− r)-dimensional space skew to c2. Then

there are

A6 = (15 · 26(2r−2 − 1)(2r−3 − 1) + 10 ·
28(2r−2 − 1)(2r−3 − 1)

3
)F

pairs (c1, c2) which are counted 3 times. The following number of pairs (c1, c2) are

counted 7 times

A7 = (35 · (2r − 22) + 45 · 23 · (2r−2 − 1))F.

Finally, A8 = 15F pairs (c1, c2) are counted 15 times.

(b) Next, the case q = 3.
In this case of possible interchange of Theorem 3.2, the base of the quadric Ψ is

a non-singular parabolic quadric Q(4, 3) and the vertex Γ at infinity has dimension
k = m−r−3. In the case q = 3, we cannot apply Theorem 1.8 directly, so we still have
to check that the affine point set formed by the affine points belonging to (c1 ∪ c2)\c3
forms a singular quadric c4 with base a parabolic quadric Q′(4, 3). This turns out to
be the case.

Theorem 3.4 Denote the number of quadrics c2, where c2 is a quadric ΓQ(4, 2), with

Γ an (m − r − 3)-dimensional space at infinity, which we calculated in Section 2, by

the same notation F . Let c1 be an affine (m− r)-dimensional space skew to c2. Then

the number of distinct unions c1 ∪ c2 for the case q = 3, µ = 2, is equal to

F · (A1 − 8).

This completes the proof of the main theorem stated below. We impose µ ≥ 2,
since the case µ = 1 reduces to the results of Borissov, Manev, and Nikova.
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Theorem 3.5 (Main Theorem) The number of affine point sets formed by two dis-

joint affine point sets c1 and c2, where c1 is the point set of an (m − r)-dimensional

affine space and where c2 is the point set of either a quadric ΓQ(2µ, q), 4 ≤ 2µ ≤
m− r + 2, with an (m− r− 2µ+ 1)-dimensional vertex Γ at infinity, or a symmetric

difference defined by two affine (m − r)-dimensional spaces intersecting in an affine

(m− r−µ)-dimensional space, 3 ≤ µ ≤ r, µ ≤ m− r, is equal to A1F if q > 3, µ = 2.
This number is equal to A1F + A2S −A3 + A3

3
if q > 2, µ > 2.

If q = 2, µ > 2, we get

A1F + A2S − (A3 + A4 + A5) +
A3

3
+
A4

3
+

A5

2(2µ − 1) + 1
,

such sets. If q = 2, µ = 2, there are

(A1F + A2S −
8

∑

i=3

Ai) +
A3

3
+
A4

3
+

A5

2(2µ − 1) + 1
+
A6

3
+
A7

7
+
A8

15
.

such sets. Finally, if q = 3, µ = 2, we obtain

(A1 − 8)F,

such sets.
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