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1 Introduction

The discovery of a SM-like Higgs boson with a mass of about 126 GeV [1, 2] represents a

fundamental step towards a better understanding of the origin of Electroweak Symmetry

Breaking (EWSB). Measuring its couplings with higher precision will be one of the priorities

in the 14TeV run of the LHC, and is one of the main motivations for building a future

lepton collider. The phenomenological description of EWSB within the SM framework

provides a benchmark against which any deviations in the Higgs boson couplings should be

compared, as such deviations could contain the key to a more fundamental understanding

of this phenomenon.

A currently open question is whether this particle is elementary (i.e. pointlike), down

to distance scales much shorter than the EW scale, or if, on the contrary, it is a composite

bound state of more fundamental degrees of freedom, whose physics should be revealed at

energies not far above the weak scale. In either case the discovery of this scalar particle

is truly remarkable. If it turns out to be elementary it would be the first and only known

example of this kind in nature. Its existence at energies low compared to e.g. the Planck

scale could indicate that the universe as we know it results from a rather perplexing fine-

tuning, or perhaps more plausibly that there is a symmetry at work as exemplified by

supersymmetric scenarios. If it turns out that the Higgs boson is a composite state arising

from some underlying strong dynamics, we would be in a situation that also presents new

characteristics compared to other known composite scalars. For instance, unlike the pions of

QCD, the dynamics of the Higgs boson must lead to EWSB by generating a non-vanishing

vacuum expectation value (vev) for the composite scalar.

The fact that the LHC has not observed any major deviation from the SM in its

7-8TeV run indicates that any new physics should be roughly above 1TeV (although

one can think of specific examples that are less constrained, and also examples that are

significantly more constrained). In the context of Higgs compositeness, this means that

there must exist a scalar resonance much lighter than the other strong resonances. It is

then natural to interpret the Higgs as a pseudo-Nambu Goldstone boson (pNGB) arising

from the spontaneous breaking of an approximate global symmetry of the new strong

sector [3–7]. This idea has received considerable attention lately [8]. A question of special

importance centers on the type of deviations in the Higgs properties that would be expected

in such scenarios. This has been studied to some extent within specific realizations of a

Higgs as a pNGB, and also in the context of an effective low-energy parametrization such

as the SILH [9] and similar approaches [10–16].
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We will focus here on the minimal case1 based on the SO(5) → SO(4) symmetry

breaking pattern [18], which leads to exactly four Nambu-Goldstone bosons and contains

a custodial symmetry that ensures that the corrections to certain electroweak observables

are sufficiently suppressed. Although the embedding of the SM gauge sector is fixed by

the above assumption, there is still a considerable arbitrariness in how the SM fermionic

sector is embedded into the framework. This depends, in particular, on which SO(5)

representations for the fermionic resonances are generated by the strong dynamics and

would therefore be sensitive to further details of the specific UV realization of the idea.

Our aim is to study in detail the implications for the properties of the Higgs boson. In

particular, we will show that if one were to measure a robust deviation from the SM in the

rates h → γγ, h → ZZ and h → Zγ and to a lesser extent in h → ττ , one could gather

indirect information regarding the quantum numbers of the fermionic resonances. One also

expects a generic reduction of the Higgs production cross section (in particular through

gluon fusion), as well as a suppression of all Yukawa couplings w.r.t. the SM.

There have been a number of studies on the phenomenology of a pNGB Higgs as well

as partial compositeness. Since the pioneer work of ref. [19] studying Higgs production

by gluon fusion, many works have considered the deviations of the Higgs couplings in this

setup (i.e. for a pNGB Higgs), exploring the dependence on the degree of compositeness of

the fermions, the scale of compositeness and their relation with the spectrum of resonances,

among other important variables [20–22]. However most of them have considered generic

regions of the parameter space, that could be unphysical, in the sense that either there

is no EWSB, or the decay constant of the Higgs and its vev are not separated enough to

guarantee compatibility with EW precision measurements, or the spectrum of the lightest

level of states does not reproduce the SM one, to cite a few examples. To ensure that these

conditions are satisfied and therefore make a realistic study of the Higgs phenomenology,

in general requires a full study of the Higgs potential that can only be performed in a well

defined model, with the risk of loosing some generality. One of the purposes of this work is

to make a step in that direction. We consider a family of well defined models, with the same

pattern of symmetry breaking for the pNGB Higgs but allowing different representations

for the fields of the theory. This still represents considerable freedom and for this reason we

make some restrictive assumptions that ensure calculability of the Higgs potential within

the framework of a two site model. We will also assume that at high energies the symmetry

behind the pNGB is linearly realized for the massive resonances, and for that reason we will

include massive resonances in complete SO(5) representations. It is possible to relax some

of these assumptions, for example by considering models with more sites, by allowing for

non-linear realizations, or even by allowing for logarithmic divergences of the potential.2

Nevertheless, we hope that our setup can still capture generic features of minimal pNGB

1The terminology “Minimal Composite Higgs Model (MCHM)” was actually introduced in a slightly

different context in [17]. Our study is limited to more recent models based on the pNGB idea which have

also been named MCHM [18]. Since we consider a variety of fermionic realizations, here the “minimality”

refers specifically to the (common) bosonic sector.
2L.D. thanks Gilad Perez for discussions on this topic.
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models.3 We will show that it can give information on the size of the corrections that

one can expect on the Higgs phenomenology as well as on the wealth and direction of

corrections that follow by allowing for different representations of the fields.

This paper is organized as follows. In section 2 we review the basic aspects of the

effective two-site description of the composite Higgs scenario. In section 3 we present

the details of the specific models we study in this work, which differ in the realization of

the fermionic sector. In section 4 we describe the low-energy consequences of the pNGB

nature of the Higgs and the presence of the composite resonances, while in section 5 we

discuss the properties of the Higgs potential. Section 6 contains our numerical results, while

section 7 contains some remarks on the tuning of the phenomenologically viable models.

We summarize and conclude in section 8. We also include four appendices: appendix A

summarizes several useful group theoretical results, appendix B contains the mass matrices

of the gauge sector of the models, appendix C contains all the correlators for the low-energy

limit of the various models, and finally appendix D summarizes how we compute the 1-loop

processes h→ γγ, h→ ZZ and h→ Zγ.

2 A minimal pNGB Higgs

We are interested in the minimal model that can deliver the Higgs as a pNGB resonance

arising from the spontaneous breaking of a global symmetry in a strongly coupled sector

(SCFT). We will assume that the SCFT has an exact global symmetry that is spontaneously

broken to a subgroup by effects of the strong dynamics, with the Higgs being the associated

Nambu-Goldstone boson (NGB). The interactions of the fields in the SCFT with the SM

fields explicitly break the global symmetry, leading to a Higgs potential at loop level. In

this case the degeneracy of the vacuum is uplifted and the Higgs becomes a pNGB, leading

to a natural separation between the scale of the resonances and the Higgs mass. Usually

the gauge contributions to the 1-loop Coleman-Weinberg potential are aligned with the EW

gauge group. However the fermion contributions, that are expected to be large because of

the large top mass, can induce a missalignement of the vacuum triggering EW symmetry

breaking dynamically.

Ref. [18] has shown that the minimal group containing the SM EW gauge symmetry

and an unbroken custodial symmetry that can lead to a pNGB Higgs is SO(5). This group

is spontaneously broken to SO(4) ≃ SU(2)L × SU(2)R, with the Higgs being the NGB in

the coset SO(5)/SO(4) that transforms as a 4 of SO(4). Besides the Higgs, the SCFT

is assumed to lead to vector resonances in the adjoint representation of the global group

(these are created by the Noether currents of this symmetry). In addition, one assumes the

existence of fermion resonances, some of which can mix with the SM degrees of freedom.

We will consider that all the massive composite resonances are in complete irreducible

representations of SO(5), realizing the symmetry in a linear way. All the composite states

are taken to interact with typical couplings gρ ≫ gSM . The SM gauge and fermion fields

3Recently, another class of pNGB models based on four-fermion interactions has been discussed in [23].

Although they rely on a different breaking pattern, in principle they could be extended to SO(5)/SO(4),

following the analysis of [24].
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can be considered as external sources probing the SCFT, i.e.: elementary fields. The

SM particles do not interact with the Higgs at leading order, but these interactions are

mediated by the resonances of the SCFT that mix with the elementary fields.

The gauge fields of the SM weakly gauge a subgroup of the SCFT global symmetry.

The conserved currents of the SCFT associated to this subgroup couple linearly with the

SM gauge fields, explicitly breaking the global symmetry. The masses of the EW vector

bosons arises from mixing between the vector resonances created by the SCFT currents

and the SM gauge fields, as well as from the Higgs interactions.

We are also interested in partial compositeness of the SM fermions, that can be realized

if the elementary fermions couple linearly with operators of the SCFT: L ⊃ λψ̄Oψ. The

low energy scaling of the coupling λ is controlled by the dimension of the corresponding

SCFT operator D = dim[Oψ] [18, 25]. For D > 5/2 the coupling is irrelevant leading to

small mixing between the elementary fermions and the fermionic resonances created by

the SCFT operator. For D < 5/2 the coupling is relevant leading to large mixing between

the elementary fermion and the resonances, and thus to a large Yukawa coupling. The

former case leads to light states that are mainly elementary, whereas the latter one can

lead to large fermion masses, as for the top quark, which is associated with a large degree

of compositeness.

The proper normalization of hypercharge for fermions requires the introduction of an

extra U(1)X symmetry in the composite sector, with the identification Y = T 3
R+X, where

T 3
R is the diagonal generator of SU(2)R. The SU(2)R charge of the composite operators Oψ

is not fixed, allowing for different representations rO under SO(5). However, the stringent

constraints on the corrections to the Zbb̄ couplings arising from LEP and SLC require a non-

trivial protection of the ZbLb̄L coupling. Ref. [26] has shown that there is a subgroup of the

custodial symmetry O(3) that can ensure that the corrections to this coupling are indeed

sufficiently suppressed. This symmetry requires that the representation rOq , where Oq is

coupled to the doublet of the third generation qL, decompose under SO(4) as: rOq ≃ 4⊕. . . .
The smallest representations satisfying this condition are: r = 5,10,14. On the other

hand, invariance of the SCFT under SO(5) × U(1)X restricts the representations of the

operators Ou and Od, coupled with tR and bR respectively. In this work we will consider

several representations rO subject to the above restrictions, and we will study their impact

in the Higgs phenomenology at the LHC.

We also note that, although a generic strongly coupled theory is expected to yield

resonances with spins other than 1/2 and 1, the contributions of such states to the low-

energy physics are expected to be small. This is mainly because they cannot mix with

the SM fields, which as we will see leads to the dominant deviations from the SM. Also,

as illustated by our analysis of the direct impact of the heavy spin-1 resonances, all such

resonances are expected to be relatively heavy and lead to suppressed effects. The fermionic

resonances are special in that one often finds parametrically lighter states that can give

a non-negligible contribution (apart from the effects due to mixing). Thus, we will be

content with including only the spin-1 (which are common to all the models we consider)

and spin-1/2 resonances in our anaysis.

The scenario described in the previous paragraphs can be realized by considering a

theory in a slice of a warped five dimensional space-time, with the metric being AdS5 near

– 4 –
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the UV. The elementary fields and resonances can be identified with degrees of freedom on

the UV boundary and Kaluza-Klein states, respectively. However it is possible to capture

most of the essential ingredients by considering a theory with the first level of resonances

only, as in the elementary/composite description of ref. [27]. At low energies one considers

an effective description with elementary fields, one level of resonances and linear mixing

between them. This description has more freedom than the full 5D theory, allowing for new

terms [28] as well as a lack of correlation between some parameters, such as the masses

of the different resonances. It also has a cut-off of order a few TeV. However it is able

to parametrize a family of realistic theories with a pNGB Higgs and it is still predictive

enough to explore, at the LHC, the consequences of the symmetries protecting the Higgs

potential. In the next subsections we will summarize a realization of this effective theory.

2.1 Effective description: 2-site model

We consider the effective description of the Higgs as a pNGB arising from a strongly coupled

sector, as introduced in ref. [28] (see also [29]). The simplest model has two sites: one called

site-0 that describes elementary fields, and another called site-1 describing the first level of

resonances arising from the strongly coupled sector (the composite sector). Site-0 contains a

set of gauge and fermion fields with the same symmetry group and fermionic representations

as the SM. We will call G0 the gauge symmetry of this site: G0 = SU(2)L × U(1)Y .
4

Note that there are no elementary scalar fields. On site-1 we consider a gauge symmetry

G1 = SO(5)×U(1)X , which allows to describe effectively the lowest lying spin-1 resonances

of the strong dynamics. Site-1 also contains several multiplets of fermion fields in various

representations of G1, which will be described in detail later. The two sites are connected

by a σ-model field Ω,5 transforming as Ω → g0Ωg
†
1, with g0,1 ∈ G0,1. In figure 1 we show

the Moose diagram corresponding to this theory. We use lower case letters for fields on

site-0 and upper case letters for fields on site-1.

It turns out to be very convenient to extend G0 to a spurious G′
0 = SO(5)×U(1)x. This

is achieved by introducing non-dynamical gauge and fermion fields on site-0 that, together

with the dynamical fields that fill representation of G0 ⊂ G′
0, complete full representations

of G′
0. When one considers all the fields on site-0 as non-dynamical, they act as sources

for an exact global G′
0 symmetry, which is to be thought as a global symmetry of the

strongly coupled sector. We assume that the strong dynamics giving rise to the composite

resonances spontaneously breaks the SO(5) global factor down to SO(4), thus delivering a

set of NGB’s in the coset SO(5)/SO(4). These will be identified as the composite Higgs,

and are described by a field Φ1 as shown in figure 1. The presence of the dynamical fields

on site-0 explicitly breaks G′
0 (e.g. by their kinetic terms, which are not present for the

spurious fields on site-0), and therefore generates a potential for the Higgs, which becomes

a pNGB. This potential is often calculable and is one of the attractive theoretical features

of these scenarios. The observation of a Higgs boson at the LHC and the measurement of

its mass and couplings then imposes non-trivial constraints on the parameters of the model.

4There is also a color SU(3)C on each site, but we omit mentioning these factors in the following.
5Strictly speaking, there are two link fields, Ω and ΩX , for the SO(5) and U(1)X factors. These will be

described in detail below.
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G0 G1−→
Φ1 H1

ψ Ψ

Ω

Figure 1. Moose diagram of the two site theory describing the model. G0 is the SM gauge symmetry

and G1 = SO(5) × U(1)X . The (spontaneous) breaking of G1 down to H1 = SO(4) × U(1)X , is

parametrized by a field Φ1, that transforms under G1 as a 5 of SO(5) with QX = 0, and whose vev

is 〈Φ1〉 = {0, 0, 0, 0, 1}T . The link field transforms like Ω→ g0Ωg
†
1, with g0,1 ∈ G0,1.

As we will see in detail below, the presence of Ω allows to realize partial compositeness

of the fermions through bilinear terms involving a fermion ψ at site-0 and a fermion Ψ

at site-1. It also leads to non-zero masses for the axial combination of the gauge fields in

sites-0 and 1, and contains the would-be NGB’s that are eaten in this process.

2.2 Bosonic sector

Let us consider first the Lagrangian describing the fields that parametrize the SO(5) →
SO(4) breaking.6 We denote the unbroken generators of SO(5) [i.e. of H1 ≡ SO(4) ≃
SU(2)L × SU(2)R] by T a, while the broken ones are denoted by T â. For reference,

we give their explicit expressions in a convenient basis in appendix A. The NGB’s are

parametrized by

U(Π) = eiΠ/f1 , Π = ΠâT â , (2.1)

where f1 is the corresponding decay constant. The G1 = SO(5) symmetry is non-linearly

realized, that is, under a g1 ∈ G1 we have U → g1 U h1(g1; Π)
†, where h1(g1; Π) ∈ H1 is

an element of the unbroken group, that depends on the SO(5) transformation g1 and the

NGB fields Π. The leading order Lagrangian of these NGB’s is

LNGB =
f21
2
DâµDµâ , (2.2)

with Dâµ implicitly defined by U †DµU = iEaµT a +DâµT â. The covariant derivative contains

the composite spin-1 resonances, Aµ, and leads to the interactions between these and the

NGB’s. We defer the description of the interactions between the NGB’s and the fermions

Ψ on site-1 to the next section.

One can obtain a simpler and more explicit description of the above sector by defining

Φ1 = Uφ1, with φ
B
1 = δB 5 (B = 1, . . . 5). Under a g1 ∈ G1 one simply has Φ1 → g1Φ1, and

it can be checked that the above Lagrangian can be written as

LNGB =
f21
2
|DµΦ1|2 . (2.3)

6Since the NGB fields are neutral under U(1)X , we omit this factor for simplicity in this discussion, but

it should be understood.
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In this form, the breaking of SO(5) down to SO(4) is simply parametrized by 〈Φ1〉 =

{0, 0, 0, 0, 1}T .
As for the Lagrangian describing the σ-model connecting the two sites, at leading order

one has:

LΩ =
f2Ω
4
tr|DµΩ|2 +

f2ΩX
4
|DµΩX |2, (2.4)

with

Ω = e
√
2 iΠΩ/fΩ , ΩX = e

√
2 iΠΩX

/fΩX , (2.5)

where ΠΩ = ΠbΩ T
b
0−1 and T b0−1 denote the generators of SO(5)0 × SO(5)1/SO(5)0+1, with

SO(5)0+1 denoting the diagonal (vector) subgroup of SO(5)0 × SO(5)1. We have also

included an additional link field ΩX (with its decay constant fΩX and charges Qx = QX =

1) for the U(1)x ×U(1)X factors. The covariant derivatives above are given by

DµΩ = ∂µΩ− iãµΩ+ iΩÃµ , DµΩX = ∂µΩX − ix̃µΩX + iΩXX̃µ , (2.6)

where {ãµ, x̃µ} and {Ãµ, X̃µ} are the gauge fields of site-0 and site-1, respectively (the

tildes denote non-canonical normalization).

Besides the terms above the bosonic Lagrangian includes the kinetic terms for the

gauge fields of G0 and G1:

Lgauge = −
1

4g20
w̃jLµνw̃

j µν
L − 1

4g′20
b̃µν b̃

µν − 1

4g2ρ
ÃBµνÃ

B µν − 1

4g2X
X̃µνX̃

µν , (2.7)

where j = 1, 2, 3, B = 1, . . . , 10, and w̃jLµν , b̃µν and {ÃBµν , X̃µν} are the field strengths of

SU(2)L, U(1)Y and SO(5)×U(1)X , respectively. The embedding of U(1)Y ⊂ SU(2)R×U(1)x
on site-0 is obtained by the identifications w̃3

Rµ = x̃µ = b̃µ so that bµ couples to Y =

T 3
R +QX with coupling g′0 = g0gx/

√

g20 + g2x.
7 The relation between the couplings g0 and

g′0 and their SM counterparts will be specified below, and similarly for the relation between

the elementary gauge fields w̃µL and b̃µ, and the SM gauge fields Wµ
L and Bµ. We assume

that the couplings characterizing the interactions of the composite spin-1 fields, gρ and gX ,

are large but still perturbative.

The physical field content of the theory becomes evident in unitary gauge, where the

would-be NGB’s eaten by the composite Aµ’s are set to zero. This is achieved by a gauge

transformation g1 = Ω (and using ΩX for the U(1)X factor). The physical NGB’s are then

fully parametrized by

Φ ≡ ΩΦ1 =
1

h
sin

h

fh

(

h1, h2, h3, h4, h cot
h

fh

)T

, (2.8)

with
1

f2h
=

1

f2Ω
+

1

f21
, h2 =

∑

a

hâhâ . (2.9)

7Here the fields are normalized according to Lgauge ⊃ −1/(4g20) w̃
3
Rµνw̃

3µν
R − 1/(4g2x) x̃µν x̃

µν , while b̃µ is

normalized as in eq. (2.7).
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The vacuum is characterized by the variable ǫ = sin(v/fh), with v = 〈h〉 and 〈Φ〉T =

(0, 0, 0, ǫ,
√
1− ǫ2).

The link field Lagrangian in unitary gauge reads

LΩ =
1

4
f2Ω

(

ãBµ − ÃBµ
)2

+
1

4
f2ΩX

(

x̃µ − X̃µ

)2
, (2.10)

where we allowed for all possible external source fields on site-0. Turning on only those

that are dynamical as in eq. (2.7), we have

LΩ =
1

2
m2
ρ

3
∑

i=1

(

tθw
i
L µ −AiL µ

)2
+

1

2
m2
ρ

(

tθw
3
Rµ −A3

Rµ

)2
+

1

2
m2
X [(gx/gX)xµ −Xµ]

2

+
1

2
m2
ρ

2
∑

k=1

AkRµA
k µ
R +

1

2
m2
ρ

4
∑

a=1

AâµA
â µ , (2.11)

where we denoted by AiL µ and AiR µ the composite spin-1 fields associated with the SU(2)L
and SU(2)R factors in SO(5), respectively, defined

tθ =
g0
gρ
, (2.12)

and

m2
ρ =

1

2
g2ρf

2
Ω , m2

X =
1

2
g2Xf

2
ΩX

, (2.13)

and rescaled the fields according to w̃L,R = g0wL,R, ÃL,R = gρAL,R, x̃ = gxx and X̃ = gXX

for canonical normalization. Recall that w̃3
Rµ and x̃µ are written in terms of b̃µ as given

after eq. (2.7). By going to the mass eigenbasis, we can then identify (in the limit that

〈h〉 = 0), the following massless fields:

W i
L µ = cθw

i
L µ + sθA

i
L µ , for i = 1, 2, 3 , (2.14)

and

Bµ =
1

√

1 + t2θ′ρ
+ t2

θ′
X

[

bµ + tθ′ρA
3
Rµ + tθ′

X
Xµ

]

, (2.15)

where tθ′ρ = g′0/gρ and tθ′
X

= g′0/gX . These are then identified with the SM gauge fields,

and acquire masses when 〈h〉 = v. Indeed, one finds that

mZ ≈
1

2

√

g2 + g′2 ǫ fh , hence vSM = 246 GeV ≃ ǫ fh . (2.16)

One can also identify the SM gauge couplings:

g = cθg0 =

(

1

g20
+

1

g2ρ

)−1/2

, g′ =
g′0

√

1 + t2θ′ρ
+ t2

θ′
X

=

(

1

g′20
+

1

g2ρ
+

1

g2X

)−1/2

. (2.17)

We note here, for later use, that in the case that gX = g′0gρ/
√

g20 − g′20 one has that

tθ = g0/gρ = gx/gX , i.e. the ratios of elementary to composite couplings in the two sites
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coincide for the SO(5) and U(1)X factors. In this case the usual Weinberg angle coincides

with the naive elementary Weinberg angle: tW = g′/g = g′0/g0.

The combinations orthogonal to eqs. (2.14) and (2.15) are massive even in the absence

of the Higgs vev. For the SU(2)L × SO(5) factor one finds states ρ̃iL µ = cθA
i
L µ − sθwiL µ

(i = 1,2,3) with mass m2
ρ̃ = (1 + t2θ)m

2
ρ; the other fields in SO(5), that do not mix with

elementary fields, correspond to two (charged) fields in SU(2)R ⊂ SO(5) with mass mρ,

and four fields associated with the broken SO(5)/SO(4) generators, with squared masses

m2
a =

1

2
g2ρ(f

2
Ω + f21 ) , (2.18)

the latter term arising from LNGB in eq. (2.3). There are also two massive neutral reso-

nances arising from the “hypercharge” gauge sector. Assuming that mX = mρ, the expres-

sions for the latter simplify considerably and one finds that the state ∝ tθ′
X
A3
Rµ−tθ′ρXµ has

massmρ while the state ∝ tθ′ρA3
Rµ+tθ′XXµ−(t2θ′ρ+t

2
θ′
X
) bµ has mass squared [1+t2θ′ρ+t

2
θ′
X
]m2

ρ.

All of the above states receive small corrections when 〈h〉 is turned on. For completeness,

we give the full mass matrices in appendix B.

2.3 Fermionic sector

On site-0 we consider a set of massless chiral fields ψ with the same quantum numbers

as the fermions of the SM. As explained earlier, often these will be extended to full G′
0

multiplets by the introduction of additional fermionic sources. On site-1 we include a set

of massive Dirac fermions Ψ(r) arising from the strong dynamics, transforming in different

representations r of G1. The fermions on site-0 and site-1 can be connected by the σ-model

fields Ω and ΩX . Similarly, fermions in different representations on site-1 can be connected

by the NGB fields in U . The generic form of the fermion Lagrangian at quadratic order in

the fermion fields that we consider in this work is

Lf = iψ̄ 6D0ψ + Ψ̄(r)(i 6D1 −mr)Ψ
(r) +m(rs)Ψ̄

(r)
L UP (rs)U †Ψ

′(s)
R

+∆(r)ψ̄(r)Ω [ΩX ]
qrΨ(r) + h.c. (2.19)

Here Dµ 0 and Dµ 1 are the covariant derivatives on sites-0 and 1 (i.e. carrying the corre-

sponding elementary or composite gauge fields) and P (rs) is a projector in the space of

representations of H1. Note that besides the “diagonal” fermion masses, mr, the NGB’s

can allow additional “non-diagonal” mass terms coupling different fermion representations.

From the point of view of the fermion field content, these bear some similarity with the

Yukawa terms of the SM. By some simple algebraic manipulations, this term can be writ-

ten in terms of the field Φ plus mixing terms between composite fermions in the same

representation of SO(5). In the next section we will show them explicitly for each fermion

embedding. The last term in eq. (2.19) leads to mixing between the elementary and com-

posite fields, and realizes the idea of partial compositeness in the fermion sector. This

term is only written for pairs of elementary and composite fermions with the same quan-

tum numbers under G′
0 and G1 [here qr denotes the common charge of ψ(r) under U(1)x

and Ψ(r) under U(1)X ]. Note that this last term violates the G′
0 ×G1 symmetry explicitly

only after the non-dynamical source fields in ψ(r) are set to zero. The precise form of the
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above Lagrangian depends on the representations of the fermionic resonances which would

be determined by the strongly coupled UV completion. In the absence of such an explicit

theory, we will study several possibilities based on the lowest dimensional representations

of SO(5). We will provide the detailed forms of the Lagrangians in section 3.

A comment regarding the structure of the third term that contains the interactions

between fermions and the NGB’s parametrized by U is in order. As will be discussed in

section 5 and explicitly shown in section 3, we will not consider the most general mass

terms. Rather, in order to obtain a finite Higgs potential VH we have imposed some

constraints. By ΨL we mean the Left-handed component of the fields Ψ on site-1 that mix

with the fields ψL on site-0, whereas Ψ′
R is the Right-handed component of the fields Ψ on

site-1 that mix with ψR on site-0. Therefore m(rs) will only connect Ψ
(r)
L and Ψ

′(s)
R , but

there are neither terms of type Ψ̄
(r)
R UP (rs)U †Ψ

′(s)
L nor of type Ψ̄

(r)
L UP (rs)U †Ψ

(s)
R .

Also, to avoid large corrections to ZbLb̄L we will embed Q, the composite multiplet

mixing with qL, in a multiplet such that: TL = TR and T 3
L = T 3

R = −1/2 for Qd, with

TL,R the SU(2)L,R generators and Qd the component mixing with bL. This means that Q

contains a (2,2) of SU(2)L × SU(2)R. The smallest irreducible representations of SO(5)

satisfying this condition are the fundamental 5, the adjoint (antisymmetric) 10 and the

(symmetric) 14. The U(1)X charge is fixed by demanding that the correct hypercharge

be reproduced, where Y = T 3
R + X, leading to X = 2/3. For the composite multiplet U

(D) mixing with uR (dR) we will consider several possibilities, but we will choose those

that allow to write a Yukawa term Q̄ΦnU (Q̄ΦnD) that is a singlet of G1 and contain

a 12/3 (1−1/3) of SU(2)L × U(1)Y . We will consider the following models: MCHM5 (all

the fermions in 5), MCHM10 (all the fermions in 10), and models involving more than

one representation: MCHM10−5−10, MCHM5−5−10, MCHM5−10−10, MCHM14−14−10 and

MCHM14−1−10, with notation MCHMQ−U−D (see also refs. [30–34]).

Since the BR of the Higgs decaying to τ+τ− is not negligible, we will also consider the

leptonic sector. For each generation we include two multiplets of composite fermions: L

and E, mixing with the elementary leptons ℓL and eR respectively. These composite leptons

are singlets of SU(3)C and, for each model, we choose their SO(5) embedding copying that

of Q and D, again with X chosen to obtain Y = T 3
R +X.

2.4 The low-energy effective theory

In order to make contact with measurements at current energies, it is useful to integrate

out the heavy resonances in the previous model. We will present in this section the result of

integrating out the spin-1 resonances, which is common to the various models we consider

and illustrates the general procedure. In section 3 we present the result of integrating out

the heavy fermionic sector in the different models of interest.

In order to simplify the computations it is useful to start with all elementary fields as

non-dynamical and filling complete G′
0 = SO(5) × U(1)x representations, as discussed in

subsection 2.1 above. Since in this limit the full theory has an exact global SO(5)×U(1)X
symmetry, corresponding to the diagonal group of G′

0 × G1 (due to the vev of the link

fields), the effective theory for these external sources must take a fully SO(5) × U(1)X

– 10 –
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form. Listing all the invariant terms that are quadratic in the external gauge fields, we

must obtain (in momentum space):

Lsourceseff =
1

2
Π

(0)
A tr(ãµã

µ) +
1

2
Π

(2)
A ΦT ãµã

µΦ+
1

2
Π

(0)
X x̃µx̃

µ , (2.20)

for some functions Π
(0)
A (p2), Π

(2)
A (p2) and Π

(0)
X (p2). In the limit that 〈h〉 = 0, i.e. Φ =

{0, 0, 0, 0, 1}T , this becomes

Lsourceseff |h=0 =
1

2
Π

(0)
A ãjµã

j µ +
1

2

(

Π
(0)
A +

1

2
Π

(2)
A

)

ãb̂µã
b̂ µ +

1

2
Π

(0)
X x̃µx̃

µ , (2.21)

where j = 1, . . . 6 and b = 1, 2, 3, 4 label the two SO(4) representations in the adjoint

of SO(5): 10 = 6 + 4. We can then integrate out the heavy spin-1 resonances from

L = Lgauge + LΩ + LNGB [eqs. (2.3)–(2.7)] in the limit 〈h〉 = 0 and in unitary gauge, and

identify Π
(0)
A , Π

(2)
A and Π

(0)
X . The equations of motion for the heavy fields simply read

Ãjµ = −
m2
ρ

p2 −m2
ρ

ãjµ , Ãb̂µ = −
m2
ρ

p2 −m2
a

ãb̂µ , X̃µ = − m2
X

p2 −m2
X

x̃µ , (2.22)

where mρ and mX were defined in eq. (2.13), and ma was defined in eq. (2.18). Replacing

back in the original Lagrangian, we find

Π
(0)
A = Π̂6 , Π

(2)
A = 2(Π̂4 − Π̂6) , Π

(0)
X = Π̂X , (2.23)

where

Π̂6 =
p2m2

ρ

g2ρ(p
2 −m2

ρ)
, Π̂4 =

m2
ρ(p

2 +m2
ρ −m2

a)

g2ρ(p
2 −m2

a)
, Π̂X =

p2m2
X

g2X(p
2 −m2

X)
. (2.24)

Going back to eq. (2.20) evaluated for an arbitrary Higgs configuration, and keeping only

the sources corresponding to the SM gauge fields, as described after eq. (2.7), one finds in

an obvious notation:

Leff =
1

2

3
∑

i=1

Πw̃i
L
w̃iL µw̃

i µ
L +Πw̃3

L
b̃ w̃

3
Lµb

µ +
1

2
Πb̃ b̃µb̃

µ , (2.25)

where

Πw̃i
L
= Π

(0)
A +

1

4
Π

(2)
A sin2(h/fh) , Πw̃3

L
b̃ = −

1

4
Π

(2)
A sin2(h/fh) ,

Πb̃ = Π
(0)
X +Π

(0)
A +

1

4
Π

(2)
A sin2(h/fh) . (2.26)

These correlators, which are valid to all orders in momentum as well as on the Higgs vev

will be useful when evaluating the Higgs potential in section 5.
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3 Models based on the 1, 5, 10 and 14 reps. of SO(5)

In this section, we present a summary of the models we consider in this work, which differ in

the SO(5) representations of the fermionic resonances arising from the strongly interacting

sector. We start with a few general comments, and then describe each model in turn. The

reader may want to read only the first part of this section and skip to section 4, coming

back to subsections 3.1–3.7 only if further details are desired.

In unitary gauge the fermion Lagrangian can be written as:

Lf =
∑

ψ=qL,uR,dR

Zψψ̄i 6Dψ + q̄L∆qQR + ūR∆uUL + d̄R∆dDL + h.c. (3.1)

+
∑

Ψ=Q,U,D

Ψ̄(i 6D −mΨ)Ψ +myuQ̄LUR +mydQ̄LDR + Ly(QL, UR, DR,Φ) + h.c.

Depending on the fermion embedding, the termsmyuQ̄LUR+mydQ̄LDR can contain a gauge

singlet or not. They are present only in the former case. The explicit form of the Yukawa

terms also depends on the fermion embedding, and will be specified for each model below.8

For the MCHM5 it is necessary to include two different composite fermions Qu and Qd

that mix with the elementary doublet qL. In this case, we replace q̄L∆qQR → q̄L∆quQ
u
R +

q̄L∆qdQ
d
R and myuQ̄LUR +mydQ̄LDR → myuQ̄

u
LUR +mydQ̄

d
LDR above. However, for the

other models a single Q is sufficient, as written in eq. (3.1).

Integrating out the composite resonances we obtain an effective theory involving the

elementary degrees of freedom only, in complete analogy to the procedure presented in

section 2.4 for the spin-1 case. The fermions are in complete irreducible representations

r5 of SO(5). However, due to the spontaneous breaking SO(5) → SO(4) in the composite

sector, each fermion is in general split into several irreducible representations r4 of SO(4):

ψr5 =
∑

r4
αr5,r4ψ

r4 , with αr5,r4 the coefficients associated to the decomposition. Thus,

before EWSB, and taking 〈Φ〉 = Φ0 (i.e. h = 0), one can write the effective Lagrangian as:

Leff |h=0 =
∑

ψ=qL,uR,dR

∑

r4

ψ̄(r4) 6p (Zψ + Π̂
(r4)
ψ )ψ(r4) +

∑

ψ=u,d

∑

r4

q̄
(r4)
L M̂ψ(r4)ψ

(r4)
R + h.c. (3.2)

The explicit form of the correlators Π̂r4ψ and M̂ r4
ψ are given in the appendix for the differ-

ent models.

It is then simple to compare to the correlators of an effective Lagrangian, Leff , written
in fully SO(5) invariant form with the help of an arbitrary Φ (one should list all possible

SO(5) × U(1)X invariant operators that are quadratic in the external fermionic sources,

which depends on the specific model in question). If one then retains the SM degrees of

freedom only, the effective Lagrangian for the elementary fermions takes the form

Leff = ūL 6p (Zq +ΠuL)uL + d̄L 6p (Zq +ΠdL)dL + ūR 6p (Zu +ΠuR)uR

+d̄R 6p (Zd +ΠdR)dR + ūLMuuR + d̄LMddR + h.c. (3.3)

8These Yukawa interactions are not yet the SM Yukawa interactions, but will give rise to them. Therefore,

we will refer to them as “proto-Yukawa” interactions.

– 12 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
9

The correlators Πψ and Mψ can be expressed in terms of the correlators of the SO(4)

symmetric theory Π̂r4ψ and M̂ r4
ψ , and have an explicit (and generally simple) dependence on

sh = sinh/fh and ch = cosh/fh. We show below the full expressions for each specific model.

The spectrum of fermions that mix with the SM ones (as well as the masses of the SM

degrees of freedom) is given by the zeroes of the quadratic operator

Zero
{

p2[Zq +ΠψL(p
2)][Zψ +ΠψR(p

2)]− |Mψ(p
2)|2

}

, ψ = u, d . (3.4)

The SM states, being lighter than the compositeness scale, can be obtained by expand-

ing eq. (3.4) to O(p2), leading to

m
(0)
ψ ≃ |Mψ(0)|

{

[Zq+ΠψL(0)][Zψ+ΠψR(0)]− 2|Mψ(0)|
d|Mψ(p

2)|
dp2

∣

∣

∣

∣

p2=0

}−1/2

, ψ = u, d ,

(3.5)

We have used the superindex (0) for the lightest states, since in the absence of mixings

they are massless.

Similarly, the Yukawa coupling of these states to (a single) Higgs boson can be obtained

by differentiating with respect to v:

y
(0)
ψ ≃

dm
(0)
ψ

dv
, ψ = u, d . (3.6)

This coupling depends on the model, but since the vev dependence of the correlators is

simple (it is encoded in sh and ch in the formulas given in the following subsections), we can

derive simple expression in terms of the correlators, that will be given for each model below.

A very important combination for the phenomenology is the function y
(0)
ψ /m

(0)
ψ . To

leading order in ǫ it can be approximated by:

y
(0)
ψ

m
(0)
ψ

≃ Fψ(ǫ)

ǫ fh

[

1 +O(ǫ2)
]

, ψ = u, d . (3.7)

where the Fψ(ǫ) depends only on ǫ (as well as on the fermion representation) and will

be given in section 4.9 The O(ǫ2) correction (which also depends on other microscopic

parameters) determines the deviation compared with the simple and compact leading ap-

proximation. The above relation is intimately connected to certain sum rules that have

been already observed in the literature [19, 35, 36]. We will comment further on this in

section 6.

As will be shown below, different models lead to different sizes for the O(ǫ2) term.

Multiplying eq. (3.7) by vSM , and using eq. (2.16), we can obtain the ratio between the

Yukawa couplings in the MCHM and in the SM:

y
(0)
ψ

ySMψ
≃ Fψ(ǫ)

[

1 +O(ǫ2)
]

, ψ = u, d , (3.8)

9The are exceptions to this statement, with additional dependence on the Yukawa couplings on the

r.h.s. of eq. (3.7). We consider one such detailed example in this work and mention a few others. However,

in certain limits the above discussion often applies.
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showing that deviations from Fψ(ǫ) are suppressed by O(ǫ2). This correction depends

also on the fermionic mixings in the following way: O(ǫ2s2ψL , ǫ
2s2ψR), requiring in general

the mixing of both chiralities to be small to ensure extra suppression factors. However, for

some models the structure inherited from the fermion embedding is such that the correction

involves just one chirality to leading order: O(ǫ2s2ψL) or O(ǫ
2s2ψR). In those cases an extra

suppression can be achieved with small mixing for one chirality only. Note also that the

above corrections do not take the form claimed in [19], i.e. O(ǫ2m2
ψ) ∼ O(ǫ2 s2ψLs

2
ψR

), where

mψ denotes the mass of the SM field (this has also been observed in ref. [21]). Thus, the

bottom quark, in particular, can give corrections that are larger than expected, as will be

illustrated in section 6.

3.1 MCHM5

In this model we consider 4 composite fermions for each generation: Qu, U ∼ 52/3 and

Qd, D ∼ 5−1/3, where the subindex denotes the U(1)X charge. In unitary gauge the

Yukawa terms of the fermion Lagrangian (3.1) read:

Ly = yu(Q̄
u
LΦ)(Φ

†UR) + yd(Q̄
d
LΦ)(Φ

†DR) . (3.9)

In this case qL mixes with two composite fermions: Qu and Qd. The bottom mass can

result from small ∆qd and/or small ∆d.

The correlators of the effective Lagrangian (3.3) are:

ΠuL = Π0
qu +Π0

qd +Π1
qu
s2h
2
, ΠdL = Π0

qu +Π0
qd +Π1

qd
s2h
2
,

ΠuR = Π0
u +Π1

uc
2
h , ΠdR = Π0

d +Π1
dc

2
h ,

Mu = m1
u

shch√
2
, Md = m1

d

shch√
2
. (3.10)

where the Πiψ are defined by

Lsourceseff = q̄uL 6p Π0
quq

u
L + q̄dL 6p Π0

qdq
d
L + ūR 6p Π0

uuR + d̄R 6p Π0
ddR + (q̄uLΦ) 6p Π1

qu(Φ
†quL)

+ (q̄dLΦ) 6p Π1
qd(Φ

†qdL) + (ūRΦ) 6p Π1
u(Φ

†uR) + (d̄RΦ) 6p Π1
d(Φ

†dR) (3.11)

+m0
u q̄

u
LuR +m0

d q̄
d
LdR +m1

u(q̄
u
LΦ)(Φ

†uR) +m1
d(q̄

d
LΦ)(Φ

†dR) + h.c.

The superindex “sources” serves as a reminder that here the quL, q
d
L, uR and dR fill complete

SO(5) multiplets and that all components are to be treated as external sources. One must

still add “bare” kinetic terms for the dynamical fields on site-0, i.e. those with SM quantum

numbers, as in eq. (3.3). Since a 5 of SO(5) decomposes under SO(4) as 5 ∼ 1+4, one finds

Π0
qu = Π̂qu(4) , Π0

qd = Π̂qd(4) , Π0
d = Π̂d(4) ,

Π1
qu = Π̂qu(1) − Π̂qu(4) , Π1

qd = Π̂qd(1) − Π̂qd(4) , Π1
d = Π̂d(1) − Π̂d(4) ,

Π0
u = Π̂u(4) , m0

u = M̂u(4) , m0
d = M̂d(4) , (3.12)

Π1
u = Π̂u(1) − Π̂u(4) , m1

u = M̂u(1) − M̂u(4) , m1
d = M̂d(1) − M̂d(4) .

where the hatted correlators are given in appendix C.1.

– 14 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
9

Using these correlators we can compute the prediction for y
(0)
ψ /m

(0)
ψ :

y
(0)
t

m
(0)
t

− Ft
shfh

≃ sh
fh

2|m1
u(0)||m1

u(0)|′−[Zu+Π0
u(0)+Π1

u(0)]Π
1
qu+2[Zq +Π0

q(0)]Π
1
u

2[Zu +Π0
u(0) + Π1

u(0)][Zq +Π0
q(0)]

, (3.13)

y
(0)
b

m
(0)
b

− Fb
shfh

≃ sh
fh

2|m1
d(0)||m1

d(0)|′−[Zd+Π0
d(0) + Π1

d(0)]Π
1
qd
+2[Zq +Π0

q(0)]Π
1
d

2[Zd +Π0
d(0) + Π1

d(0)][Zq +Π0
q(0)]

, (3.14)

where |mi
ψ(0)|′ ≡ |dmi

ψ(p
2)|/dp2

∣

∣

∣

p2=0
. Taking into account that Πjψ ∼ ∆2

ψ and Mψ ∼
∆q∆ψ, eq. (3.14) shows that the O(s2h) correction to yb in this model is small. By expressing

∆ψ in terms of the elementary-composite mixing angles, one sees that the correction is

suppressed by s2
qd

or s2d. By choosing both of them small, we expect y
(0)
b /m

(0)
b to be well

approximated by Fb/shfh in this model. On the other hand, eq. (3.13) shows that the

corrections to yt do not have any extra suppression factor in general, since the top mass

requires both, squ and su ∼ O(1). This property has important consequences for the

phenomenology: one can expect corrections to loop-induced processes that depend on yt
[gluon fusion, h→ γγ to be discussed in section 6] of O(s2h). The size of these corrections is
similar for all the models. Since all of them require sq and su . 1, there can be differences

of O(1) between them arising from the different embeddings and regions of the parameter

space selected.

3.2 MCHM10

From now on, we consider 3 composite fermions for each generation. In this model:

Q,U,D ∼ 102/3. In unitary gauge the Yukawa terms of the fermion Lagrangian (3.1) read:

Ly = yuΦ
†Q̄LURΦ+ ydΦ

†Q̄LDRΦ . (3.15)

In this case qL mixes with a single composite fermion Q and, therefore, the bottom mass

requires small ∆d. In this model the interactions Φ†ŪLDRΦ and Φ†ŪRDLΦ are also com-

patible with the symmetries. However they lead to a logarithmically divergent Higgs po-

tential, and we do not include them. Note also that we do not include terms of the form

ǫABCDE ΦAQ̄BCL UDER , etc., which would break a LR symmetry, and have been studied

in [37].

The correlators of the effective Lagrangian (3.3) are:

ΠuL = Π0
q +Π1

q

(

c2h
2

+
s2h
4

)

, ΠdL = Π0
q +Π1

q

c2h
2
,

ΠuR = Π0
u +Π1

u

s2h
4
, ΠdR = Π0

d +Π1
d

s2h
4
, (3.16)

Mu = −m1
u

shch
4

, Md = −m1
d

shch

2
√
2
.
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where the Πiψ are now defined by [see also comments following eq. (3.11)]

Lsourceseff = Tr
[

q̄L 6p Π0
qqL + ūR 6p Π0

uuR + d̄R 6p Π0
ddR

]

+Φ†q̄L 6p Π1
q qLΦ+ Φ†ūR 6p Π1

u uRΦ+ Φ†d̄R 6p Π1
d dRΦ (3.17)

+ Tr
[

m0
u q̄LuR +m0

d q̄LdR
]

+m1
uΦ

†q̄LuRΦ+m1
dΦ

†q̄LdRΦ+ h.c.

Since a 10 of SO(5) decomposes under SO(4) as 10 ∼ 4+ 6, we find

Π0
q = Π̂q(6) , Π0

u = Π̂u(6) , Π0
d = Π̂d(6) ,

Π1
q = 2(Π̂q(4) − Π̂q(6)) , Π1

u = 2(Π̂u(4) − Π̂u(6)) , Π1
d = 2(Π̂d(4) − Π̂d(6)) ,

m0
u = M̂u(6) , m0

d = M̂d(6) ,

m1
u = 2(M̂u(4) − M̂u(6)) , m1

d = 2(M̂d(4) − M̂d(6)) . (3.18)

where the hatted correlators are given in appendix C.2.

The prediction for yψ/mψ is:

y
(0)
t

m
(0)
t

− Ft
shfh

≃ sh
fh

|m1
u(0)||m1

u(0)|′+[2Zu+2Π0
u(0)−Π1

u(0)]Π
1
q−2[Zq +Π0

q(0)]Π
1
u

4[Zu +Π0
u(0)][2Zq + 2Π0

q(0) + Π1
q(0)]

, (3.19)

y
(0)
b

m
(0)
b

− Fb
shfh

≃ sh
fh

2|m1
d(0)||m1

d(0)|′+4[Zd+Π0
d(0)]Π

1
q−[2Zq + 2Π0

q(0) + Π1
q(0)]Π

1
d

4[Zd +Π0
d(0)][2Zq + 2Π0

q(0) + Π1
q(0)]

. (3.20)

Eq. (3.20) shows that the O(s2h) corrections to yb in this model can be sizable. This is

because there is a term suppressed by s2q only, but sq ∼ 1 to reproduce the top mass. Thus,

we find a suppression by s2h only.

3.3 MCHM10−5−10

In this model: Q,D ∼ 102/3 and U ∼ 52/3. In unitary gauge the Yukawa terms of the

fermion Lagrangian (3.1) read:

Ly = yuΦ
†Q̄LUR + ydΦ

†Q̄LDRΦ . (3.21)

The correlators of the effective Lagrangian (3.3) are:

ΠuL = Π0
q +Π1

q

(

c2h
2

+
s2h
4

)

, ΠdL = Π0
q +Π1

q

c2h
2
,

ΠuR = Π0
u +Π1

uc
2
h , ΠdR = Π0

d +Π1
d

s2h
4
, (3.22)

Mu = −m1
u

sh
2
, Md = −m1

d

shch

2
√
2
.

where the Πiψ are defined in analogy to eqs. (3.11) and (3.17), with the Φ-dependent terms

following the structure displayed in eq. (3.21) for the Yukawa terms in this model [see also

comments following eq. (3.11)]. Expanding the Higgs potential in powers of sh and ∆ψ, the

contribution of Mu to the quartic coupling is of order O(∆8
ψ) and the only contributions
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of order O(∆4
ψ) are from ΠL and ΠR. Therefore, in this model we expect a small self-

coupling and a very light Higgs. This fact is reflected in the tuning of the model which,

after requiring the proper Higgs mass, is one order of magnitude larger than in the other

models. A sizable quartic coupling demands very large mixings for the top quark, inducing

departures from the analytical approximations for the Yukawa couplings. This also affects

the bottom since the bL mixing is equal to the tL mixing in this model.

Using the previous decompositions of 5 and 10 of SO(5) under SO(4) one finds:

Π0
q = Π̂q(6) , Π0

u = Π̂u(4) , Π0
d = Π̂d(6) ,

Π1
q = 2(Π̂q(4) − Π̂q(6)) , Π1

u = Π̂u(1) − Π̂u(4) , Π1
d = 2(Π̂d(4) − Π̂d(6)) ,

m0
u = 0 , m0

d = M̂d(6) ,

m1
u =
√
2M̂u(4) , m1

d = 2(M̂d(4) − M̂d(6)) . (3.23)

where the hatted correlators are given in appendix C.3.

The prediction for yψ/mψ is:

y
(0)
t

m
(0)
t

− Ft
shfh

≃ sh
fh

2|m1
u(0)||m1

u(0)|′+[Zu+Π0
u(0) + 3Π1

u(0)]Π
1
q+4[Zq +Π0

q(0)]Π
1
u

2[Zu +Π0
u(0) + Π1

u(0)][2Zq + 2Π0
q(0) + Π1

q(0)]
, (3.24)

y
(0)
b

m
(0)
b

− Fb
shfh

≃ sh
fh

2|m1
d(0)||m1

d(0)|′+4[Zd+Π0
d(0)]Π

1
q− [2Zq + 2Π0

q(0) + Π1
q(0)]Π

1
d

4[Zd +Π0
d(0)][2Zq + 2Π0

q(0) + Π1
q(0)]

. (3.25)

yb/mb in this model is exactly as in the MCHM10 when expressed in terms of the correlators,

although the correlators themselves are different in both models. This can be understood

because the bottom mass arises from the coupling between q and d, that share the same

embedding in both models.

3.4 MCHM5−5−10

In this model: Q,U ∼ 52/3 and D ∼ 102/3. In unitary gauge the Yukawa terms of the

fermion Lagrangian (3.1) read:

Ly = yu(Q̄LΦ)(Φ
†UR) + ydQ̄LDRΦ . (3.26)

The correlators of the effective Lagrangian (3.3) are:

ΠuL = Π0
q +Π1

q

s2h
2
, ΠdL = Π0

q ,

ΠuR = Π0
u +Π1

uc
2
h , ΠdR = Π0

d +Π1
d

s2h
4
, (3.27)

Mu = m1
u

shch√
2
, Md = m1

d

sh
2
.

where the Πiψ are defined in analogy to eqs. (3.11) and (3.17), with the Φ-dependent terms

following the structure displayed in eq. (3.26) for the Yukawa terms in this model [see also
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comments following eq. (3.11)]. Using the previous decompositions of 5 and 10 of SO(5)

under SO(4):

Π0
q = Π̂q(4) , Π0

u = Π̂u(4) , Π0
d = Π̂d(6) ,

Π1
q = Π̂q(1) − Π̂q(4) , Π1

u = Π̂u(1) − Π̂u(4) , Π1
d = 2(Π̂d(4) − Π̂d(6)) ,

m0
u = M̂u(4) , m0

d = 0 ,

m1
u = M̂u(1) − M̂u(4) , m1

d =
√
2M̂d(4) . (3.28)

where the hatted correlators are given in appendix C.4.

The prediction for yψ/mψ is:

y
(0)
t

m
(0)
t

− Ft
shfh

≃ sh
fh

2|m1
u(0)||m1

u(0)|′+2[Zq+Π0
q(0)]Π

1
u− [Zu +Π0

u(0) + Π1
u(0)]Π

1
q

2[Zu +Π0
u(0) + Π1

u(0)][Zq +Π0
q(0)]

; (3.29)

y
(0)
b

m
(0)
b

− Fb
shfh

≃ sh
fh

2|m1
d(0)||m1

d(0)|′ − [Zq +Π0
q(0)]Π

1
d

4[Zd +Π0
d(0)][Zq +Π0

q(0)]
. (3.30)

For the top quark we obtain a result similar to the MCHM5. Eq. (3.30) shows that the

O(s2h) corrections to y
(0)
b /m

(0)
b in this model is also suppressed by s2d ≪ 1.

3.5 MCHM5−10−10

In this model: Q ∼ 52/3 and U,D ∼ 102/3. In unitary gauge the Yukawa terms of the

fermion Lagrangian (3.1) read:

Ly = yuQ̄LURΦ+ ydQ̄LDRΦ . (3.31)

In this model the interactions Φ†ŪLDRΦ and Φ†ŪRDLΦ are also compatible with the

symmetries. However they lead to a logarithmically divergent Higgs potential, therefore

we will not include them.

The correlators of the effective Lagrangian (3.3) are:

ΠuL = Π0
q +Π1

q

s2h
2
, ΠdL = Π0

q ,

ΠuR = Π0
u +Π1

u

s2h
4
, ΠdR = Π0

d +Π1
d

s2h
4
, (3.32)

Mu = −m1
u

sh

2
√
2
, Md = m1

d

sh
2
.

where the Πiψ are defined in analogy to eqs. (3.11) and (3.17), with the Φ-dependent terms

following the structure displayed in eq. (3.31) for the Yukawa terms in this model [see also

comments following eq. (3.11)]. Since the Higgs dependence on Mu is the same as in the

MCHM10−5−10, the behavior of the Higgs potential and the top Yukawa are similar.

Using the previous decompositions of 5 and 10 of SO(5) under SO(4):

Π0
q = Π̂q(4) , Π0

u = Π̂u(6) , Π0
d = Π̂d(6) ,

Π1
q = Π̂q(1) − Π̂q(4) , Π1

u = 2(Π̂u(4) − Π̂u(6)) , Π1
d = 2(Π̂d(4) − Π̂d(6)) ,

m0
u = 0 , m0

d = 0 ,

m1
u =
√
2M̂u(4) , m1

d =
√
2M̂d(4) . (3.33)
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where the hatted correlators are given in appendix C.5.

The prediction for yψ/mψ is:

y
(0)
t

m
(0)
t

− Ft
shfh

≃ sh
fh

|m1
u(0)||m1

u(0)|′ − [Zq +Π0
q(0)]Π

1
u − 2[Zu +Π0

u(0)]Π
1
u

4[Zu +Π0
u(0)][Zq +Π0

q(0)]
, (3.34)

y
(0)
b

m
(0)
b

− Fb
shfh

≃ sh
fh

2|m1
d(0)||m1

d(0)|′ − [Zq +Π0
q(0)]Π

1
d

4[Zd +Π0
d(0)][Zq +Π0

q(0)]
. (3.35)

yb/mb in this model is exactly as in the MCHM5−5−10 when expressed in terms of the

correlators, although the correlators themselves are different in both models. This can

be understood, again, because the bottom mass arises from the coupling between q and

d, which share the same embedding in both models. Eq. (3.35) shows that the O(s2h)
corrections to y

(0)
b /m

(0)
b in this model is also suppressed by s2d ≪ 1.

3.6 MCHM14−14−10

In this model: Q,U ∼ 142/3 and D ∼ 102/3. In unitary gauge the Yukawa term of the

fermion Lagrangian (3.1) includes:

Ly ⊃ yuΦ
†Q̄LURΦ+ ydΦ

†Q̄LDRΦ . (3.36)

The following term is also allowed by the symmetries

Ly ⊃ ỹu(Φ†Q̄LΦ) (Φ
†URΦ) , (3.37)

having potentially important consequences for the phenomenology, as will be discussed in

the next section.

The correlators of the effective Lagrangian (3.3) are:

ΠuL = Π0
q +Π1

q

(

c2h
2

+
s2h
4

)

+Π2
qs

2
hc

2
h , ΠdL = Π0

q +Π1
q

c2h
2
,

ΠuR = Π0
u +Π1

u

(

4

5
c2h +

s2h
20

)

+Π2
u

(4c2h − s2h)2
20

, ΠdR = Π0
d +Π1

d

s2h
4
, (3.38)

Mu = i m1
u

3

4
√
5
shch + i m2

u

1

2
√
5
shch(4c

2
h − s2h) , Md = im1

d

shch

2
√
2
.

where the Πiψ are defined in analogy to eqs. (3.11) and (3.17), with the Φ-dependent terms

following the structure displayed in eqs. (3.36) and (3.37) for the Yukawa terms in this

model [see also comments following eq. (3.11)]. Since a 14 of SO(5) decomposes under

– 19 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
9

SO(4) as 14 ∼ 1+ 4+ 9, we find

Π0
q = Π̂q(9) , Π0

u = Π̂u(9) ,

Π0
d = Π̂d(6) ,

Π1
q = 2(Π̂q(4) − Π̂q(9)) , Π1

u = 2(Π̂u(4) − Π̂u(9)) ,

Π1
d = 2(Π̂d(4) − Π̂d(6)) ,

Π2
q =

1

4
(5Π̂q(1) − 8Π̂q(4) + 3Π̂q(9)) , Π2

u =
1

4
(5Π̂u(1) − 8Π̂u(4) + 3Π̂u(9)) , (3.39)

m0
u = M̂u(1) , m0

d = 0 ,

m1
u = 2(M̂u(4) − M̂u(9)) , m1

d = 2iM̂d(4) ,

m2
u =

1

4
(5M̂u(1) − 8M̂u(4) + 3M̂u(9)) .

where the hatted correlators are given in appendix C.7.

The prediction for yψ/mψ is:

y
(0)
t

m
(0)
t

− Ft
shfh

≃ sh
fh

{

−2
−3|m1

u(0)|[Π1
q(0)− 4Π2

q(0)] + 16|m2
u(0)|[5Zq + 5Π0

q(0) + 2Π1
q(0) + 2Π2

q(0)]

[3|m1
u(0)|+ 8|m2

u(0)|][2Zq + 2Π0
q(0) + Π1

q(0)]

+
−[3|m1

u(0)|+ 8|m2
u(0)|][3|m1

u(0)|′ + 8|m2
u(0)|′] + 5[2Zq + 2Π0

q(0) + Π1
q(0)][3Π

1
u(0) + 8Π2

u(0)]

[5Zu + 5Π0
u(0) + 4Π1

u(0) + 4Π2
u(0)][2Zq + 2Π0

q(0) + Π1
q(0)]

}

,

(3.40)

y
(0)
b

m
(0)
b

− Fb
shfh

≃ sh
fh

2|m1
d(0)||m1

d(0)|′+4[Zd+Π0
d(0)]Π

1
q−[2Zq + 2Π0

q(0) + Π1
q(0)]Π

1
d

4[Zd +Π0
d(0)][2Zq + 2Π0

q(0) + Π1
q(0)]

. (3.41)

yb/mb in this model is exactly as in the MCHM10 when expressed in terms of the correlators,

although the correlators themselves are different in both models.

3.7 MCHM14−1−10

In this model: Q ∼ 142/3, U ∼ 12/3 and D ∼ 102/3: In unitary gauge the Yukawa term of

the fermion Lagrangian (3.1) reads:

Ly = yu(Φ
†Q̄LΦ)UR + ydΦ

†Q̄LDRΦ . (3.42)

The correlators of the effective Lagrangian (3.3) are:

ΠuL = Π0
q +Π1

q

(

c2h
2

+
s2h
4

)

+Π2
qc

2
hs

2
h, ΠdL = Π0

q +Π1
q

c2h
2
,

ΠuR = Π0
u , ΠdR = Π0

d +Π1
d

s2h
4
, (3.43)

Mu = −m1
u

sh
2
, Md = −m1

d

shch

2
√
2
.
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where the Πiψ are defined in analogy to eqs. (3.11) and (3.17), with the Φ-dependent terms

following the structure displayed in eq. (3.42) for the Yukawa terms in this model [see also

comments following eq. (3.11)]. Using the previous decompositions of 14 and 10 of SO(5)

under SO(4):

Π0
q = Π̂q(9) , Π0

u = Π̂u(1) , Π0
d = Π̂d(6) ,

Π1
q = 2(Π̂q(4) − Π̂q(9)) , Π1

d = 2(Π̂d(4) − Π̂d(6)) ,

Π2
q =

1

4
(5Π̂q(1) − 8Π̂q(4) + 3Π̂q(9)) , (3.44)

m0
u = 0 , m0

d = 0 ,

m1
u =

√
5

2
M̂u(1) , m1

d = 2iM̂d(4) .

where the hatted correlators are given in appendix C.6.

The prediction for yψ/mψ is:

y
(0)
t

m
(0)
t

− Ft
shfh

≃ sh
fh

−8|m1
u(0)||m1

u(0)|′ + [Zu +Π0
u(0)][Π

1
q(0)− 4Π2

q(0)]

2[Zu +Π0
u(0)][2Zq + 2Π0

q(0) + Π1
q(0)]

; (3.45)

y
(0)
b

m
(0)
b

− Fb
shfh

≃ sh
fh

2|m1
d(0)||m1

d(0)|′+4[Zd+Π0
d(0)]Π

1
q−[2Zq + 2Π0

q(0) + Π1
q(0)]Π

1
d

4[Zd +Π0
d(0)][2Zq + 2Π0

q(0) + Π1
q(0)]

. (3.46)

The prediction for yb/mb in this model is exactly as in the MCHM10 when expressed in

terms of the correlators, although the correlators themselves are different in both models.

3.8 Other models based on the lowest-dimensional reps. of SO(5)

Although we will not provide all the details, we list here the other possible models one can

consider when using the 1, 5, 10 and 14 representations of SO(5) in all possible combi-

nations for the quark sector (assuming the same assignments for all the families). Besides

the cases given above, one can have an MCHM5−1−10, MCHM14−10−10, MCHM10−14−10,

MCHM14−5−10 and MCHM5−14−10. This would exhaust all the models that allow to write

Yukawa couplings (in particular for the top quark, which is hard to imagine arising from

other than tree-level effects). For instance, the MCHM10−1−X does not allow to write

the operator yu(Φ
†Q̄LΦ)UR + h.c. since it vanishes due to the antisymmetry of the 10.

Some of these models (the MCHM14−5−10 and MCHM5−14−10), like the MCHM14−14−10

described in detail in section 3.6, allow for two Yukawa structures in the up sector, which

can a priori lead to qualitative differences with the remaining models that allow only a

single Yukawa structure. We will study in detail only the MCHM14−14−10 to illustrate the

possible features in such cases, and will restrict our comments for the models mentioned

in this subsection to only a few general remarks in the following sections (but enough to

get a feel for their phenomenology).
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4 Corrections to low-energy observables in the MCHM

To analyze the low-energy consequences of the model one can either diagonalize the gauge

and fermion mass matrices, explicitly including the heavy states and their mixing with the

elementary fields. The SM fields are then identified as the lowest lying states in the presence

of a given 〈h〉. The latter is actually determined dynamically as discussed in section 5,

but the procedure works for any fixed vev. Finding the Higgs mass, however, requires

the minimization of the potential, and incorporating this information will be deferred to

later sections.

Alternatively, one can obtain an effective theory for the fields on site-0, as done in

section 2.4 for the gauge fields and in section 3 for the fermion sector. The zeroes of the

correlators thus obtained determine the spectrum of the model. The correlators also encode

in their Higgs vev dependence information regarding the couplings of the physical fields

and the Higgs boson, as discussed in the previous section.

Although the numerical analysis to be presented in section 6 has been obtained by

the previous methods (and we have checked that they agree), it is useful to have a simple

analytic approximation that captures the main phenomenological features of the Higgs

sector in composite Higgs models. To do so, one starts from the following relation that

holds in the simplest situations, which includes most of the models we study:

∑

n

y
(n)
ψ

m
(n)
ψ

=
1

2

d

dh
log det(M †

ψMψ) =
1

shfh
Fψ(sh) , (4.1)

where m
(n)
ψ and y

(n)
ψ are the mass and the Yukawa coupling of the n-th fermionic resonance

to the Higgs, respectively, and Mψ is the h-dependent mass matrix. The fact that the

above trace depends only on sh = sin(h/fh), but not on other parameters of the model10

is not a general statement, but a consequence of the particular models considered in this

work. In the simplest situation there is just one Yukawa term that leads only to one

non-trivial SO(4) invariant for each sector, resulting in a determinant that factorizes as

det(M †
ψMψ) = F̂ψ(sh) hψ(y,∆,m). Therefore, its logarithmic derivative depends only on

sh and fh. Fψ(sh) is a model-dependent function that depends on the representation of

the fermions under G1 [19, 35, 36].

In the general situation, for arbitrary representations of the composite fermions, there

is more than one non-trivial SO(4) invariant arising from the Yukawa interactions in each

sector. The determinant does not factorize in this case and its derivative generically de-

pends on other microscopic parameters as well, such as the composite Yukawa couplings.

This is the case for the most general MCHM14−14−10 discussed in section 3.6. This could

be important for the phenomenology, since in the general case one could in principle obtain

enhancement or suppression of the gluon fusion process in different regions of the parameter

space, while there is no such freedom for the minimal cases with just one invariant.

10However, one should remember that 〈h〉 itself is determined by the effective potential, which is calculable

and depends on various microscopic parameters. Therefore, the most precise statement is that the r.h.s. of

eq. (4.1) depends on the microscopic parameters only through h/fh.
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Under the assumption that eq. (4.1) holds, the additional useful observation is that,

to leading order in ǫ = sin(v/fh), the sum is saturated by the zero-mode term, leading to

y
(0)
ψ

m
(0)
ψ

≈ 1

ǫfh

[

Fψ(ǫ) +O(ǫ2s2ψL) +O(ǫ
2s2ψR)

]

, (4.2)

where sψL and sψR are the LH and RH elementary-composite mixing angles, respectively.

This was explicitly shown in section 3 for each model, and in section 6 we will further show

numerically that the above approximation works reasonably well even in the top sector (we

will also discuss the cases where important deviations arise).

Except for the case considered in section 3.6 and two embeddings described in sec-

tion 3.8, we find only two different functions for the models considered in this work:

F1 =
1− 2ǫ2√
1− ǫ2

, F2 =
√

1− ǫ2 . (4.3)

The MCHM14−14−10 presented in section 3.6 is somewhat different in that two different

Yukawa structures are allowed [see eqs. (3.36) and (3.37)]. As a result, the trace involves

a function with a non-trivial dependence on these Yukawa couplings, not just on ǫ:

1

ǫfh
F3 ≡ tr(YuM

−1
u ) =

1

ǫfh

(

6ǫ2 − 3
)

yu − 2
(

20ǫ4 − 23ǫ2 + 4
)

ỹu√
1− ǫ2 (2 (5ǫ2 − 4) ỹu − 3yu)

, (4.4)

which can change the size and sign of F3. Being F3 a homogeneous function of the Yukawa

couplings, it depends only on the ratio ry = ỹu/yu. For ry = 0 one recovers the F1 function

of the other models: F3|ry=0 = F1. In the opposite limit we define a new function

F̃3 ≡ lim
ry→∞

F3 =
4− 23ǫ2 + 20ǫ4√
1− ǫ2 (4− 5ǫ2)

. (4.5)

For ry → ∞ one can obtain in principle a large suppression, since F̃3 changes sign for

ǫ ≃ 0.46. F3 interpolates between F1 and F̃3 as ry varies, thus one can expect a suppression

larger than F1 in the general case (see right panel of figure 3). However there is a small

region of the parameter space where there could be an enhancement and a violent change

of sign of F3, as a consequence of an accidental cancellation in detMu that leads to a

singularity of F3 (this has also been observed in ref. [21]). This is connected to the existence

of a very light resonance in this region. For ǫ ∈ (0, 0.5) the singularity is present if ry ∈
(−6/11,−3/8), thus for points of the parameter space near the singularity the value of

F3 can be very large, changing sign across the singularity. Although a large correction in

any direction is possible in this model it requires tuning of the Yukawa couplings. This

large correction, being associated with a zero of detMu, signals the presence of a very light

mode in the spectrum, that can be in conflict with bounds on top partners. Moreover, by

performing a random scan we have checked that the points able to reproduce the spectrum

and EW constraints are usually far from the singularity. Thus, we typically obtain a

suppression as opposed to an enhancement from this more complicated function.
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r/ MCHM 10-5-10 5-5-10
5-10-10,

5-1-10

5, 10,

14-1-10

14-10-10

10-14-10

14-14-10 14-5-10 5-14-10

rt F2 F1 F2 F1 F3 F4 F5

rb F1 F2 F2 F1 F1 F1 F1

rV F2 F2 F2 F2 F2 F2 F2

rg F2 F1 F2 F1 F3 F4 F5

Table 1. Ratio of Higgs SM and MCHM couplings, r = cMCHM/cSM , approximated by the

functions Fi. g stands for the loop induced gluon coupling (we have only considered the top sector

effect for rg in this table, but in the numerical results we have included the bottom sector as well),

ψ = t, b are the Yukawa couplings and V =W,Z is the coupling to the massive EW gauge bosons.

For completeness, we include also the result for additional models that were not described in full

detail in the main text.

Another important consequence is that the presence of two different flavor structures

leads to missalignement of Higgs coupling in LR operators [38]. For anarchic models, these

new sources of flavor violation mediated by Higgs exchange are too large compared with

bounds from flavor physics, requiring extra protection. For this reason we will perform

one scan imposing ỹu = 0, and a second one allowing ỹu 6= 0. It turns out that the latter

ends up preferring regions with yu ≪ ỹu, so that it is effectively described by F̃3(ǫ) given

in eq. (4.5) above.

The other models mentioned in section 3.8 can be described by the same Fi(ǫ) above,

except for the MCHM14−5−10 and MCHM5−14−10 which lead to the following new functions

that, like the one for the MCHM14−14−10, also depend on the microscopic Yukawa couplings

[F4 and F5 are defined in analogy to eq. (4.4)]:

F4 =

√
1− ǫ2

(

yu + 2ỹu − 6ỹuǫ
2
)

yu + 2ỹu (1− ǫ2)
, F5 =

√
1− ǫ2

(

yu − ỹu
(

4− 15ǫ2
))

yu − ỹu (4− 5ǫ2)
. (4.6)

In the limiting cases where only one of the two Yukawa couplings is turned on, the above

become functions of ǫ only. In such limits, they lie between the curves for F1 and F̃3 in the

right panel of figure 3 in section 6.2 (they are not shown in the figure).

The Fi functions defined in eqs. (4.3)–(4.6) encode the deviations from the SM cou-

plings, r = cMCHM/cSM, as shown in table 1,11 and determine the ci coefficients of the

following set of operators in the low-energy theory:

Og = hGaµνG
aµν , Oγ = hAµνA

µν , OZγ = hAµνZ
µν , (4.7)

Ow = hW+
µ W

−µ , Oz = hZµZ
µ , (4.8)

Of = q̄LHfR + h.c. (4.9)

11Some of these functions have been shown previously in refs. [33] and [21].
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These are the leading order operators involved in Higgs production and decay at the LHC.

Since the operators Og and Oγ break the shift symmetry of the pNGB Higgs and must,

therefore, involve the explicit symmetry breaking parameters such as the SM gauge and

Yukawa couplings, they are generated at loop level. Our computation gives the contribu-

tions to the Wilson coefficients of these operators in the MCHM after EWSB to all order

in the Higgs vev, leading to coefficients cO(v/f). Expanding these coefficients in powers of

v/f one can do the matching to the Wilson coefficients of dimension-six operators which,

in the basis of refs. [39–41], are

OH =
1

2

(

∂µ|H|2
)2
, Oyf = |H|2q̄LHfR ,

OGG = |H|2GµνGµν , OBB = |H|2BµνBµν ,

OW =
i

2

(

H†σa
←→
D µH

)

DνW a
µν , OB =

i

2

(

H†←→D µH
)

∂νBµν ,

OHW = i (DµH)† σa (DνH)W a
µν , OHB = i (DµH)† (DνH)Bµν . (4.10)

By redefining the Higgs field one can show that OH renormalizes the Higgs couplings

to all the other SM fields. OGG,OBB and O− = (OW − OB) − (OHW − OHB) enter in

the interactions hgg, hγγ and hZγ, respectively, and Oyf enters in hff̄ [9]. The Wilson

coefficients cH , cW and cB are universal for all the MCHM with SO(5)/SO(4) breaking and

have been computed in the SILH description [9]:

cH = 1 ; cW = cB =
27π2

256
≃ 1.0 . (4.11)

cy has been computed in [9] for the top sector in the MCHM5. In general it can be obtained

from the functions Fψ that codify the deviation of the Yukawa coupling, leading to:

cyt = 1 , for the MCHM5, 10, 14−14−10, 14−1−10, 5−5−10 ,

cyt = 0 , for the MCHM10−5−10, 5−10−10 ,

cyb = 1 , for the MCHM5, 10, 14−14−10, 14−1−10, 10−5−10 ,

cyb = 0 , for the MCHM5−5−10, 5−10−10 . (4.12)

The coefficients cg,γ and cHW,HB are generated at loop level. Starting with Og, this oper-
ator is generated by fermion loops. For each fermion species there is a contribution (see

appendix D)

cg ∝
∑

n

yn
mn

A1/2(τn) , τn =
m2
h

4m2
n

. (4.13)

For heavy fermions, A1/2(τ)
∣

∣

τ→0
→ 4/3. Thus, considering heavy resonances we obtain:

cg ∝
4

3



tr(YψM
−1
ψ )−

y
(0)
ψ

m
(0)
ψ



+
y
(0)
ψ

m
(0)
ψ

A1/2(τ0) , (4.14)

with the index 0 referring to the would-be 0-mode, associated with the SM mass eigenstate.

The last term is similar to the SM one, up to corrections in the Yukawa coupling. These
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corrections are important only if the mixing is large. Since A1/2(τ) →τ→∞ 0, this term is

small for light fermions, mψ ≪ mh. As was shown in section 3, the first term is also small

if the mixing of both, the Left and Right chiralities, is small. For the top quark one can

take the limit A1/2(τt)→ 4/3, and eq. (4.14) is dominated by 4/3 tr(YtM
−1
t ), which is the

sum considered in eq. (4.1). Thus, one can also obtain an approximate expression for the

gluon fusion process in terms of the functions above, as shown in table 1. For the coupling

of the Higgs to two photons, there is an additional contribution due to the heavy spin-1

resonances. However, a similar sum rule applies which allows to obtain an approximate

analytical expression. These will be studied in more detail in section 6, after taking into

account the constraints from the recently measured Higgs mass [42], as well as the masses

of the Z gauge boson and the top and bottom quarks, which have the most important

impact on the Higgs potential and the Higgs phenomenology.

5 Higgs potential

Discrete models of pNGB Higgs can lead to a finite Higgs potential under some suitable

assumptions. The degree of divergence of the Higgs potential depends on the particular

mechanism of collective breaking, being thus model dependent. There are at least two

concepts involved: distance between the sites where the symmetries protecting the pNGB

potential are broken, and number of symmetries broken on each site.

The Higgs potential can be computed by the holographic method

V (h) =

∫

d4p

(2π)4

[

3

2

2
∑

i=1

log Πwi
L
+

3

2
log

[

Πw3
L
Πb − (Πw3

L
b)

2
]

− 2Nc

∑

ψ

log[p2ΠψLΠψR − |Mψ|2]
]

, (5.1)

where the correlators are obtained from sections 2.4 and 3, taking care to add the “bare”

kinetic terms, as in eqs. (2.7) and (3.3), which were not included as part of the definition

of the correlators in those sections:

Πwi
L
=
p2

g20
+Πw̃i

L
, Πw3

L
b = Πw̃3

L
b̃ , Πb =

p2

g′20
+Πb̃ , (5.2)

and similarly for the fermionic correlators. Equivalently, one can use the standard expres-

sion for the Coleman-Weinberg potential in terms of determinants involving the Higgs-

dependent mass matrices of the gauge and fermion fields. We have checked that the same

results can be reproduced with either approach. Note that eq. (5.1) contains the photon,

although it does not contribute to the Higgs potential, and one can regularize the divergent

constant terms by subtracting V (0).

5.1 Finiteness of the 1-loop Higgs potential

In this subsection we illustrate in a toy example how the inclusion/exclusion of certain

operators in the Lagrangian affects the divergence structure of the Higgs potential. Our
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example is based on the fundamental representation of SO(5), but the conclusion holds for

other representations as well. In order to understand the structure of divergences of the

h-dependent terms, let us consider the 2-site model with the following set of fields:

• site 0: an elementary fermion doublet qL and a singlet tR of a global symmetry

G0 = SU(2)L.
12

• site 1: four chiral composite fermions QL, QR, TL, TR, each transforming in the fun-

damental representation of a different global SO(5), called: GQL , GQR , GTL , GTR . In

this site there is also a scalar Φ1 transforming in the fundamental of another SO(5),

called: G1. The vev of Φ1 spontaneously breaks G1 to H1 = SO(4).

Notice that before introducing fermion masses, each chiral fermion of the composite

sector transforms independently, leading to a large global symmetry (in fact, the symmetry

is much larger, but we need only focus on this subgroup). The Higgs, being a NGB, is in

the coset G1/H1. The following operators break different symmetries:

• mQ Q̄Q: GQL ×GQR → GQL+R
= SO(5) ,

• mT T̄ T : GTL ×GTR → GTL+R
= SO(5) ,

• ∆q q̄LQR + h.c.: G0 ×GQR → GQR+0 = SU(2) ,

• ∆t t̄RTL + h.c.: G0 ×GTL → GTL+0 = SU(2) ,

• yT Q̄LΦ1Φ
†
1TR + h.c.: GQL ×GTR ×G1 → GQL+TR+1 = SO(5) ,

• y′T Q̄RΦ1Φ
†
1TL + h.c.: GQR ×GTL ×G1 → GQR+TL+1 = SO(5) .

There is some abuse of notation in the previous paragraph, since GQR,TL and G0 have dif-

ferent dimensions, so that when writing GTL+0 we really mean the diagonal subgroup

G′
0 =SU(2). In addition to the above, the symmetries allow operators of the form

Q̄LΦ1Φ
†
1QR + h.c. or T̄LΦ1Φ

†
1TR + h.c., which would also lead to divergences in the Higgs

potential of the 2-site model. With three or more sites, these would lead to a finite 1-

loop result [28, 29]. For illustration, we limit the following discussion to the operators

listed above.

A Higgs potential requires insertions of yT and/or y′T . Let us consider the follow-

ing cases:

(a) y′T = 0: the yT term only preserves the diagonal subgroup GQL+TR+1. The Higgs

is in the coset GQL+TR+1/H1, and thus a Higgs potential requires explicit breaking

of GQL+TR+1. This necessitates interactions with the elementary sector, which arise

from the ∆q and/or ∆t terms. However, due to their chirality structure, insertions

of ∆q,t still do not break GQL+TR+1: GQL+TR+1×G0 is broken only after additional

mQ,T insertions. Thus,

VH ∼ (∆q,tmQ,T yT )
2 . (5.3)

12For simplicity we ignore U(1)Y in this discussion.
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(b) yT = 0: the y′T term only preserves the diagonal subgroup GQR+TL+1 and the

Higgs is in the coset GQR+TL+1/H1. In this case, insertions of ∆q and/or ∆t break

GQR+TL+1×G0 without the need of mQ,T insertions:

VH ∼ (∆q,ty
′
T )

2 . (5.4)

The previous arguments show how the dimension of the operators leading to VH de-

pends on the presence of y′T , leading to logarithmic divergences at 1-loop for y′T 6= 0. The

presence of the operators mYt Q̄LTR and m′
Yt
Q̄RTL modifies the potential but not its

degree of divergence.

One can also understand this result from Feynman diagram considerations. For in-

stance, the contribution to the quartic term in Φ, at leading order in insertions of mψ and

∆ψ is given by:

(a)

Φ1Φ
†
1 Φ1Φ

†
1

yT yT

∆q ∆q

QL

QR qL

TR

QR

QL

mQ mQ

(b)

Φ1Φ
†
1 Φ1Φ

†
1

y′T y′T

∆q ∆q

QR QR

qL

TL

and similar diagrams changing q ↔ t and QL,R ↔ TR,L. These diagrams allow to under-

stand the superficial degree of divergence of VH depending on which operators are present

in the theory.

6 Higgs phenomenology

We turn now to the Higgs phenomenology of the composite Higgs models previously de-

scribed. We present in this section the results of a detailed numerical analysis obtained by

scanning over a sizeable region of the parameter space of each model. The minimization

of the Higgs potential will be fully taken into account. Note, however, that we assume

that for the light fermion generations both the LH and RH chiralities have a small degree

of compositeness, as opposed to allowing one of them to have a large mixing angle with

the composite sector, and the other a very suppressed one that accounts for the small

SM fermion mass [43–46]. This assumption is more natural given the EW precision tests,

which indicate that the light quarks and leptons are mostly elementary, although one could

imagine exploring the second option. As a result, the Higgs potential is affected mainly

by the top and bottom sectors, as well as by the gauge sector of the models. Nevertheless,

when discussing the Higgs decays we will take into account some of the light fermions, most

prominently the τ lepton, as discussed below.
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6.1 Numerical scan

The effective description of a composite Higgs described in the previous sections depends

on a number of parameters. The gauge sector is described at the Lagrangian level by the

two decay constants {fΩ, fΩX} and gauge couplings {gρ, gX} associated with the SO(5) and

U(1)X (composite) factors, while in the elementary sector one has the two gauge couplings

g0 and g
′
0 [see eqs. (2.4) and (2.7)]. The latter are related to the SM gauge couplings as given

in eq. (2.17), while it is convenient to parametrize the composite gauge couplings in terms of

the elementary/composite mixing angles of the gauge sector: tθ = g0/gρ and tθ′
X
= g′0/gX .

However, for simplicity, in our scan we will fix gX by imposing the relation discussed

after eq. (2.17), so that there is effectively a single gauge mixing angle tθ. The two decay

constants can in turn be exchanged for the two mass scalesmρ andmX defined in eq. (2.13),

but it is more convenient to scan over a subset of the physical masses after taking into

account the elementary/composite mixing effects (before including EWSB effects). Thus,

we choose to scan over mρ̃ =
√

1 + t2θmρ = mρ/cθ [see discussion of the last paragraph

of section 2.2], and we also choose the variable mX̃ = mX/cθ. However, since we focus

on a region of parameter space with tθ ≪ 1, quantitatively there is not a large difference

between mρ̃ and mρ or mX̃ and mX .

The fermion sector depends on a set of “diagonal” masses mΨ, one for each composite

fermion, and on the “off-diagonal” masses myu and myd of eq. (3.1). The composite sector

also involves a number of “Yukawa-like” mass parameters that we have called yu and yd
[see eqs. (3.9), (3.15), (3.21), (3.26), (3.36), (3.37) and (3.42) which define these for each

model]. In spite of the notation, the yψ have dimensions of mass, although they represent

interactions with the Higgs field Φ. Finally, there are the mixing parameters, ∆q, ∆u

and ∆d, which also have mass dimension 1. In practice, the scan will be restricted to

the third generation, so that one should reinterpret the indices as u → t and d → b. We

find convenient to exchange the mixing parameters ∆ψ for “mixing angles” defined by

tψ ≡ tan θψ = ∆ψ/mΨ, where Ψ is the composite fermion associated with the elementary

fermion ψ [for the MCHM5 we introduce two mixing angles tqu and tqd corresponding

to ∆qu and ∆qd ; see comments after eq. (3.1)]. Analogously to the gauge sector above,

we also prefer to scan over diagonal fermion masses that have been rescaled according to

mΨ̃ = mΨ/cψ, where cψ = cos θψ involves the corresponding mixing angle defined above.

This choice leads to light custodians when the mixings are large, since their masses are

given bymcust ∼ O(mΨ̃cψ) [47, 48]. Thus, the parameters for the fermionic sector consist of

{mΨ̃, tψ,myψ , yψ}, where the indices run over the field content in each model, as described

in section 3 [we fix Zψ = 1 in eq. (3.1)].

Since one expects that the masses of the various resonances will be of the same order, for

simplicity we have fixed a common mass scale, by restricting our scan tomρ̃ = mQ̃ = mŨ =

mD̃ (for the MCHM5 we impose the condition on mQ̃u and mQ̃d). This is not necessary,

but we do not expect that the results will depend on this simplifying assumption.13 Thus,

13Note that the physical masses are obtained after taking into account all the mixing effects, as well as

EWSB, and will therefore present a nontrivial spread. It is also worth noting that by scanning over mρ̃,

mX̃ and mΨ̃, i.e. by factoring out the elementary/composite mixing angles, we are proceeding in analogy
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the final set of parameters used in the scan is

{fh,mρ̃, tθ, tq, tt, tb,myT ,myB , yT , yB} , (6.1)

where we used the notation yT and yB instead of yt and yb to avoid confusion with the SM

top and bottom Yukawa couplings, and we also included in the list the Higgs decay constant

fh defined by eqs. (2.3) and (2.9). We also chose to fix mX̃ = sθW /
√
c2θW mρ̃ ≈ 0.65mρ̃,

which amounts to fixing fΩX = fΩ in eq. (2.4), given the choice of gX described above. We

choose 1/5 ≤ tθ ≤ 1/3, so that gρ is large but perturbative, and scan over the fermionic

mixing angles according to sψ ∈ [0.4, 1], with a uniform distribution (but we adjust sb
to reproduce the bottom quark mass with little effect on the EWSB properties of the

parameter point). For the mass parameters, (mρ̃,myT ,myB , yT and yB), we scan in units

of fh as follows:

• mρ̃/fh ∈ [2.5, 5], which is consistent with the underlying relation mρ ∼ gρfh with gρ
in the range of interest,

• |yψ/fh| < 2π, which encodes the idea of having a perturbative proto-Yukawa coupling,

• and |myT /fh|, |myB/fh| . 2π ,

while fh is scanned over a wide range, but we choose only points with ǫ < 0.5, which

corresponds to fh & 500 GeV. The final set of points has fh as large as ∼ 2.5 TeV (except

for the MCHM5−10−10, which has some points with fh as large as ∼ 6 TeV). We also

required in the final set of points that mρ̃ > 2 TeV. This final set of numbers already

assumes that we have normalized to mZ (see below).

Having chosen a given point in the parameter space described above, we minimize the

1-loop Higgs potential to select those points that do break the EW symmetry. For each

such point, we can rescale all parameters with dimension of mass so as to reproduce mZ ,

thereby normalizing to the EW scale. We further select those points where the Higgs mass

matches the measured value of ∼ 125 GeV, and also select those points where the top and

bottom quarks match the experimental observations. In practice, our final points have

mh ∈ [120− 130] GeV, mt ∈ [140− 170] GeV and mb ≈ 2.7 GeV.14 We can then compute

the couplings of the Higgs to the vector bosons and fermions (both the SM ones as well as

the new resonances), which are then used as input to compute the Higgs production cross

sections and branching fractions. This is done numerically without any approximations, as

to the extra-dimensional realizations, where the compactification scale and therefore the overall Kaluza-

Klein (KK) scale is treated as an input parameter. The elementary/composite mixing angles of the 4D

realization are related to the 5D localization parameters and boundary conditions for the various fields.

When obtaining the exact spectrum one can get modes much lighter than the overall KK scale, typically

for large mixing angles in the third generation fermionic sector.
14We note that the relevant masses from the point of view of the scan should be the running masses at

the scale where the heavy resonances are integrated out. These would then be run down to the weak scale

with the SM RGE’s to make contact with the experimental measurements. Since each parameter point

has a different scale for the heavy resonances, we have simply defined generous windows to capture the

spirit of the matching procedure. Although a more precise analysis is possible, we do not expect that the

conclusions will change.
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Figure 2. A random subset of the points that present electroweak symmetry breaking, but without

requirements on the Higgs, top or bottom masses (however, we have normalized tomZ). The vertical

and horizontal bands indicate the windows we have defined for mh and mt. In the left panel we

show the models we have presented in detail in section 3. In the right panel we show the models

mentioned in section 3.8, showing again the MCHM5 for comparison.

is done for the 1-loop induced couplings (hgg, hγγ and hZγ) which are computed using the

exact spectrum and couplings to the Higgs. However, we also compare to the analytical

approximation described in section 4, which in general gives a qualitative understanding

of the numerical scan.

In figure 2 we display a random subset of the scanned points that display EWSB,

in the plane of mt versus mh (after normalization to mZ). We have not imposed here

any requirements on mh, mt nor mb, only that the desired symmetry breaking pattern be

obtained and that the bR mixing angle be suppressed (as is necessary to obtain a light

bottom quark in models with just one operator coupled to qL). In the left panel we present

the (color coded) models described in detail in section 3, showing that some of the models

reproduce more naturally the Higgs and top masses than others. In particular, the models

involving the 14 representation have a tendency to produce a too large mh [33], although

one can find a few points in the desired range at the price of tuning (the bands correspond

to the windows we have defined in the previous paragraph).

In the right panel, we show the same information for the models mentioned without

details in section 3.8, together with the MCHM5 for comparison purposes. We see that

these models also typically do not fall in the phenomenologically desired window: for the

MCHM5−1−10 the quartic coupling is usually too small, since the only source of breaking

is the mixing with qL, that leads to a factor sh in ΠuL and s2h inMu, in agreement with the

results found in [33]. The MCHM10−14−10 leads to a heavy Higgs. The MCHM14−5−10 and

MCHM5−14−10 allow for two independent proto-Yukawa interactions: Ly ⊃ yuΨ̄5Ψ14Φ +

ỹu(Ψ̄5Φ)(Φ
†Ψ14Φ), similar to the MCHM14−14−10. Both of them generically lead to a heavy

Higgs, while EWSB prefers ỹu 6= 0 for the MCHM14−5−10 and yu 6= 0 as well as ỹu 6= 0

for the MCHM5−14−10. For the remaining three models we did not find points with the

proper mh and mt by performing a random scan. Finally, the MCHM14−10−10 generically

does not lead to EWSB.

In all these models there is a correlation between mh and mt [55], that can usually be

approximated by: m2
h ∼ aNc

π2
m2
t

f2
h

m2
ψ, with mψ the scale of the lightest fermionic resonance
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Figure 3. Bottom (left panel) and top (right panel) Yukawa couplings in several models, normalized

to the SM (defined as ySMψ = mψ/vSM with vSM = 246 GeV). The points correspond to a random

scan in parameter space, while the solid curves correspond to the analytic approximation discussed

in the main text.

cutting off the 1-loop potential and a a factor that is model dependent. Usually a ∼ O(1),
however in some cases it can be suppressed a ∼ O(ǫ2) or enhanced a ∼ O(ǫ−2), as shown

in [33]. The analytical approximations of [33] are in qualitative agreement with the full

numerical results of figure 2.

From here on we focus on the models described in detail in section 3, which seem to be

phenomenologically preferred due to the previous observations. As mentioned earlier, we

analyze the MCHM14−14−10 in detail, even though it tends to produce too heavy a Higgs,

as it may serve also to illustrate the situation in those models we do not elaborate any

further. All the numerical results of the following sections correspond to points that lie at

the intersection of two bands of figure 2.

6.2 Corrections to the gauge and Yukawa couplings

We start by comparing the simple analytical approximation described in section 4 for the

deviations in the Higgs couplings to the SM gauge bosons and fermions w.r.t. the SM

expectation [see also the discussion after eq. (3.6)]. As discussed there, this approximation

is expected to work well when the elementary/composite mixing angles are small, which

typically happens for the light fermions in our scenario. However, we find that even for

the top quark, the approximation yt ≈ [Ft(ǫ)/(ǫfh)]mt is reasonably good, even when

the mixing angles are sizeable, provided there are no “ultra-light” fermionic resonances.

This is illustrated in figure 3, where we show the bottom and top Yukawa couplings as

a function of ǫ in several models (normalized to the corresponding SM Yukawa coupling,

ySMψ ≡ mψ/vSM with vSM ≈ 246 GeV). The points correspond to a random scan over the

parameter space described in the previous subsection, while the solid curves correspond to

the approximation described in section 4 (see table 1).

We see in the left panel of figure 3 that the approximation described in eq. (4.2) works

very well for the bottom sector all the way up to relatively large values of ǫ. A notable

exception occurs for the MCHM10−5−10 (green stars), where the analytic expectation, F1 =

cos(2v/fh)/ cos(v/fh), systematically overestimates the suppression in yb compared to the

SM. The sizeable deviation observed can be understood by considering the next to leading
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Figure 4. The largest of the mixing angles between sq and st versus the lightest Q = −1/3
resonance (left panel) and Q = 2/3 resonance (right panel) in several models. For the MCHM5 we

plot the largest between squ , sqd and st.

order term in the expansion of yb/y
SM
b in powers of ǫ, as shown in section 3. We obtain

that, after the selection of points explained above, the coefficient of the O(ǫ2) term for the

MCHM10−5−10 is of O(0.5). In contrast, the corresponding coefficient for the MCHM10,

MCHM14−14−10 and MCHMsimple
14−14−10 is of O(0.1),15 for the MCHM5 and MCHM14−1−10 it

is of O(10−2), and for the MCHM5−5−10 and MCHM5−10−10 it is O(10−4), in all the cases

increasing with sq as expected. Since h→ bb̄ is the dominant decay mode, deviations of yb
can have a deep impact in the Higgs phenomenology.

It is also interesting to note that the bulk of the points in the MCHM10−5−10 display

relatively light (Q = −1/3) fermionic resonances, together with relatively large mixing

angles. We illustrate this in the left panel of figure 4, where we show the largest of the

mixing angles (sq, st) versus the lightest vectorlike resonance mass in the bottom sector.

Indeed, most of the green stars (MCHM10−5−10) exhibit resonances below 1 TeV and

sq > 0.9. Note that the MCHM10 (yellow +’s), the MCHM14−14−10 (brown ∗’s), and

to a somewhat lesser extent the MCHMsimple
14−14−10 (magenta ∗’s), also contain a subset of

points with light states together with sizeable elementary-composite mixing angles, which

is reflected in the somewhat larger dispersion in figure 3, compared to the other models.

However, note that the MCHM14−1−10 (dark magenta ˆ’s) has light Q = −1/3 resonances

together with large mixing angles, and nevertheless follows the naive approximation from

eq. (4.2) for the bottom Yukawa coupling rather well.

The right panels of figures 3 and 4 display the same information for the top sector

(using the lightest Q = 2/3 fermionic resonance as the relevant variable). Here, the dis-

persion of the points around the continuous curves is larger, but the general behavior is

still well described by the simple analytic formulas given above, again with the excep-

tion of the MCHM10−5−10 (green stars), which all fall below the “expected curve” given

by F2 = cos(v/fh). Thus, the analytic approximation underestimates the suppression in

the top Yukawa coupling compared to the SM in this model. We also note here that the

analytic approximation, F1(ǫ), slightly underestimates the exact result for the MCHM10,

15MCHMsimple
14−14−10 refers to the model described in section 3.6 with ỹT = 0 in eq. (3.6) [making u → T ].

We refer to the general model with yT , yB and ỹT turned on as MCHM14−14−10.
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MCHM14−14−10 and the MCHM14−1−10 (with the effect being more pronounced for the

latter two). Finally, we point out that after imposing the physical conditions described

in the previous section, the points in the MCHM14−14−10 typically have yT ≪ ỹT . This

means that the deviations from the SM in the top sector are reasonably well described by

the function F̃3(ǫ) [see discussion around eq. (4.5)], as can be seen in the right panel of

figure 3.

Besides the above resonances, one can also find light exotic resonances with charge

Q = 8/3, 5/3 and −4/3, depending on the fermion representations involved. These reso-

nances are also custodians, thus their masses are also suppressed if they belong to SO(5)

multiplets with large mixing with the elementary fermions. They can have a rich and

exciting phenomenology at colliders, although we will not consider this issue in this work.

The Yukawa couplings of the light fermions should be very well described by the

analytical approximations, at least when both LH and RH mixing angles are small, as

we are assuming. In particular, all of them can be expected to deviate from the SM

expectation by the same order as the couplings of the third generation, reflecting the

“universal” character of the leading order deviations found in composite Higgs scenarios

(those parametrized by the Fi functions of table 1).

6.3 Higgs production and decay

Based on the above observations, we can write simple analytical expressions for the Higgs

branching fractions and production rates that allow us to understand the qualitative (and

often quantitative) behavior. However, for the numerical computations in the scan we will

not perform any such approximations, as already mentioned.

For the tree-level Higgs decays, we have

Γ(h→ bb̄, ττ) ≈ ΓSM(h→ bb̄, ττ)× r2b (ǫ) , (6.2)

Γ(h→ cc̄) ≈ ΓSM(h→ cc̄)× r2c (ǫ) , (6.3)

Γ(h→WW,ZZ) ≈ ΓSM(h→WW,ZZ)× r2V (ǫ) , (6.4)

where ΓSM(h → i) is the SM Higgs partial decay width in the i-th channel. We have

assumed here that the leptons (in particular the τ) are in the same SO(5) representations

as the bottom quark. Similarly, all up-type quarks (in particular, charm and top) will be

assumed to belong to the same SO(5) representation, hence rc(ǫ) = rt(ǫ), which can be

read from table. 1 for the different models.16

For the loop-level Higgs decays, we write

Γ(h→ gg)

ΓSM(h→ gg)
≈
|rt(ǫ)A1/2(m

2
h/4m

2
t ) + rb(ǫ)A1/2(m

2
h/4m

2
b)|2

|A1/2(m
2
h/4m

2
t ) +A1/2(m

2
h/4m

2
b)|2

, (6.5)

Γ(h→ γγ)

ΓSM(h→ γγ)
≈
|rV (ǫ)A1(

m2
h

4m2
W

) +NcQ
2
t rt(ǫ)A1/2(

m2
h

4m2
t

) +NcQ
2
b rb(ǫ)A1/2(

m2
h

4m2
b

)|2

|A1(m2
h/4m

2
W ) +NcQ2

tA1/2(m
2
h/4m

2
t ) +NcQ2

bA1/2(m
2
h/4m

2
b)|2

, (6.6)

16If different generations are assigned to different SO(5) representations it is straightforward to generalize

our expressions by simply computing the corresponding Fψ(ǫ) from eq. (4.1), although it may happen that

this function has additional dependence on other microscopic parameters.
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Figure 5. Left panel: branching fractions (normalized to the SM) into fermions and gauge bosons

for several models following from the approximation in eq. (4.2). Here V V =WW,ZZ, γγ, gg. The

color coding of the lines matches the color coding of the closest legend. Right panel: gluon fusion

production cross section (normalized to the SM) in those models. The vector boson fusion (VBF)

cross section coincides with the curve marked as “MCHM5−10−10, MCHM10−5−10”.

where A1/2(τ) and A1(τ) are the well-known loop functions (see appendix D), Nc = 3 is

the number of colors and Qt = 2/3, Qb = −1/3 are the top and bottom quark electric

charges, respectively. Note that here we have formally included only the effects of the zero-

modes, since in the limit where eq. (4.2) holds, the contribution of the associated towers

of heavy resonances becomes negligible. However, to the extent that A1/2(
m2
h

4m2
t

) ≈ 4/3

(its asymptotic value for 4m2
t ≫ m2

h), and given the sum rule eq. (4.1), the above set of

approximations effectively include the effects of the full top tower. For the bottom quark

contribution, the situation is different since |A1/2(m
2
h/4m

2
b)| ≈ 1/16≪ 1 formh ≈ 125 GeV

and mb ≈ 2.7 GeV. In addition, in some cases (as in the MCHM10−5−10), the contribution

of the heavy towers can be as large as 10% of the sum in eq. (4.1). As a result, the

contribution of the heavy Q = −1/3 states to the above loop-induced processes can be

of the same order as the actual contribution of the bottom quark, since although yb/mb

still dominates the sum in eq. (4.1), it has to be multiplied by the small A1/2(m
2
h/4m

2
b)

for the physical processes. Given that the contribution of the bottom-like resonances is

not included in eqs. (6.5) and (6.6), our approximation could carry an uncertainty of the

same order as the bottom contribution, which can be as large as 10%. However, for most

models, the approximation is significantly better.

In the left panel of figure 5, we show the Higgs branching fractions into fermion and

gauge boson pairs in the MCHM5, MCHM10, MCHMSimple
14−14−10, MCHM14−1−10 (solid lines),

MCHM14−14−10 (dash-dotted lines), MCHM5−10−10 (short dashed lines), MCHM10−5−10

(dotted lines), and MCHM5−5−10 (long dashed lines). We see that in some cases the BR’s

are enhanced with respect to the SM while in others they are suppressed. One should

notice that all partial decay widths always present a suppression, in particular for the bb̄

decay channel. As a result the total decay width is suppressed, and the BR’s in some

channels can end up being enhanced due to the smaller denominator. In contrast, the

Higgs production cross sections are always suppressed with respect to the SM, as shown in

the right panel of figure 5 for the gluon fusion Higgs production cross section, normalized
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Figure 6. Left panel: rates in the h → ZZ decay channel separated according to production

mode: gluon fusion (+tt̄h) versus VBF (+hW/Z). The larger black dots indicate the positions of

ǫ = 0.1, 0.3, 0.5. Right panel: same for the h → γγ channel. The solid curves correspond to the

analytical approximation discussed in the main text, while the points correspond to a random scan

that reproduces mh ∼ 125 GeV, mt ∼ 160 GeV and mb ∼ 4 GeV. The shaded region corresponds

to the current 95% CL curve by ATLAS. The CMS 95% CL region would cover the full area of the

figure. The production signal strengths are defined as µi = σModel(i)/σSM(i). The production cross

sections used correspond to the 8TeV run of the LHC.

to the SM. We also note that the VBF production cross section coincides with the upper

curve in this plot.

Consequently, the total cross sections in given channels can be enhanced or suppressed

with respect to the SM, depending on how these opposing effects play out. We illustrate

this in figure 6 for the ZZ (left panel) and γγ (right panel) decay modes, separating the

gluon fusion (+tt̄h) production from VBF (+hW/Z), as done by the ATLAS and CMS

collaborations [49]. The continuous lines correspond to the expectation based on the above

analytical approximation. We have superimposed the exact predictions for the scan in

the models we consider. We see that the approximation tracks well the actual analytical

predictions for all models (up to some dispersion due to the effect of the bottom sec-

tor explained above), except for the MCHM10−5−10 on which we comment further below.

One can understand the behavior of these curves from figure 5. For instance, for the

MCHM5−10−10, since all channels (gauge, down-type and up-type) are suppressed by ex-

actly the same r(ǫ), the BR’s remain exactly as in the SM, while the production in all modes

is suppressed identically. Thus, the curve points at a 45◦ angle towards the left-down, as

ǫ = sin(v/f) increases and the deviations from the SM increase. The MCHM5−5−10 shows

a very mild enhancement in the ZZ and γγ BR’s (see left panel of figure 5), which is not

enough to compensate the suppression in production. Since the latter is more significant

in gluon fusion than in VBF, the curve in figure 6 points to the left-down but closer to

the horizontal than for the MCHM5−10−10. For the MCHM5, MCHM10, MCHM14−14−10,

MCHMSimple
14−14−10 and MCHM14−1−10, the left panel of figure 5 shows a stronger enhancement
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in both BR(h → ZZ) and BR(h → γγ), which is sufficient to compensate the suppres-

sion in the VBF production but not enough to compensate the significant suppression in

gluon fusion (see right panel of figure 5). As a result, the analytical prediction curves to

the left-up. Note, however, that the scanned points for the MCHMSimple
14−14−10 show a more

pronounced tendency to compensate the suppression in gluon fusion by the enhancement

in the branching fractions than the naive analytical expectation. This can be traced to the

systematic (albeit small) deviations exhibited in figure 3 for the top and bottom Yukawa

couplings. Finally, we see that the analytical prediction for the MCHM10−5−10 does not re-

produce the qualitative behavior of the scan. While a line at 45◦ to the right-up is expected

(from figure 5 one can see that the enhancement in BR’s dominates over the suppression

in production in all the modes), most of the points actually present a suppression with

respect to the SM. This can be traced back to our previous comments in regards to this

model: the analytical approximation systematically overestimates the suppression in the

bb̄ channel [hence overestimates the enhancement in BR(h→ ZZ) and BR(h→ γγ)], while

it systematically underestimates the suppression in the top Yukawa coupling, which trans-

lates into an overestimate of the gluon fusion Higgs production rate. These O(10%) errors

are sufficient within this model to change the qualitative behavior. The VBF production

is still well described by the analytic approximation, as is for all the other models, since

the gauge resonances are always heavy.

It is interesting that the different fermionic representations lead to a different behavior

in the plane of figure 6, so that a precise measurement of these rates could be used to

distinguish between different scenarios (although there could still remain a degeneracy be-

tween the MCHM5, MCHM10, MCHMSimple
14−14−10 and MCHM14−1−10, which in fact could be

confused with the more general MCHM14−14−10). We also show the current 95% C.L. el-

lipse from the ATLAS analysis [49], and indicate the position along the solid line in each

model that corresponds to ǫ = 0.1, 0.3, 0.5. We see that the experimental uncertainties still

allow for relatively large values of ǫ. The 95% C.L. ellipse from the CMS analysis would

fill the region shown, so we do not indicate it.

The ATLAS and CMS collaborations have measured other properties of the 125GeV

resonance. For instance, by taking channel by channel ratios of the ggH + ttH and

qqH + V H production modes, and performing a fit to the data, they can set a bound

on µqqH+V H/µggH+ttH . This analysis only assumes that the same boson H is responsi-

ble for all observed Higgs-like signals and that the separation of gluon-fusion like events

and VBF-like events, based on the event kinematics, is valid. For instance, the ATLAS

collaboration sets a bound of µqqH+V H/µggH+ttH = 1.2+0.7
−0.5 [50]. The models in our scan

have 1 . µqqH+V H/µggH+ttH . 1.5, so that they are not yet probed by these analyses.

However, if a ratio below one was established it would disfavor the pNGB Higgs scenarios

based on the lowest dimensional representation of SO(5). This is a manifestation of the

generally important suppression in the gluon fusion process w.r.t. the SM. ATLAS also sets

bounds on the Higgs production by gluon fusion alone, in terms of the rescaling factor κg.

However, the analysis assumes that all the BR’s are as in the SM and therefore does not

apply to the present case.

From the LHC data one can also derive bounds on ratios of branching ratios, e.g.

on ργγ/ZZ = [BR(γγ)/BR(γγ)SM]/[BR(ZZ)/BR(ZZ)SM], etc. ATLAS finds ργγ/ZZ =

– 37 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
9

Figure 7. Left panel: similar to figure 6, but for the h→ ττ channel. Right panel: we show the total

rate (i.e. inclusive production) in the ττ channel, normalized to the SM, versus ǫ. The horizontal

bands correspond to the 95% C.L. limit set by the ATLAS [51] and CMS [52] collaborations.

1.1+0.4
−0.3 [50]. Our scans have 1 . ργγ/ZZ . 1.1, so that they are not yet probed in such mea-

surements. Similarly, due to the custodial symmetry, we have ρWW/ZZ ≈ 1, and it would

be very challenging to differentiate it from the SM at the LHC; a significant deviation from

the custodial limit would disfavor both the SM and the pNGB scenarios we have studied.

Apart from the indirect sensitivity to the top quark via the loop processes above, the

fermionic channels, in particular h → ττ are starting to be measured with interesting

precision [51, 52] for the present work, although the uncertainties are still sufficiently large

to be consistent with the great majority of our parameter point sample. In the left panel

of figure 7 we show the expectations for this channel, discriminating between the Higgs

production by gluon fusion (+ttH) and VBF (+V H), together with the 95% C.L. region

from ATLAS. In the right panel we show the signal strength for the inclusive h → ττ

production as a function of ǫ. The horizontal bands correspond to the 95% C.L. regions

from ATLAS [51] and CMS [52]. We note that under our assumptions, the ττ channel

is always suppressed w.r.t. the SM. However, one should remember that one may be able

to consider different representations for the τ sector, without affecting the properties of

the Higgs potential. Hence, establishing an enhancement in the ττ channel over the SM

would be in conflict with our assumptions, but we cannot claim that it would rule out the

general framework.

In contrast, in models with a minimal content of composite fermion multiplets, one

expects a robust suppression w.r.t. the SM in the h→ bb̄ decay mode, so that this would be

an interesting channel to probe the scenario. We find a suppression of 10− 20% for ǫ = 0.3

and 20− 40% for ǫ = 0.5, with smaller dispersion between different models than in the ττ

channel. This is because at the LHC one must consider pp→ h+X → bb̄+X in order to

be able to discriminate against the large QCD background, so that only V BF + V H +

ttH contribute, but not ggH which is most sensitive to the new fermionic resonances that
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distinguish between different models. Unfortunately, at the LHC the precision may not be

sufficient to provide a clear test, but its high luminosity phase or a linear collider could set

useful bounds.

6.4 h → Zγ

We turn now to the last decay channel we consider: h → Zγ, which has not yet been ob-

served, but could be seen in the near future. The decay of a pNGB Higgs to Zγ has received

considerable attention recently. Ref. [37] has shown that there can be large corrections to

this decay, while being simultaneously compatible with precision EW measurements, thus

providing a very interesting test. In order to obtain a large effect in this decay the composite

sector itself must break the PLR symmetry, otherwise the only source of PLR breaking is the

interaction between the elementary and composite fields, and the effect is suppressed [40].

We have not considered breaking of PLR by the composite sector in our work, so that we

expect small corrections in the h→ Zγ channel. We have computed the corrections to this

rate in the models presented in the previous sections. Below we discuss the main features

of this decay and show our results.

In the SM the interaction hZγ is a radiative effect, generated at 1-loop by virtual W ’s

and fermions. Similar to hγγ, the bosonic and fermionic contributions have opposite sign.

The first one dominates over the second one by a factor ∼ 10, and the fermionic loop is

dominated by the top contribution. In the MCHM one can distinguish the corrections from

the new particles in the loop from those arising from the modified couplings between the

Higgs and the SM gauge and fermion fields, as was the case for the hγγ process. However,

unlike in the h → γγ diagrams, there can be two different particle species running in the

loop, since only one of the external particles is a gauge field of an unbroken symmetry.

Therefore, in theories with extra W ’s, besides the loop with a single heavy field there are

1-loop effects involving two different virtual states. We will refer to these contributions

as “diagonal” and “non-diagonal”, respectively. Similarly, in theories with new fermions

there are 1-loop effects involving a single new fermion as well as effects involving prop-

agators of two different fermion species. We will clarify below which diagrams give the

leading contributions.

As in the SM, in the models we are considering there are no tree-level contributions to

the h → Zγ process, so we focus on the 1-loop effects, starting with those due to bosonic

fields. Each diagonal contribution is suppressed by a factor (mW /mWn)
2 ∼ O(10−3).

Although there are several charged vectors, whose contributions add up, we find that the

total effect is less than 1% of that of the W gauge boson in the SM. Next we consider

the corrections from a loop with a SM-W and a heavy charged vector. The product of

the non-diagonal couplings ZWWn and hWWn are suppressed by a factor . O(10−2)

compared with the SM coupling, thus they can be neglected as well. For the non-diagonal

contributions involving heavy fields the product of the couplings ZWmWn and hWmWn can

be of the same order as in SM. However, as in the diagonal contribution, in this case there

is also an extra factor (mW /mWn)
2 ∼ O(10−3). Therefore, the leading correction to hZγ

mediated by loops of vector bosons is captured by the correction to the couplings hW+W−

and ZW+W−. The correction to the first one can be approximated by F2(ǫ) =
√
1− ǫ2,
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Figure 8. Left panel: the amplitude for h→ Zγ due to the top sector in all the models, normalized

to the top-mediated amplitude in the SM. Right panel: the full amplitude (absolute value), arising

from vector bosons and fermions in the models of section 3, normalized to the hZγ amplitude in the

SM. The continuous line corresponds to the SM-W loop, with its modified coupling to the Higgs as

encoded in F2(ǫ).

whereas the correction to ZW+W− is very small. Thus, one can expect the bosonic 1-loop

correction to chZγ [see comments after eq. (4.10)] to be modulated by F2(ǫ), leading to a

suppression in the amplitude compared with the SM.

The correction from the fermionic sector is dominated by the top quark and its part-

ners. The resonances associated to the light SM fermions decouple and do not contribute.

This can be understood from the fact that hZγ requires breaking of PLR, and in the present

models that breaking arises only from the mixing between the two sectors of the theory.

Since we are assuming that the light fermions have small mixing for both chiralities, the ex-

plicit PLR breaking is suppressed by these small mixings. The effect from the top partners

can have different signs for different representations. In the left panel of figure 8. we show

the corrections to the amplitude coming from the top sector of all the models, normalized

to the top contribution in the SM. We have included all the diagonal and non-diagonal

contributions. The corrections to the SM top result can be of order 50%, or even larger for

ǫ ∼ 0.5 and for most of the models there is a suppression. However one should remember

that the bosonic contribution is one order of magnitude larger that the fermionic one.

In the right panel of figure 8, we show the total amplitude in the MCHM models

normalized to the SM, where we have used the full diagonalization of the mass matrices

and couplings to take into account all the fermionic contributions, the diagonal spin-1

contributions, and the (small) modification of the ZW+W− coupling. However, we do

not include the non-diagonal gauge contributions (which have been argued to be negligible

above). See appendix D for further details of this computation.

Since for most of the models and regions of parameter space the leading order effect

is captured by the lightest states running in the loop, either bosons or fermions, the cor-

rections to chZγ can be approximated by the corrections to the Higgs couplings with W

and t. The left panel of figure 9 shows that this approximation works rather well for the

models we are considering. The deviations arise mainly from the diagonal and non-diagonal

contributions of the top partners. In the right panel we exhibit the correlation between

the rates into Zγ and γγ. We see that this correlation is slightly different between the
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Figure 9. Left panel: similar to figure 6, but for the h → Zγ channel. Right panel: we show the

total signal strength µ(i) = σ(pp→ h→ i)/SM (i.e. inclusive production) in the Zγ channel versus

the γγ channel, showing a high degree of correlation. The larger deviations from (1, 1) correspond

to larger values of ǫ.

MCHM10−5−10 and MCHM5−10−10 on the one hand, and the other models on the other,

which could allow for a distinction if sufficient precision is achieved, depending on the size

of the deviations from the SM. We note that for the MCHM5−10−10 there is a very good

agreement between the analytical approximation and the full numerical result in γγ. How-

ever, the top sector gives contributions of order 5-10% to Zγ, as can be seen in the right

panel of figure 8. Those corrections lead to the small disagreement between the analytical

approximation and the full numerical result for the MCHM5−10−10 seen in the right panel

of figure 9 (a similar effect but in the opposite direction is present for the MCHMsimple
14−14−10).

7 Tuning in the MCHM

In this section we comment on the degree of fine-tuning associated with the phenomeno-

logically viable points found above. Consistency with the EW precisions tests (EWPT)

in these models, mainly the S-parameter and the ZbLb̄L coupling, require ǫ . 0.3 [18].17

However the Higgs potential generically leads to no EWSB, ǫ = 0, or to maximal EWSB,

ǫ = 1.18 A careful analysis of the structure of the Higgs potential shows that the MCHM

requires some tuning in the parameter space of the theory to produce ǫ . 0.5, and the

amount of tuning depends on the fermion embedding [18, 54]. Besides these conditions,

the Higgs potential must also lead to a light Higgs. Since the top contribution to the 1-loop

17Although we do not perform a detailed analysis of the EWPT on all the models we consider, we recall

that the presence of light fermionic resonances can play an important role in opening up the viable region

of parameter space, as studied in [53].
18For v = fh, besides the problems with EWPT, many models lead to massless SM fermions, as can

be seen from the cancellation of the LR correlator Mψ. This is a consequence of the restoration of an

accidental chiral symmetry [55].
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Higgs potential is cut off by the fermionic resonances mixing with the top, a light Higgs

prefers light top partners. Ref. [55] has shown the correlation between mh and the mass of

the lightest resonance for MCHM5 and MCHM10. Ref. [54] has also discussed the impact

of light fermions in the tuning of the MCHM, arriving to similar results. In our setup,

similar to models in a slice of AdS5, large compositeness of the SM fermions automatically

lead to light custodians that can alleviate the tuning (see the discussion in 6.1). Below we

show our results for the tuning of the models presented in the previous sections.

Following refs. [54, 56, 57] we use the sensitivity parameter

∆ = maxi

∣

∣

∣

∣

∂ logmZ |phys
∂ log xi

∣

∣

∣

∣

(7.1)

as a measure of fine-tuning. Here xi are the parameters of the effective theory and mZ , as

given in eq. (2.16), depends explicitly on fh and ǫ, with ǫ a function of all the parameters

of the theory. By mZ |phys we mean that we have selected a region of parameters of the

theory that leads to the observed Higgs and SM masses. We have followed the procedure

of ref. [54] which has shown that eq. (7.1) can be rewritten in terms of the Higgs potential,

allowing for a simple calculation of ∆. As explained at the beginning of section 6, we

have considered the dependence of the potential on the following parameters: the mass

scale of the composite resonances mρ, the decay constant of the pNGB fh, the composite

proto-Yukawa couplings, the masses mixing composite fermions my, the fermion mixing

angles sψ and the ratio of gauge couplings tan θ.

We have computed the tuning of the models presented in the previous sections, eval-

uating ∆ in those points of the parameter space that were selected after the random scan,

as explained at the beginning of section 6. We find that the gauge contribution is subdom-

inant, and the tuning is usually dominated by the top mixings sq, st, the Yukawa yT and

the mixing mass myT when present. Below we comment on the size of the tuning for the

different models and discuss some details about its parameter dependence.

We find that the MCHM5 and MCHM5−5−10 have generically ∆ ∼ 5 − 40, with the

sensitivity parameter dominated by myT and sometimes by st. The second model shows

some regions of parameter space with ∆ ∼ 100 as well as some points where sq dominates

the tuning. Notice that the MCHM5−5−10 has less freedom, since there is no myB and

the bL mixing is controlled by the same parameter that controls the tL mixing, namely sq,

whereas for the MCHM5 there are two mixing parameters, sqd and squ . The MCHM10 has

∆ ∼ 5 − 80, although there are points with ∆ ∼ 300. The larger tuning of the MCHM10

could be related with the Clebsch-Gordan coefficient
√
2 suppressingmt in the latter model,

that requires larger mixing and Yukawa coupling. In this model ∆ is usually dominated by

sq and sometimes by st, yT or myT . As explained in the previous sections, MCHM5−10−10

and MCHM10−5−10 require a large degree of compositeness of at least one of the chiralities

of the top, leading to the largest tuning of the models that we have studied with fermions in

representations 5 and 10. We find ∆ ∼ 100−1000, usually dominated by sq and sometimes

by st. MCHMsimple
14−14−10 and MCHM14−1−10 have ∆ ∼ 80−300, dominated by st for the first

model and by sq for the second one. The main reason for the larger tuning of these models

compared with MCHM5 and MCHM10 is that they generically predict a larger mh [54].
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Thus, requiring mh ≃ 125GeV selects special regions of the parameter space with non-

natural cancellations in the Higgs potential. On the other hand, for the MCHM14−14−10

that has an extra proto-Yukawa coupling in the top sector, we find ∆ ∼ 10− 150, with the

tuning dominated by st and sometimes by myt or fh.

We find that, after applying our selection criteria over the random scan, the models

with larger tuning also show many points in a region of the parameter space with large

composite scale, fh & 4TeV. In fact, for these models there are some points where the

tuning is dominated by fh.

8 Conclusions

We have used a simple two-site realization of the composite Higgs scenario [28] to systemat-

ically investigate the consequences of several fermion representations of the spontaneously

broken symmetry leading to the Higgs as a pNGB. We have restricted ourselves to the

SO(5)→ SO(4) symmetry breaking pattern, which is denoted here as the “Minimal Com-

posite Higgs Model”, but we have explored several combination of the lowest-dimensional

representations of SO(5) in the composite fermion sector. In particular, we have fully taken

into account the dynamically generated Higgs potential, which receives crucial contribu-

tions from the states associated with the third family, especially the top quark. We can

therefore consistently incorporate the measured mass of the resonance discovered at the

LHC in 2012, interpreted as a SM-like Higgs boson, and investigate the restrictions im-

posed by the experimental information. We have also taken into account the effects of the

bottom quark sector, which, although subdominant in determining the dynamics of EWSB,

can have a non-negligible effect on the resulting Higgs phenomenology. We have assumed

that the light families are mostly elementary, and therefore have a negligible effect on the

Higgs potential. However, the couplings of a composite Higgs to all fermions can receive

sizeable corrections leading to important deviations from the SM expectations. This can

be important in the near future, as decays such as those into a τ pair are being measured

with better precision [51, 52].

By including the “first level” of heavy (spin-1 and spin-1/2) resonances, we can also

compute in detail the effects on loop-induced processes, such as the Higgs production

through gluon fusion and the Higgs decays into γγ and Zγ. Such processes consist of

two conceptually different, but related parts. First, the couplings of the Higgs to the

SM fermions are modified w.r.t. the SM, and therefore when they run in the loop the

corresponding contribution is different from the SM one. Second, the heavy resonances

give an additional non-SM contribution to the loop diagrams. At zeroth-order and in

the simplest models, the sum of the two effects for the dominant contributions (from the

top-related states, as well as from the W-related ones in the case of γγ or Zγ) results

in a “universal modification” that depends on the microscopic parameters only through

ǫ = sin v/fh. However, we find that the corrections to this leading order result, in particular

those of the bottom sector, can have a qualitative impact on the Higgs properties.

Importantly, we find a generic suppression of the gluon fusion process in all the mod-

els we investigated. This is also the case for the MCHM14−14−10, which presents a richer
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structure of invariants and leads in general to a sum rule that has dependence on mi-

croscopic parameters beyond ǫ. Although a priori there exists the potential for finding

regions of parameter space with an enhanced gluon fusion Higgs production cross sec-

tion [36], we find that all the phenomenologically viable points exhibit a rather significant

suppression instead.

Due to the generic suppression of the various decay widths, in particular Γ(h → b̄b)

which dominates the total Higgs decay width, one can often find branching fractions that

are larger than those in the SM. The experimental rates then result from competing effects

between production and decay, and can present enhancements or suppressions in given

channels, depending on the model under consideration. This offers an interesting handle

–were a robust deviation from the SM to be established– to get indirect information about

the composite fermion representations, which would constrain the nature of the underlying

strongly interacting theory.

Another interesting decay channel is h→ Zγ. We have shown that the deviations are

small and dominated by the corrections from loops of SM weak bosons, as expected if the

PLR symmetry is not broken by the composite sector [40]. Moreover, the contributions

from the heavy resonances are small and the deviations can be approximated at leading

order by the corrections to the hW+W− coupling, that are given by a simple function of ǫ.

We have also investigated the degree of fine-tuning, which is in general considerable but

seems in most cases to compare favorably against the simplest SUSY scenarios (although

this statement should not be taken as a rigorous one, given the lack of a proper UV

completion for the composite Higgs scenarios). Interestingly, we find examples where the

sensitivity of the weak scale to the underlying model parameters is below 10%. However,

models such as the MCHM5−10−10 and the MCHM10−5−10 present a sensitivity at the

few per mille level. We also note that the models based on the 14 representation, which

have been claimed to present little tuning [54] actually are tuned at the per cent or worse

level (although we have not considered a purely composite tR). These considerations may

be suggestive of which case is more likely to be realized in nature, although of course

experimentally the approach should be open-minded.

As the LHC and the experimental collaborations prepare for the (close to) 14TeV and

higher luminosity run, the Higgs sector offers a unique window into physics beyond the

SM. The possibility that the Higgs boson is a pNGB of some underlying strong dynamics

remains as an attractive framework for understanding the breaking of the EW symmetry,

and the opportunity of learning something about the detailed properties of such a theory

from Higgs measurements can be a realistic one, as illustrated in this work. Eventually one

should be able to produce the strong resonances, studying their properties directly, and

start cross-checking against the previous low-energy information.
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A Representations of SO(5)

We consider the following 5× 5 matrix representation of the generators TB of SO(5):

T 1
L =

















0 0 0 − i
2 0

0 0 − i
2 0 0

0 i
2 0 0 0

i
2 0 0 0 0

0 0 0 0 0

















, T 2
L =

















0 0 i
2 0 0

0 0 0 − i
2 0

− i
2 0 0 0 0

0 i
2 0 0 0

0 0 0 0 0

















, T 3
L =

















0 − i
2 0 0 0

i
2 0 0 0 0

0 0 0 − i
2 0

0 0 i
2 0 0

0 0 0 0 0

















,

T 1
R =

















0 0 0 i
2 0

0 0 − i
2 0 0

0 i
2 0 0 0

− i
2 0 0 0 0

0 0 0 0 0

















, T 2
R =

















0 0 i
2 0 0

0 0 0 i
2 0

− i
2 0 0 0 0

0 − i
2 0 0 0

0 0 0 0 0

















, T 3
R =

















0 − i
2 0 0 0

i
2 0 0 0 0

0 0 0 i
2 0

0 0 − i
2 0 0

0 0 0 0 0

















,

T 1̂ =



















0 0 0 0 − i√
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
i√
2
0 0 0 0



















, T 2̂ =



















0 0 0 0 0

0 0 0 0 − i√
2

0 0 0 0 0

0 0 0 0 0

0 i√
2
0 0 0



















,

T 3̂ =



















0 0 0 0 0

0 0 0 0 0

0 0 0 0 − i√
2

0 0 0 0 0

0 0 i√
2
0 0



















, T 4̂ =



















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 − i√
2

0 0 0 i√
2

0



















. (A.1)

The generators TB act on the fundamental representation 5 of SO(5) as: TBψ5. One

can label the components of a 5 by their transformation properties under T 3
L and T 3

R. The
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following are eigenvectors of those generators:

v(−−) =
1√
2















i

1

0

0

0















, v(−+) =
1√
2















0

0

i

1

0















, (A.2)

v(+−) =
1√
2















0

0

−i
1

0















, v(++) =
1√
2















−i
1

0

0

0















, v(00) =















0

0

0

0

1















, (A.3)

with the subindices (i, j) labeling the T 3
L,R value, ± for ±1/2. Thus, a fermion ψ in the

fundamental representation can be written as:

ψ5 = ψi v(i) =
1√
2



















i(ψ−− − ψ++)

ψ−− + ψ++

i(ψ−+ − ψ+−)

ψ−+ + ψ+−)√
2ψ00



















. (A.4)

By using the 5× 5 matrix representation, the generators TB act on the adjoint repre-

sentation 10 of SO(5) as: TBψ10 = [TB, ψ10]. The matrices defined in eq. (A.1) provide

a basis for this representation. Other useful basis is one which can be labeled by the

T 3
L,R eigenvalues v(t3

L
,t3
R
). Since a 10 decomposes under SO(4) ≃ SU(2)L × SU(2)R as

10 ∼ (3,1)⊕ (1,3)⊕ (2, 2̄), we obtain:

(3,1) : v(±1,0) =
1√
2
(T 1
L ± iT 2

L) , v(0,0) = T 3
L ,

(1,3) : v(0,±1) =
1√
2
(T 1
R ± iT 2

R) , v(0,0) = T 3
R , (A.5)

(2,2) : v(−1/2,−1/2) =
1√
2
(T 1̂ − iT 2̂) , v(+1/2,+1/2) =

1√
2
(T 1̂ + iT 2̂) ,

v(−1/2,+1/2) =
1√
2
(T 3̂ − iT 4̂) , v(+1/2,−1/2) =

1√
2
(T 3̂ + iT 4̂) .

A field in the adjoint of SO(5) can be written as:

ψ10 = ψi v(i) (A.6)

Similar to the 10 representation, the 14 representation of SO(5) can be written in terms

of a 5 × 5 symmetric and traceless matrix. TB acts on the 14 as: TBψ14 = [TB, ψ14]. A

14 decomposes under SU(2)L × SU(2)R as 14 ∼ (3, 3̄) + (2, 2̄) + (1,1). One basis for this
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representation is

(3,3) : T abij =
1√
2
(δai δ

b
j + δaj δ

b
i ) , a < b , a, b = 1, . . . 4 ,

T aaij =
1√
2

(

δai δ
a
j − δa+1

i δa+1
j

)

, a = 1, 2, 3 ,

(2,2) : T âij =
1√
2

(

δai δ
5
j + δaj δ

5
i

)

, a = 1, . . . 4 ,

(1,1) : T 0
ij =

1

2
√
5
diag(1, 1, 1, 1,−4) . (A.7)

Using this basis one can define a new one labeled by the T 3
L,R eigenvalues: {v(t3

L
,t3
R
)},

(3,3) :

v(1,1) =
1

2
√
2
(2iT 12 + T 11 − T 22) , v(1,0) =

1

2
(−T 13 − iT 23 − iT 14 + T 24) ,

v(1,−1) =
1

2
√
2
(2iT 34 + T 33) , v(0,1) =

1

2
(−T 13 − iT 23 + iT 14 − T 24) ,

v(0,0) =
1

2
√
2
(−T 11 − T 22 + T 33) , v(0,−1) =

1

2
(T 13 − iT 23 + iT 14 + T 24) ,

v(−1,1) =
1

2
√
2
(−2iT 34 + T 33) , v(−1,0) =

1

2
(T 13 − iT 23 − iT 14 − T 24) ,

v(−1,−1) =
1

2
√
2
(−2iT 12 + T 11 − T 22) ,

(2,2) :

v(+1/2,+1/2) =
1√
2
(−T 1̂ − iT 2̂) , v(+1/2,−1/2) =

1√
2
(T 3̂ + iT 4̂) ,

v(−1/2,+1/2) =
1√
2
(T 3̂ − iT 4̂) , v(−1/2,−1/2) =

1√
2
(T 1̂ − iT 2̂) ,

(1,1) :

v′(0,0) = T 0 .

A field in the 14 representation can be written as

ψ14 = ψi v(i) . (A.8)

B Bosonic mass matrices

The charged (squared) mass matrix (in the basis {w+
L , A

+
L , A

+
R, A

+̂} versus

{w−
L , A

−
L , A

−
R, A

−̂}, where w±
L = (w1

L ∓ i w2
L)/
√
2, etc.), is

M2
C =















1

2
g20f

2
Ω − 1

2
g0gρf

2
Ω 0 0

− 1

2
g0gρf

2
Ω

1

4
g2ρ

(

2f2Ω + f21 s
2
h

)

− 1

4
g2ρf

2
1 s

2
h

g2ρf
2

1
shch

2
√
2

0 − 1

4
g2ρf

2
1 s

2
h

1

4
g2ρ

(

2f2Ω + f21 s
2
h

)

− g
2

ρf
2

1
shch

2
√
2

0
g2ρf

2

1
shch

2
√
2

− g
2

ρf
2

1
shch

2
√
2

1

2
g2ρ

(

f2Ω + f21 c
2
h

)















, (B.1)
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and the neutral (squared) mass matrix (in the basis {w3
L, b, A

3
L, A

3
R, A

3̂, A4̂, X}) is































g20
2 f

2
Ω 0 −g0gρ

2 f2Ω 0 0 0 0

0
g20g

2
x

(

f2Ω+f
2
ΩX

)

2(g20+g2x)
0 − g0gxgρf2Ω

2
√
g20+g

2
x

0 0 −g0gxgXf
2
ΩX

2
√
g20+g

2
x

−g0gρ
2 f2Ω 0

g2ρ
2

(

f2Ω +
f21 s

2
h

2

)

−g2ρ
4 f

2
1 s

2
h

g2ρf
2
1 shch

2
√
2

0 0

0 − g0gxgρf2Ω
2
√
g20+g

2
x

−g2ρ
4 f

2
1 s

2
h

g2ρ
2

(

f2Ω +
f21 s

2
h

2

)

−g2ρf
2
1 shch

2
√
2

0 0

0 0
g2ρf

2
1 shch

2
√
2

−g2ρf
2
1 shch

2
√
2

g2ρ
2

(

f2Ω + f21 c
2
h

)

0 0

0 0 0 0 0
g2ρ
2

(

f2Ω + f21
)

0

0 −g0gxgXf
2
ΩX

2
√
g20+g

2
x

0 0 0 0
g2X
2 f

2
ΩX































.

C Correlators

In this appendix we express the fermionic correlators of all the models in the SO(4) sym-

metric phase in terms of the following general functions.

AL(m1,m2,m3,m4,∆) =∆2
[

m2
1m

2
2 +m2

1m
2
4 +m2

2m
2
3

− p2(m2
1 +m2

2 +m2
3 +m2

4) + p4
]

;

AR(m1,m2,m3,m4,∆) =∆2
[

m2
1m

2
2 +m2

2m
2
3 − p2(m2

1 +m2
2 +m2

3 +m2
4) + p4

]

;

AM (m1,m2,m3,m4,∆1,∆2) =∆1∆2 m1 m2 m4(m
2
3 − p2) ;

B(m1,m2,m3,m4,m5) =m
2
1m

2
2m

2
3 − p2(m2

1m
2
2 +m2

1m
2
3 +m2

2m
2
3 +m2

2m
2
5 +m2

3m
2
4)

+ p4(m2
1 +m2

2 +m2
3 +m2

4 +m2
5)− p6 . (C.1)

In the following expressions we use the notation yT = yu, yB = yd, myT = myu ,

myB = myd , ∆T = ∆u and ∆B = ∆b [where the Lagrangian parameters were defined for

each model in section 3] to emphasize the role of the third generation.

C.1 MCHM5

Π̂qu(1) =
AL(mT ,0,myT+yT ,0,∆qu )

B(mQu ,mT ,0,myT+yT ,0)
, Π̂qu(4) =

AL(mT ,0,myT ,0,∆qu )

B(mQu ,mT ,0,myT ,0)
,

Π̂qd(1) =
AL(mB ,0,myB+yB ,0,∆qd )

B(m
Qd
,mB ,0,myB+yB ,0)

, Π̂qd(4) =
AL(mB ,0,myB ,0,∆qd )

B(m
Qd
,mB ,0,myB ,0)

,

Π̂u(1) =
AR(mQu ,0,myT+yT ,0,∆t)

B(mQu ,mT ,0,myT+yT ,0)
, Π̂u(4) =

AR(mQu ,0,myT ,0,∆t)

B(mQu ,mT ,0,myT ,0)
,

Π̂d(1) =
AR(mQd ,0,myB+yB ,0,∆b)

B(m
Qd
,mB ,0,myB+yB ,0)

, Π̂d(4) =
AR(mQd ,0,myB ,0,∆b)

B(m
Qd
,mB ,0,myB ,0)

,

M̂u(1) =
AM (mQu ,mT ,0,myT+yT ,∆qu ,∆t)

B(mQu ,mT ,0,myT+yT ,0)
, M̂u(4) =

AM (mQu ,mT ,0,myT ,∆qu ,∆t)

B(mQu ,mT ,0,myT ,0)
,

M̂d(1) =
AM (m

Qd
,mB ,0,myB+yB ,∆qd ,∆b)

B(m
Qd
,mB ,0,myB+yB ,0)

, M̂d(4) =
AM (m

Qd
,mB ,0,myB ,∆qd ,∆b)

B(m
Qd
,mB ,0,myB ,0)

,
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C.2 MCHM10

Π̂q(4) =
AL(mT ,mB ,myT+yT /2,myB+yB/2,∆q)

B(mQ,mT ,mB ,myT+yT /2,myB+yB/2)
, Π̂q(6) =

AL(mT ,mB ,myT ,myB ,∆q)

B(mQ,mT ,mB ,myT ,myB ) ,

Π̂u(4) =
AR(mQ,mB ,myT+yT /2,myB+yB/2,∆t)

B(mQ,mT ,mB ,myT+yT /2,myB+yB/2)
, Π̂u(6) =

AR(mQ,mB ,myT ,myB ,∆t)

B(mQ,mT ,mB ,myT ,myB ) ,

Π̂d(4) =
AR(mQ,mT ,myB+yB/2,myT+yT /2,∆b)

B(mQ,mT ,mB ,myT+yT /2,myB+yB/2)
, Π̂d(6) =

AR(mQ,mT ,myB ,myT ,∆b)

B(mQ,mT ,mB ,myT ,myB ) ,

M̂u(4) =
AM (mQ,mT ,mB ,myT+yT /2,∆q ,∆t)

B(mQ,mT ,mB ,myT+yT /2,myB+yB/2)
, M̂u(6) =

AM (mQ,mT ,mB ,myT ,∆q ,∆t)

B(mQ,mT ,mB ,myT ,myB ) ,

M̂d(4) =
AM (mQ,mB ,mT ,myB+yB/2,∆q ,∆b)

B(mQ,mT ,mB ,myT+yT /2,myB+yB/2)
, M̂d(6) =

AM (mQ,mB ,mT ,myB ,∆q ,∆b)

B(mQ,mT ,mB ,myT ,myB ) .

C.3 MCHM10−5−10

Π̂q(4) =
AL(mT ,mB ,yT /

√
2,myB+yB/2,∆q)

B(mQ,mT ,mB ,yT /
√
2,myB+yB/2)

, Π̂q(6) =
AL(0,mB ,0,myB ,∆q)

B(mQ,0,mB ,0,myB ) ,

Π̂u(4) =
AR(mQ,mB ,yT /

√
2,myB+yB/2,∆t)

B(mQ,mT ,mB ,yT /
√
2,myB+yB/2)

, Π̂u(1) = AR(0,0,0,0,∆t)
B(0,mT ,0,0,0)

,

Π̂d(4) =
AR(mQ,mT ,myB+yB/2,yT /

√
2,∆b)

B(mQ,mT ,mB ,yT /
√
2,myB+yB/2)

, Π̂d(6) =
AR(0,mQ,0,myB ,∆b)

B(mQ,0,mB ,0,myB
,

M̂u(4) =
AM (mQ,mT ,mB ,yT /

√
2,myB ,∆q ,∆t)

B(mQ,mT ,mB ,yT /
√
2,myB+yB/2)

,

M̂d(4) =
AM (mQ,mB ,mT ,myB+yB/2,∆q ,∆b)

B(mQ,mT ,mB ,yT /
√
2,myB+yB/2)

, M̂d(6) =
AM (mQ,mB ,0,myB ,∆q ,∆b)

B(mQ,0,mB ,0,myB ) .

C.4 MCHM5−5−10

Π̂q(4) =
AL(mT ,mB ,myT ,yB/

√
2,∆q)

B(mQ,mT ,mB ,myT ,yB/
√
2)
, Π̂q(1) =

AL(mT ,0,myT+yT ,0,∆q)

B(mQ,mT ,0,myT+yT ,0)
,

Π̂u(4) =
AR(mQ,mB ,myT ,yB/

√
2,∆t)

B(mQ,mT ,mB ,myT ,yB/
√
2)
, Π̂u(1) =

AR(mQ,0,myT+yT ,0,∆t)

B(mQ,mT ,0,myT+yT ,0)
,

Π̂d(4) =
AR(mQ,mT ,yB/

√
2,myT ,∆b)

B(mQ,mT ,mB ,myT ,yB/
√
2)
, Π̂d(6) = AR(0,0,0,0,∆b)

B(0,0,mB ,0,0
,

M̂u(4) =
AM (mQ,mT ,mB ,myT ,∆q ,∆t)

B(mQ,mT ,mB ,myT ,yB/
√
2)
, M̂u(1) =

AM (mQ,mT ,0,myT+yT ,∆q ,∆t)

B(mQ,mT ,0,myT+yT ,0)
,

M̂d(4) =
AM (mQ,mB ,mT ,yB/

√
2,∆q ,∆b)

B(mQ,mT ,mB ,myT ,yB/
√
2)

, .

C.5 MCHM5−10−10

Π̂q(4) =
AL(mT ,mB ,yT /

√
2,yB/

√
2,∆q)

B(mQ,mT ,mB ,yT /
√
2,yB/

√
2)
, Π̂q(1) =

AL(0,0,0,0,∆q)
B(mQ,0,0,0,0)

,

Π̂u(4) =
AR(mQ,mB ,yT /

√
2,yB/

√
2,∆t)

B(mQ,mT ,mB ,yT /
√
2,yB/

√
2)
, Π̂u(6) = AR(0,0,0,0,∆t)

B(0,mT ,0,0,0)
,

Π̂d(4) =
AR(mQ,mT ,yB/

√
2,yT /

√
2,∆b)

B(mQ,mT ,mB ,yT /
√
2,yB/

√
2)
, Π̂d(6) = AR(0,0,0,0,∆b)

B(0,0,mB ,0,0)
,

M̂u(4) =
AM (mQ,mT ,mB ,yT /

√
2,∆q ,∆t)

B(mQ,mT ,mB ,yT /
√
2,yB/

√
2)
,

M̂d(4) =
AM (mQ,mB ,mT ,yB/

√
2,∆q ,∆b)

B(mQ,mT ,mB ,yT /
√
2,yB/

√
2)
, .
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C.6 MCHM14−1−10

Π̂q(9) =
AL(0,0,0,0,∆q)
B(mQ,0,0,0,0)

, Π̂q(4) =
AL(0,mB ,0,yB/2,∆q)
B(mQ,0,mB ,0,yB/2)

,

Π̂q(1) =
AL(mT ,0,yT

√
4/5,0,∆q)

B(mQ,mT ,0,yT
√

4/5,0)
,

Π̂u(1) =
AR(mQ,0,yT

√
4/5,0,∆t)

B(mQ,mT ,0,yT
√

4/5,0)
,

Π̂d(4) =
AR(mQ,0,yB/2,0,∆b)
B(mQ,0,mB ,0,yB/2)

, Π̂d(6) = AR(0,0,0,0,∆b)
B(0,mB ,0,0,0)

,

M̂u(4) = −AM (mQ,mT ,0,yT
√

4/5,∆q ,∆t)

B(mQ,mT ,0,yT
√

4/5,0)
,

M̂d(4) = −iAM (mQ,mB ,0,yB/2,∆q ,∆b)
B(mQ,0,mB ,0,yB/2)

,

C.7 MCHM14−14−10

Here we use the notation ȳT = yT + ỹT that includes the two Yukawa structures displayed

in eqs. (3.36) and (3.37), which enters in the singlet terms below:

Π̂q(9) =
AL(mT ,0,myT ,0,∆q)

B(mQ,mT ,0,myT ,0)
, Π̂q(4) =

AL(mT ,mB ,myT+yT /2,yB/2,∆q)

B(mQ,mT ,mB ,myT+yT /2,yB/2)
,

Π̂q(1) =
AL(mT ,0,myT+ȳT 4/5,0,∆q)

B(mQ,mT ,0,myT+ȳT 4/5,0)
,

Π̂u(9) =
AR(mQ,0,myT ,0,∆t)

B(mQ,mT ,0,myT ,0)
, Π̂u(4) =

AR(mQ,mB ,myT+yT /2,yB/2,∆t)

B(mQ,mT ,mB ,myT+yT /2,yB/2)
,

Π̂u(1) =
AR(mQ,0,myT+ȳT 4/5,0,∆t)

B(mQ,mT ,0,myT+ȳT 4/5,0)
,

Π̂d(4) =
AR(mQ,mT ,yB/2,myT+yT /2,∆b)

B(mQ,mT ,mB ,myT+yT /2,yB/2)
, Π̂d(6) =

AR(mQ,0,0,0,∆b)
B(mQ,mB ,0,0,0)

,

M̂u(9) =
AM (mQ,mT ,0,myT ,∆q ,∆t)

B(mQ,mT ,0,myT ,0)
, M̂u(4) =

AM (mQ,mT ,mB ,myT+yT /2,∆q ,∆t)

B(mQ,mT ,mB ,myT+yT /2,yB/2)
,

M̂u(1) =
AM (mQ,mT ,0,myT+ȳT 4/5,∆q ,∆t)

B(mQ,mT ,0,myT+ȳT 4/5,0)
,

M̂d(4) = −i AM (mQ,mB ,mT ,yB/2,∆q ,∆b)
B(mQ,mT ,mB ,myT+yT /2,yB/2)

,

D Loop-level processes

We collect here the expressions for the processes h→ gg, h→ γγ and h→ Zγ. We focus

on the amplitudes only, since the decay rates are obtained by rescaling the SM rates. This

allows one to include the state of the art QCD corrections, under the assumption that the

K-factors for the SM and new physics diagrams are common. The full details for the SM

expressions can be found, for instance, in [58].

For the h→ gg and h→ γγ amplitudes the relevant loop functions are

A1/2(τ) = 2[τ + (τ − 1)f(τ)]τ−2 , (D.1)

A1(τ) = −[2τ2 + 3τ + 3(2τ − 1)f(τ)]τ−2 , (D.2)
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where

f(τ) =















arcsin2
√
τ τ ≤ 1

−1

4

[

log
1 +
√
1− τ−1

1−
√
1− τ−1

− iπ
]2

τ > 1
. (D.3)

We obtain our amplitude for the gluon fusion process from

A(h→ gg) ∝ vSM
∑

ψ=t,b







4

3



tr(YψM
−1
ψ )−

y
(0)
ψ

m
(0)
ψ



+
y
(0)
ψ

m
(0)
ψ

A1/2





m2
h

4m
(0) 2
ψ











, (D.4)

where y
(0)
ψ and m

(0)
ψ are the Yukawa coupling and mass of the lightest state (identified with

the SM fermion) in the corresponding tower, obtained by numerical diagonalization of the

full Yukawa and mass matrices, Yψ and Mψ, respectively. The traces can be read for each

model from table. 1. The SM amplitude, in the same normalization as eq. (D.4), reads

A(h→ gg)SM ∝ A1/2(m
2
h/4m

2
t ) +A1/2(m

2
h/4m

2
b).

For the diphoton channel, we use

A(h→ γγ)

vSM
∝ −7

[

cot(v/fh)

fh
− g2W vSM

4m2
W

]

+
g2W vSM
4m2

W

A1(m
2
h/4m

2
W )

+
∑

ψ=t,b

NcQ
2
ψ







4

3



tr(YψM
−1
ψ )−

y
(0)
ψ

m
(0)
ψ



+
y
(0)
ψ

m
(0)
ψ

A1/2





m2
h

4m
(0) 2
ψ











, (D.5)

where for the W -tower we used that the analogue of the fermion trace is
1
2 d log(detM

2
C)/dv = cot(v/fh)/fh withM2

C the squared mass matrix in the charged sector

[see eq. (B.1) of appendix B]. The W -mass squared, m2
W , corresponds to the lightest eigen-

value of M2
C , and the coupling g2W is defined as the diagonal entry corresponding to this

lightest state in the matrix G2
C = (2/vSM) dM2

C/dv, after rotating to the mass eigenbasis.

Both mW and g2W are obtained numerically. The SM amplitude in the normalization of

eq. (D.5) is A(h→ γγ)SM ∝ A1(m
2
h/4m

2
W ) +NcQ

2
tA1/2(m

2
h/4m

2
t ) +NcQ

2
bA1/2(m

2
h/4m

2
b).

The new feature in the h→ Zγ process compared to the previous ones [59] is that there

can be two different particle species running in the loop (since the Z vertex corresponds

to a broken gauge symmetry). For the fermionic contributions we use the general formulas

presented in appendix F of ref. [37], which allow to include such “non-diagonal” contribu-

tions. These expressions are written in terms of the Passarino-Veltman 1-loop functions

and we use the package LoopTools [60] to evaluate them numerically.

For the charged W and heavy partner loops in h → Zγ there is no analogue general

formula for the non-diagonal contributions. Since we expect such effects to be negligible

due to the large masses involved, we are satisfied with including only the diagonal gauge

effects, which are completely dominated by the SM-W loop itself (but the result is different

from the SM one due to the modified couplings). The diagonal terms can be written in

terms of

A1(τ, λ) = 4

(

3− s2W
c2W

)

I2(τ, λ) +

[(

1 +
2

τ

)

s2W
c2W
−
(

5 +
2

τ

)]

I1(τ, λ) , (D.6)
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where

I1(τ, λ) =
τλ

2(τ − λ) +
τ2λ2

2(τ − λ)2
[

f(τ−1)− f(λ−1)
]

+
τ2λ

(τ − λ)2
[

g(τ−1)− g(λ−1)
]

, (D.7)

I2(τ, λ) = − τλ

2(τ − λ)
[

f(τ−1)− f(λ−1)
]

, (D.8)

with f(τ) as defined in eq. (D.3) and

g(τ) =



















√
τ−1 − 1 arcsin2

√
τ τ ≤ 1

√
1− τ−1

2

[

log
1 +
√
1− τ−1

1−
√
1− τ−1

− iπ
]

τ > 1
. (D.9)

The expression for the h → Zγ amplitude, keeping only the fermionic and the W contri-

butions, is:

A(h→ Zγ)

vSM
∝

(

g2W vSM
4m2

W

)

gW+W−Z ×A1(m
2
h/4m

2
W ,m

2
Z/4m

2
W )

+
∑

ψ=tL,tR,bL,bR

∑

ij

4NcQψλ
h
ψ,ijλ

Z
ψ,jiF (mi,mj ,mh,mZ) , (D.10)

where g2W was defined above and gW+W−Z is the coupling of the Z to a W+W− pair in

the given model (in the SM one has gW+W−Z = g cW ). It is obtained by projecting the

appropriate mass eigenstates after diagonalization of the full system, and therefore includes

the effects of mixing with the heavy spin-1 resonances. For the fermionic contribution: λhψ,ij
and λZψ,ji are the couplings to the Higgs and Z of the fermion mass eigenstates i and j

(see conventions in eq. (F.1) of ref. [37]), with masses mi and mj . These are obtained

numerically by writing the corresponding coupling matrices in the mass eigenbasis. The

function F (mi,mj ,mh,mZ) is given in eq. (F.3) of ref. [37], and in the limit m1 = m2 ≡ m,

reduces to (1/2m)A1/2(m
2
h/4m

2,m2
Z/4m

2), where A1/2(τ, λ) is the standard fermionic loop

function for this process (see e.g. [58]):

A1/2(τ, λ) = I1(τ, λ)− I2(τ, λ) . (D.11)

Using the same normalization as above, we have A(h → Zγ)SM ∝
gcWA1(m

2
h/4m

2
W ,m

2
Z/4m

2
W ) +

∑

i=t,b 2NcQi(g/cW )(12 − 2Qis
2
W )A1/2(m

2
h/4m

2
i ,m

2
Z/4m

2
i ).
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