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MINIMAL CONVERGENCE SPACES
BY

D. C. KENT AND G. D. RICHARDSON

Abstract. We are primarily concerned with minimal P convergence spaces, where
P is one of the following convergence space properties: HausdorfT, T2, A-regular,
A-Urysohn, and first countable, A an infinite cardinal number. Our conclusions usually
resemble the corresponding topological results, but with some deviations ; for instance,
a minimal HausdorfT convergence space is always compact, whereas a countable
minimal regular convergence space need not be compact.

Introduction. Minimal topological spaces have been extensively studied by
various authors (see references). We now extend this study to convergence spaces.
The reader is asked to refer to [9] for basic definitions and terminology concerning
convergence spaces. However, a brief summary will be given here.

A convergence structure qona set S is defined to be a function from the set F(S)
of all filters on S into the set of all subsets of S, satisfying the following conditions :

(1) x eq(x), all xe S, where x is the principal ultrafilter containing {x};
(2) if & and <S are in F(S) and ¿F^ <S, then q(^)<=-q(^)\
(3) if x e q(&), then x e q(& n x).

The pair (S, q) is called a convergence space. If x e q(&r), then we say that &
q-converges to x. The filter ^q(x) obtained by intersecting all filters which ^-converge
to x is called the q-neighborhoodfilter at x. lf^q(x) ^-converges to x for each x in S,
then q is called a pretopology, and (S, q) a pretopological space. A convergence
structure q is called a pseudo-topology if J*" ̂ -converges to x whenever each ultra-
filter finer than 3F ^-converges to x. The pair (S, q) is called a pseudo-topological
space.

Let C(S) be the set of all convergence structures on S. The set C(S) is partially
ordered in the following way: p^q provided q(^)cp(^) for each &■ in F(S). If
A is a subset of (S, q), then x is in Tq(A), the ^-closure of A, if there exists an ultra-
filter containing A which ^-converges to x.

A convergence space is said to be minimal relative to property P if the space has
property P and every strictly coarser convergence structure on the same set fails
to have this property. A space is said to be P-closed if it has property P and is
closed in every extension space that has property P. We have considered the
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following choices for P: Hausdorff, regular, Urysohn, and first countable. In all
cases simple characterizations are obtained for minimal P and P-closed convergence
spaces ; in most cases the characterizations are primitive in the sense that property
P is not assumed as a precondition. Our conclusions usually resemble the corre-
sponding topological results, but with some interesting deviations ; for instance, a
minimal Hausdorff convergence space is always compact (contrary to the topo-
logical case), whereas a countable minimal regular convergence space need not be
compact (also contrary to the topological case).

For convergence spaces it is necessary to distinguish between Hausdorff (each
filter converges to at most one point) and T2 (distinct points have disjoint neighbor-
hoods), and we consider both properties but emphasize the former. Also, because
the closure operator is not idempotent for most convergence spaces, the usual
notion of regularity (see [3], [4], and [5]) seems rather inadequate; for this reason
we are introducing a more general notion called A-regularity (A an infinite cardinal
number) which reduces to ordinary regularity when A = X0.

1. Minimal Hausdorff (T2) convergence spaces. The term space, unless otherwise
indicated, will mean convergence space. If F and 'S are filters on a set S, then
F s'S denotes the coarsest filter finer than F and 'S, if such a filter exists; other-
wise we write FvS= 0, and the filters are said to be disjoint. Thus a space (S, q)
is T2 if and only if f^ix) v "F~qiy) = 0 for every pair x, y of distinct points in S. A
point x is an adherent point of a filter if some finer filter converges to x; we denote
by aqiF) the set of all adherent points of F relative to the convergence structure q.

Theorem 1.1. The following statements about a space are equivalent:
(i) iS, q) is minimal Hausdorff.

(ii) {x} = a„iF) iff F q-converges to x.
(iii) (S, q) is a compact pseudo-topological Hausdorff space.

Proof, (i) implies (ii). If {x} = aq(F) and F fails to ^-converge to x, then define
the convergence structure p on 5 as follows : ¿P p-converges toxiffJF>.'Sc\F where
'S ^-converges to x; ¿F p-converges to y, y^x,iff Jtf ^-converges to y. But p is
Hausdorff and strictly coarser than q, a contradiction. Hence F ^-converges to x.

(ii) implies (iii). If F is an ultrafilter such that aq(F)= 0, then aq(F n x) — {x}.
Hence F ^-converges to x, a contradiction, and it follows that (S, q) is compact.
If each ultrafilter finer than 'S ^-converges to x, then {x} = aq('S), and by (ii), 'S
ç-converges to x. Thus (S, q) is a pseudo-topology.

(iii) implies (i). If p is a Hausdorff convergence structure coarser than q and
^"p-converges to x, then {x) = aq(F). Let ^ be an ultrafilter finer than F; then
'S ¿7-converges to x. Thus F ^-converges to x, and p=q.

Theorem 1.2. The following are equivalent:
(i) (S, q) is minimal T2.

(ii) iS, q) is T2 and {x} = aMq)iF) implies that F q-converges to x.
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(iii) (S, q) is a compact T2 pretopological space.
(iv) (a) For each ultrafilter F there exists at most one x in S with x^T(F).

(b) {x} = aqLF) implies that ¡F q-converges to x.

Note. T(F) denotes the closure of !F, i.e. the filter generated by closures of
members of IF.

Proof. The arguments for (i) implies (ii) and (ii) implies (iii) are similar to those
of the preceding theorem.

(iii) implies (iv). Let F be an ultrafilter and suppose x ^ TLF) and y g: T(F).
Then Fwfq(x)^0. Hence F^-Tq(x); similarly, F^"Tq(y), and we have
irq(x)yirq(y)^ 0, a contradiction. Part (b) follows from Theorem 1.1.

(iv) implies (i). If -T¿x) V -Tq(y) Ï 0, then there is an ultrafilter ^ ^ r„(x) v ^(y).
Hence x^T(^) and j)^r(^), a contradiction. Thus q is T2. If p^q wherep is T2,
then let F p-converge to x. Then {x}=aq(F n x) and consequently F ^-converges
to x, and p=q.

Corollary 1.3. A Hausdorff topological space is minimal HausdorJf(T2) iff it is
compact.

Here, as always, we use "minimal" in the convergence space sense unless
otherwise indicated.

Proposition 1.4. Let (S, q) be a minimal Hausdorff (T2) space. Then a subset A
of S is closed iff the subspace (A, qA) is minimal Hausdorff (T2). Moreover, only the
Hausdorff (T2) property is needed for the sufficiency.

Corollary 1.5. A minimal Hausdorff (T2) space is Hausdorff CT2)-closed.

Theorem 1.6. A Hausdorff(T2) space is Hausdorff (T2)-closed iff'(S,q)((S,-rr(q)))
is compact.

Proof. If (S, q) is Hausdorff-closed and not compact, then there exists a filter IF
with aq(F) = 0. Let a be an element not in S and F= S \J {a}. Define a convergence
structurep on Fas follows: 9/»-converges to a iff ^^F n à; 9y>converges to x
in S iff 9 g-converges to x. But p is Hausdorff and r(,S) = T, a contradiction. Thus
(S, q) is compact.

The converse is clear. The T2 case is handled similarly.
We now given an example of a minimal Hausdorff space which is not T2-closed.
Example 1.7. Let S be any infinite set, F some free ultrafilter on S. We define

a Hausdorff pseudo-topology q by designating convergence on ultrafilters as
follows: for each x, x ¿/-converges only to x; if 'S is a free ultrafilter distinct from
F:, then 9 zz-converges to a fixed element x0; F ^-converges to another fixed
element y0- Then q is a compact Hausdorff pseudo-topology, but F^Í^^Xq)
V ̂ ¡(yo), and so q is not T2.

Theorem 1.8. Let (S, q) = F] {(S, %)}, where i ranges through some index set.
Then the product space (S, q) is minimal Hausdorff (minimal T2) iff each (Su qt) is
minimal Hausdorff (minimal T2).
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Proof. One can show by simple arguments that (5, q) is Hausdorff (compact,
pseudo-topological, pretopological) iff each (5¡, qt) is Hausdorff (compact, pseudo-
topological, pretopological). The desired conclusions thus follow from Theorems
1.1 and 1.2.

Proposition 1.9. Let f: (5e, q) -* (F, p) be a continuous bijection with iT,p)
Hausdorff and (5, q) minimal Hausdorff. Then f is an isomorphism. The proposition
is no longer true if minimal Hausdorff is replaced by compact Hausdorff.

Proof. Let F p-converge to y in T. Then we easily see that there is x in S such
that {x} = aqif~1iF)); hence/"\F) ^-converges to x. Thus/is an isomorphism.
The second assertion follows from the next example.

Example 1.10. Let S be the closed unit interval on the real line and let q be
defined as follows: Fr ^-converges to x iff F^^S n x, where 'S is an ultrafilter
which converges to x in the usual sense. We see that q is compact Hausdorff and
strictly finer than the usual topology p on S. The identity mapping is a continuous
bijection from (S, q) onto (S1, p), but it is not an isomorphism.

The next result is a consequence of Theorem 1.1 and Proposition 1.9.

Corollary 1.11 (Theorem 7, p. 284 of [5]). Let f: iS, q) -+ (F, p) be a con-
tinuous bijection with (F, p) Hausdorff and (5, q) a compact pretopology. Then f is
an isomorphism.

Proposition 1.12. Let iS,q) be any Hausdorff space. Then there is a minimal
Hausdorff convergence structure on S coarser than q.

Proof. Let x be a fixed element of S. Define p as follows : #? p-converges to x
iff either JF ^-converges to x or J^^F n x, where F is a <7-nonconvergent ultra-
filter ; Ff p-converges to y, y # x, iff ̂ f ^-converges to y. Clearly (S, p) is Hausdorff.
Next, define r as follows : 'S r-converges to z in S iff, for each ultrafilter Jf^S,^
p-converges to z. Note that risa compact Hausdorff pseudo-topology and that r ^ q.

That the preceding proposition is not valid for topological spaces is shown in
Theorem 21 of [7]. More surprisingly, the proposition is false even for convergence
spaces if "Hausdorff" is replaced by "T2". An argument similar to that used by
Herrlich in Theorem 21 of [7] can be used to produce a counterexample.

2. Minimal regular spaces. Let (5, q) be a Hausdorff convergence space. In all
of the definitions in this and succeeding sections it will be assumed that the under-
lying space is Hausdorff; the spaces are not assumed to be T2 unless so indicated.

In §§2 and 3 we will use A to represent an arbitrary cardinal number, and A* to
be the smallest ordinal number of cardinality A. One departure from this notation
is the use of co as the smallest ordinal of cardinality No-

If ^ is any filter on S and a an ordinal number greater than 1, we define Y"iF)
recursively to be the closure of Y"~\F), if a—I exists, or otherwise
H {T"iF) : p<o). If there is a possibility of confusion, we write Y\iF) to empha-
size that the tr-closure is taken relative to the convergence structure q.
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Definition 2.1. A space (S, q) is X-regular if, for all a < A*, T"(F) converges to
x whenever IF converges to x. A T2 A-regular space is said to be A-T3. An ir-
regular (X0-T3) space is simply referred to as regular (T3).

This definition of regularity agrees with the one which was introduced by Fischer
[5] in 1959. An apparently more complicated notion of regularity which was
introduced by Cook and Fischer [4] was later shown by Biesterfeldt [3] to be equiv-
alent to Fischer's original definition. Its subsequent adoption by various authors
justifies our calling it the standard definition of regularity for convergence spaces,
although it is by no means the only possible one; for a discussion of some alterna-
tives, see [6].

For each filter F on S there is a smallest ordinal y such that Yy + 1(F) = YyLF);
A A.

we write YyLF) = F. A filter F is said to be closed if it coincides with F.
Definition 2.2. A space is strongly regular if F converges to x whenever F

converges to x. A T2 strongly regular space is said to be strongly T3.
In other words, a space is strongly regular iff it is A-regular for all A. For topo-

logical spaces, the various forms of regularity and the T3 property introduced in
Definitions 2.1 and 2.2 are equivalent to each other and to the usual topological
notion of regularity.

In the theorems that follow, we shall prove only those statements pertaining to
regularity; the corresponding T3 statements, when known, are stated without proof.

Lemma 2.3. Let (S, q) be X-regular, and suppose that F q-converges to x. Then
{x} = aq(Y*(F)).

Proof. If y^x and 'S ¿/-converges to y, then by the A-regularity of q, Y(^S)
./-converges to y, and so there is G in 'S such that x $ Y(G). Thus for each a<X*,
there is Aa e Ve'(F) such that G r\ Aa= 0, and it follows that A = (J Aa e YK'(F)
and A n G= 0. Hence {x} = aq(YK'(F)).

Theorem 2.4. The following statements about a convergence space (S, q) are
equivalent:

(i) (S, q) is minimal X-regular.
(ii) {x} = aq(YÁ'LF)) iff & q-converges to x.

Proof, (i) implies (ii). Let {x} = aq(YÁ'(F)) and suppose that F does not q-
converge to x. Let/z be defined as follows: Ft° ̂ -converges to x iff F? ^Yaq(F) n 'S,
where 9 ¿/-converges to x and a < A* ; Jc° /z-converges to y, yi= x, iff ¿F ¿/-converges
to y. We will obtain a contradiction by showing that p is A-regular. Let F? p-
converge to x. If p < A*, then Y%(FP) ̂ Yaq + D(&) n YBq(9) and thus YPP(FC) /z-converges
to x. Let Jt° /z-converge to y. Then Y%(FTj = Ypq(F?) or Yp(jf) = Yßq(Jf) n x; since
Yp(Jt) ¿/-converges to y by the A-regularity of q, it remains to show that x% Yp(Jf).
Suppose the contrary, and let y be the least ordinal such that x^Yyp(Jf). If y— 1
exists, then Yl-1(3^) = Y\-1(3^'), and this filter ¿/-converges to y. Since x%Yyq(3^),
there is a set A e Yl~\s^) such that each ultrafilter 'S which ¿/-converges to x fails
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to contain A. Also, {x} = aq(YK'iF)) implies that rj-1(Jf) contains a set F which
is disjoint from some set in YK\F). Thus no filter which p-converges to x can
contain A n B, and x i TÍA n B)e Yyp(3^), a contradiction. If y is a limit ordinal,
then for each a <y there is a set Aa e Fj(^f) such that x $ Aa. Hence x $ (J Aa
e Yrp(Jt), a contradiction. Consequently, F ^-converges to x.

The converse follows from Lemma 2.3.
(ii) implies (i). First we check that (S, q) is A-regular. Let F ^-converge to x and

a<A*. Then {x} = aq(YÁ-'(F)) = aq(Ya + "'(F)), and hence Y"(F) ^--converges to x.
Next, let p be A-regular with p^q, and let J^p-converge to x. By Lemma 2.3, it
follows that {x}=ap(Yp'(F)). Thus {x} = aq(Y Kq(F) n x) = aq(T%(F n x)) and we
have that !F ^-converges to x. Consequently, p=q.

Theorem 2.4*. The following statements about a T2 convergence space (S, q) are
equivalent:

(i) (S, q) is a minimal A-T3.
(ii) {x} = aMqy(Y"'(F)) iff F q-converges to x.

The first corollary is obtained by taking A = X0, the second by taking A to
be any cardinal number greater than the cardinality of the least ordinal y such
that Y\F) = V+1iF) for all filters F on S; for such a A we have YX(F)=&.

Corollary 2.5. The following statements about a (T2) convergence space iS,q)
are equivalent:

if) iS, q) is minimal regular iminimal T3).
(ii) {x} = aq(Y°>(F)) ({x} = aMq)(Ya>(F))) iffP q-converges to x.

Corollary 2.6. The following statements about a (T2) convergence space are
equivalent :

(i) (S, q) is minimal strongly regular (minimal strongly T3).
(ii) {x} = aq(F)({x} = an(q)(F)) iff F q-converges to x.

We have from Theorems 2.4 and 2.4* that if (S, q) is A-regular (A-T3), then it is
minimal A-regular (minimal A-T3) iff {x} = aq(Yx'(F)) ({x} = aMq)(Yh'(F))) implies
that F zjr-converges to x.

Theorem 2.7. A compact X-regular (A-T3) pseudo-topological space is minimal
X-regular (minimal A-T3).

Proof. If {x} = aq(Y*(F)) and if 'S is an ultrafilter finer than F, then á? q-
converges to x. Since q is a pseudo-topology, F ^-converges to x. Hence the result
follows from our preceding remarks.

An example in §3 shows that there are noncompact pseudo-topological spaces of
any infinite cardinality which are minimal A-regular for all A. The next theorem is
also a consequence of the above remarks.

Theorem 2.8. A minimal X-regular (minimal A-T3) space is compact iff, for each
ultrafilter F, there is x in S such that {x} = aq(YK'(F)) ({x} = am)(Yx'ÇF))).
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A pretopological space is minimal A-regular iff it is minimal A-T3.

Proposition 2.9. Let (S, q) be minimal X-regular. A subset A of S is closed iff the
subspace iA, qA) is minimal X-regular. Moreover, only X-regularity is needed for
sufficiency. The proposition remains valid if" X-regular" is replaced by "A-T3".

Theorem 2.10. A X-regular (A-T3) space iS,q) is X-regular-closed iX-T3-closed)
iff^airKXF))=é 0 iaMq)irx'i^))¿ ti) for all filters F on S.

Proof. If F is a filter on S such that aq(YK'(F)) = 0, then let T= S u {a}, where
a is some element not in S. Define a convergence structure p on F as follows:
3tf p-converges to a iff Ff^Y^(F) n à for a<A*; ^f p-converges to x, xi=a, iff
3ri? g-converges to x. Using arguments similar to those of Theorem 2.4, we find
thatp is A-regular and Y(S) = T, a contradiction. Hence aq(Yx'(F))=± 0.

Conversely, let (S, q) be embedded in (T, p), where (F, p) is A-regular, and suppose
that there is x in Y(S) — S. Then there exists an F on S such that ^"p-converges to
x. Again, by analogy to the proof of Theorem 2.4 we have that aq(T%'(F))= 0, a
contradiction. Thus (5, q) is A-regular-closed.

The last two propositions of this section pertain to strongly regular spaces.
Recall that a filter is closed if F=F (or, equivalently, F=YiF)). We will say
that a maximal closed filter is ultraclosed. A simple application of Zorn's Lemma
shows that every closed filter has an ultraclosed refinement. Hence we have the
following proposition:

Proposition 2.11. The following statements about a strongly regular space (S, q)
are equivalent:

if) iS, q) is strongly-regular-closed.
(ii) For each filter F, a„iF)=t 0.

(iii) Each ultraclosed filter converges.

Theorem 2.7 establishes that a A-regular compact pseudo-topological space is
minimal A-regular, but for arbitrary convergence spaces the relationship between
compactness and minimality for A-regular spaces remains uncertain. The concluding
proposition clarifies this relationship for strongly regular spaces.

A convergence space iS, q) is said to be of type Z if a closed filter F ^-converges
to x whenever each ultrafilter finer than F ^-converges to x. Note that all pseudo-
topological spaces are of type Z.

Proposition 2.12. A compact strongly regular space is minimal strongly regular
iff it is of type Z.

Proof. Let (S, q) be a compact strongly regular space of type Z. If {x}=a„iF)
and 'S is an ultrafilter finer than F, then 'S ̂ -converges to x. Since (-S, q) is of type Z,
F ^-converges to x, and hence the space is minimal strongly regular.

For the converse argument, let q be minimal strongly regular and let p be the
convergence structure on 5 defined as follows : & p-converges to x iff either S
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¿/-converges to x or 9 ^ F, where F is ¿/-closed and each ultrafilter FC finer than
F ¿/-converges to x. One can verify by a direct argument that p is the finest type Z
convergence structure coarser than q. Since p and q agree on ultrafilters, the closure
operators relative to p and q coincide. Using this fact, it is easy to show that p is
strongly regular, and sincep ¿¡q, it follows thatp=q and q is a convergence structure
of type Z.

Since the converse argument in the last proof did not require compactness, it
follows that every minimal strongly regular space is of type Z.

3. Minimal Urysohn spaces.
Definition 3.1. A convergence space (S,q) is X-Urysohn if, whenever F q-

converges to x and 9 ¿/-converges to y, for y¥=x, it follows that Y°(F) v Y"(9) = 0
for each ordinal number ct<A*. An X0-Urysohn space is said to be Urysohn; a
space which is A-Urysohn for all cardinal numbers A is said to be strongly Urysohn.

It is easy to see that a A-regular space is A-Urysohn (recall that we are considering
only Hausdorff spaces); however the relationship between the corresponding
minimal properties turns out to be just the reverse.

Proposition 3.2. A minimal X-Urysohn space (S, q) is minimal X-regular.

Proof. Since A-Urysohn spaces are more plentiful than A-regular spaces, it is
sufficient to show that (S, q) is A-regular. Let F ¿/-converge to x, and suppose that
Yß(F) does not ^-converge for some ß < A*. Define the convergence structure p as
follows: Jf p-converges to x iff 3tf"z9 n Ye(F), where 9 ¿/-converges tox;^
/z-converges to y, y^x, iff Ff ¿/-converges to y. One can show by a direct argument
that p is A-Urysohn, and this contradiction establishes that q is A-regular.

Following Scarborough's approach [12], we call a filter F a X-U-filter if x $ aq(F)
and 9 ¿/-converges to x imply that Y"(F) v Y"(9)= 0 for each a < A*.

Theorem 3.3. The following statements are equivalent:
(i) (S, q) is minimal X-Urysohn.

(ii) F q-converges to x iff{x} = aq(Y"(F))for each a<X*.
(iii) If(S, q) is X-Urysohn and {x} = aq(F), where F is a X-U-filter, then F q-

converges to x.

Proof, (i) implies (ii). Let F ¿/-converge to x. If y^x and 9 ¿/-converges to y,
then Y"(9)wYa(F)=0 for each a<X*. Hence {x} = aq(Y°(F)) for each o<X*.
If F fails to ¿/-converge to jc, then define p as follows : Ff /z-converges to x iff
Ff^F n 9, where 9 ¿/-converges to x ; F? /z-converges to y, y ^ x, iff JP ¿/-converges
to y. It can be shown that p is A-Urysohn, a contradiction, and so F must q-
converge to x.

(ii) implies (iii). Let F ¿/-converge to x and p < A*. Then {x} = aq(Y"+"(F)) for all
tr<A*. Hence Y°(F) ¿/-converges to x. Since (ii) implies the Hausdorff property,
(S, q) is A-regular and thus A-Urysohn. Consequently, if F is a A-U-filter such that
{x}=aq(F), then {x} = aq(Y"(F)) for each a < A*, and so by (ii) F ¿/-converges to x.
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(iii) implies (i). Letp^q, wherep is A-Urysohn, and let J^p-converge to x. Then
{x} = aqiF n x). Let 'S ^-converge to a point y distinct from x. Then 'S p-converges
to y and thus Y%i<S)viYPiF) r\x)=0. Consequently, Y°qi%)\iiY^F) n x)= 0
for each a<A*, and we have that F n x is a A-U-filter. Thus F q-converges to x
and p=q.

In particular, (S, q) is minimal Urysohn iff it satisfies the condition : F q-
converges to x iff {x} = aq(Yn(F)) for all n in N. A comparison of Theorems 2.4 and
3.3 shows a close kinship between minimal A-regular and minimal A-Urysohn
spaces. By taking A sufficiently large, we see that a space is strongly A-Urysohn iff
it satisfies the condition: F ^-converges to x iff {x} = aq(F). The next theorem is
thus an immediate consequence of Corollary 2.6.

Theorem 3.4. A convergence space is minimal strongly Urysohn iff it is minimal
strongly regular.

Theorem 3.5. A X-Urysohn space is X-Urysohn-closed iff, for each X-U-filter F,
ag(F)j=0.

Proof. If a¿F)= 0, then let T=S u {a}, a$S. Define p on F as follows: ¿F
p-converges to a iff Jt^F n à; 3tf p-converges to x in S iff ¿F (regarded as a
filter on S) ^-converges to x. Since F isa A-U-filter, we see that p is A-Urysohn and
T(5) = F, a contradiction. Thus a¿F)== 0.

Let (5, q) be embedded in (T, p), where (F, p) is A-Urysohn, and let x e Y(S) - S.
Then there is a filter F on S such that F p-converges to x. However F is a A-U-
filter on S relative to q, and aq(F) = 0, a contradiction. Hence (S, q) is A-Urysohn-
closed.

Proposition 3.6. Let (S,q) be a minimal X-Urysohn space. A subset A of S is
closed iff the subspace (A, qA) is minimal X-Urysohn. For the sufficiency argument,
one needs only that (S, q) is X-Urysohn.

Corollary 3.7. A minimal X-Urysohn space is X-Urysohn-closed.

Proposition 3.8. A compact pseudo-topological space is minimal X-regular iff it
is minimal X-Urysohn.

From the study of minimal topological spaces it is known (see [12] and [13])
that there are noncompact minimal regular and minimal Urysohn topological
spaces of all cardinalities greater than H0, and it is also known (see [13] and [14])
that countable minimal regular and minimal Urysohn topological spaces are
necessarily compact. The corresponding results for convergence spaces are sum-
marized in the next theorem and justified in the example which follows.

Theorem 3.9. Let p be an arbitrary cardinal number. Then there is a noncompact
T2 convergence space (S, p) of cardinality p which is minimal regular, minimal Ury-
sohn, and minimal strongly Urysohn.
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Example 3.10. Let (S,q) be the disjoint topological union of a countably
infinite number of topological spaces (Sh q¡), where each (St, qA is the one-point
compactification of an infinite discrete space; for each i, let xt in St be the compacti-
fication point. We divide the ultrafilters on S into three classes :

Class 1. Those which contain exactly one of the Si's.
Class 2. Those nonprincipal ultrafilters which contain a set F which has a

finite intersection with each aS(.
Class 3. Those such that each Fin F has an infinite intersection with infinitely

many of the 5¡'s.
Let p be the pseudo-topology on S defined by specifying ultrafilter convergence

as follows: For Class 1 ultrafilters,/z-convergence agrees with ¿/-convergence. For
Class 2 ultrafilters, any Class 2 ultrafilter containing X={xt : ie N] /z-converges
to z0, where z0 is some element of S not in X, and each Class 2 ultrafilter not
containing X /z-converges to y0, where y0 is distinct from z0 and also not in X.
Each Class 3 ultrafilter fails to /z-converge.

The cardinality of S can be adjusted to any infinite cardinality p, by choosing
each Si to have cardinality p..

Since Class 3 ultrafilters exist, (S, p) is not compact. The T2 property can be
verified by examining the neighborhoods of y0, z0, and the xt's.

Note that the /z-closure operator becomes idempotent in a finite number of steps.
It follows from this fact and from several preceding theorems that minimal regular,
minimal Urysohn, and minimal strongly regular are equivalent notions for (S, p).
Thus to show that (S, p) has any one of these properties, it is sufficient to show that
F /z-converges to x iff {x} = ap(F).

If F is a filter with a Class 3 ultrafilter refinement, then F cannot /z-converge,
and furthermore y0 and z0 are both in ap(F), so no problem arises. If F contains
one of the 5¡'s, then it behaves like a filter on a compact Hausdorff topological
space, so again no difficulty is encountered. The other possibility is a filter F which
has no Class 3 ultrafilter refinement but which has the property that each Fin F
meets more than one of the S.'s, and it can be shown by a direct argument that such
a filter satisfies the specified condition.

4. Minimal first countable spaces.
Definition 4.1. A Hausdorff space (S, q) is first countable if each filter which

¿/-converges to x contains a filter with a countable base (called a countable filter)
which ¿/-converges to x.

First countable convergence spaces have been investigated in [10] where they are
shown to be closely related to Fréchet and sequential spaces ; we show in this section
that the same sort of relationship exists between minimal T2 first countable spaces
and minimal Fréchet spaces.

Most of the results of this section resemble those of §1, and proofs are omitted.
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Theorem 4.2. A first countable space is minimal first countable iff it satisfies the
following condition: A countable filter F q-converges to x iff{x} = aqiF).

Theorem 4.2*. A T2 first countable space is minimal first countable T2 iff it
satisfies the following condition : A countable filter F q-converges to x iff{x} = an(q)iF).

A convergence space is of type W if, whenever F is a countable filter and each
ultrafilter finer than F ^-converges to x, then Fr ^-converges to x. Like the type Z
spaces of §2, type W spaces are generalizations of pseudo-topological spaces.
Given a convergence space (5, q), there is a finest type W convergence structure p
on S which is coarser than q; if q is first countable then so is p, and it follows that
every minimal first countable space is of type W.

Proposition 4.3. Each first countable compact space of type W is minimal first
countable.

A space is countably compact [8, p. 162] if every sequence (or, equivalently, every
countable filter) has an adherent point. It is an immediate consequence of Theorem
4.2 that every minimal first countable space is countably compact. One might hope
that in Proposition 4.3 "compact" could be relaxed to "countably compact"; the
following example, however, shows that this is not the case.

Example 4.4. Let S be the closed unit interval on the real line. We define a
convergence structure q on S as follows : IF ^-converges to x iff F contains a
countable filter 'S which contains a countable subset of S and converges to x
relative to the usual topology on S. It is easy to verify that iS, q) is a first countable
countably compact space of type W. However, the usual neighborhood filter at any
point x in S has x as its only adherent point but (since it contains no countable set)
fails to ^-converge to x. Thus, by Theorem 4.2, (5, q) is not minimal first countable.

The proof of the next theorem is similar to that of Theorem 1.6.

Theorem 4.5. A first countable (T2) space (S, q) is first-countable-(T2-) closed iff
iS, q) US, Triq))) is countably compact.

Thus each minimal first countable (T2) space is first-countable-(T2-) closed.
A pretopological space is Fréchet if, for each subset A, the closure of A is precisely

the set of limits of those countable filters which contain A ; following our conven-
tion, we add the additional assumption that the space be Hausdorff. Theorem 2 of
[10] (where the spaces involved are not assumed to be Hausdorff) states that a
pretopological space is Fréchet iff p is the topological modification of a first
countable convergence structure q on S. A simple Hausdorffization of this result
can be stated as follows.

Proposition 4.6. A pretopological space is Fréchet iff it is the pretopological
modification of a first countable T2 convergence space.
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In the " necessity " part of the proof of this proposition, one starts with a Fréchet
space (S, p) and constructs a first countable convergence structure q on 5 as follows :
A filter F ¿/-converges to x iff it contains some countable filter which /»-converges
to x. By this construction, q is the coarsest first countable convergence structure
finer than p, and since p is uniquely determined by the convergence of countable
filters, it follows that for any other Fréchet space px <p, we have ¿/x <q, and vice
versa.

Theorem 4.7. The following statements about a Fréchet space are equivalent:
(i) (S, p) is minimal Fréchet.
(ii) (S, p) is the pretopological modification of a minimal first countable T2 space.

(iii) A countable filter F p-converges to x iff{x} = ap(F).

Proof. From the remarks which precede the theorem, p is minimal Fréchet iff
q is minimal first countable T2, and so (i) and (ii) are equivalent. By Theorem 4.2*,
the statement that q is minimal first countable T2 is equivalent to saying: for
countable filters F, F ¿/-converges to x iff {x} = aMq)(F). But Tr(q)=p, and p
convergence coincides with ¿/-convergence on countable filters; thus the specified
condition is equivalent to (iii).

Concluding Remarks. There are a number of questions which remain to be
answered. We formulate three such questions in terms of an arbitrary property P.

(1) Is a product of minimal P spaces again a minimal P space?
(2) Is there a minimal P convergence structure on a set 5 coarser than some

given convergence structure with property P?
(3) Can a given convergence space with property P be densely embedded in a

minimal P convergence space?
If P is the Hausdorff property, the answer to the first two questions is affirmative.

Also question three has an affirmative answer for the Hausdorff case iff the given
convergence space is pseudo-topological. This can be deduced from the results
found in [11]. For T2 spaces, the answer is affirmative for (1) and negative for (2).
The answer to (1) is affirmative for first countable spaces if the number of spaces
involved in the product is countable. The remaining cases belong to the category
of unsolved problems.
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