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interval order with a given number of maximal cliques, and present some simu-
lation results on the number of minimal covers in different settings.
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1 Introduction

An interval order is a partially ordered set, members of which can be identified with
intervals on a linear order of the forfly, w;], with the order relation< given by

(i, us] < [l;,u;] whenevery; < [;. Interval orders and the graph theory associ-
ated with their incomparability graphs, also called interval graphs, provide a natural
model for the study of scheduling and preference models. They have also recently
appeared as a promising abstraction tool in a branch of statistics called nonparamet-
ric survival analysis.

In this paper, we characterize the smallest sets of maximal antichains, atied

imal covers which cover the elements of an interval graph, and present two main
algorithms to enumerate these sets. The maximal antichains of an interval order are
the maximal cliques of its interval graph. For simplicity, we select the taaxrimal
cliguesto indicate both instances; thus such phrases as “maximal cliques of interval
orders” carry no ambiguity. As well, we describe an algorithm to generate minimal
covers uniformly at random. We also discuss the maximal number of such minimal
covers.

Minimal covers are defined in Section 2 along with other necessary concepts associ-
ated with interval orders and the description of the substantive problem in statistics
which led us to the present investigation. We then consider the enumeration of
minimal covers from two points of view. The first, discussed in Section 3, is a back-
tracking algorithm which constructs all minimal covers of an interval order from the
so—called set of--minimals of the interval order. We show that this algorithm is

a generalization of a classic procedure which generates one maximum chain along
with one minimum cover from an interval order. We use the backtracking struc-
ture of the algorithm in Section 4 to produce a uniform minimal cover generating
algorithm, a necessary extension since, as shown in Section 6, the number of min-
imal covers is of exponential order with respect to the number of elements in the
interval order. The structure of interval orders allows the efficient computation of
the minimum and maximum probabilities of generation, thus making it possible to
perform perfect simulation from an independence Metropolis sampler. The second
perspective, covered in Section 5, is that of a characterization of the complements
of minimal covers, termedchaximal removable set$Ve provide properties and al-
gorithmic details concerning maximal removable sets. These, while of perhaps less
immediate applicability than the generating algorithm of Section 3, are valuable for
the insight they provide on the structure of minimal covers and ultimately provide
us with bounds on the maximum number of minimal covers achievable with a given



number of maximal cliques. Section 6 presents the derivation of these bounds as
well as some simulation results.

2 Notation and definitions

2.1 Interval orders

Let X = (X, <) denote a partially ordered set,poset That is, X is a set together
with a binary relation<C X x X which is both irreflexive and transitive. An interval
orderX is a poset such that

(a<z,b=<y)=(a<yorb=<zx), foralla,b,z,y € X.

We shall use- to denote the symmetric complement-of That is,
x ~ yifand only if not(z < y) and not(y < x).

The relation~ is the incomparability relation. The undirected graph ~) is called
theinterval graphof X.

A linear orderis an ordered setX, <*) such thatr % y for all z,y € X with
x # y. A chainin a poset(X, <) is a linear orde(C, <|, ) With C C X. A
maximum chain is a chain of maximum cardinality(ilf, <).

Hereinafter, unless otherwise notéd,= (X, <) will denote an interval order, and
we willlet n = | X|andX = {z1,...,z,}.

2.2 Maximal cligues and their linear ordering

M C X is acliqueof X if x ~ y for all z,y in M. A maximal cliques a clique
not properly contained in any other cligue. We will denoteby(X) the set of
maximal cliques of an interval ordéf.

A crucial characterization of interval orders is that there exists a natural linear order-
ing on their set of maximal cliques [1]. Specifically,i,, M, € M (X) and we
define the relatiom over M (X) by

MaEMb a4 (Ma \ Mb) = (Mb \ Ma) 5



then(M (X), C) is a linear order, where the relatienis extended to subsets af
in the obvious manner.

Settingm = |M (X)|, we will assign subscripts = 1,...,m to the elements of
M (X) according to their linear ordering, that is willl; CM; < i < j. Minima
and maxima are thus well-defined elements over subsets k).

2.3 Properties of interval order elements

Elements ofX have properties which depend on the maximal cliqueX off x is
contained in only one maximal clique thens termed asimplicial elementsince

its neighbourhood in the interval graph is complete. A maximal clique containing a
simplicial element is said to be essential. It can readily be shown that the first and
last maximal cliques ifM (X)), M, and M,,,, must always be essential (see [14]
and [7], Section 2.3).

Forz € X, we denote by* = {M € M (X) : z € M} the dual ofr with respect
to M (X). In such a case, the propositiong M andM € z* equivalently express
the fact thatz is contained within or covered by maximal cliqdé. For simplicity,
we will write M Cz* for M T min z* andz*C M for max z*C M, though clearly—
is not a linear order on contiguous subseta\¢f X).

The dual of every element of an interval order is a contiguous sequence of maximal
cligues. This property is referred to as tbensecutive—ones propertf interval
orders.

2.4 Cligue matrix

Theclique matrixrepresentation of an interval order is an indicator matrix relating
the elements oK to the maximal cliqgues aM (X). Specifically, the clique matrix
of X is given byA € {0,1}""", where

A — 1 iijEMZ‘
Ca 0 |f£EJ¢Ml

The definition implies that the rows &€ are ordered similarly to the elements of
M (X). Under this ordering, all interval orders will have a unique cliqgue matrix



representation up to the subscript orderingXobr, equivalently, up to ordering of
the columns ofA.

Our usage of the term “clique matrix” differs from the traditional one ([11], Chap-
ter 3) in that we require the rows of the clique matrix to be ordered according to
the maximal clique linear ordering, thus explicitly preserving the consecutive—ones

property.

2.5 Covers of maximal cliques

Minimal covers of interval orders form the focus of this paper. We formalize the
concept.

Definition 1 For X = (X, <) an interval order, we calC ¢ M (X) a coverof
X if X = Upree M. We will call the covedV a minimal coverof X if no proper
subset ofV is a cover ofX. A minimal cover is aninimum coverif it has lowest
possible cardinality.

Clearly all essential maximal cliques are contained in every minimal cover. The
fact that minimal covers of various cardinalities exist is not so immediately obvious.
Finding them is dealt with in Section 3.

Maximal removable set$RS5) are closely related to minimal covers.

Definition 2 A maximal removable set is a s& of maximal cliques such that
M (X) \ R is a minimal cover.

The properties of MRS’s and a direct enumeration method for them are discussed in
Section 5.

2.6 Covers and self-consistent estimates

This section briefly describes the substantive statistical problem which motivated
the present research. It may be skipped by readers without a break in continuity or
understanding.



Survival analysis is a branch of statistics concerned with the analysis of event-time
data. Such a datum consists of the time elapsed between an onset and an event, such
as between start of chemotherapy and relapse in a cancer patient. Data of this type
are often incompletely observed. For example, a study may end before the event
of interest is observed, in which case the duration is only known to be longer than

a certain value: this situation is referred to as right-censoring. Another common
pattern occurs when individuals are monitored periodically for the development of

a condition (the event of interest). In such a situation, the event time will only be
known to have occurred within a certain time interval, and the exact moment of
occurrence remains unknown. Such event-time data are saidrtebeal censored

Under interval censoringself-consistent estimat¢SCESs) form an important class

of event-time distribution estimates[12,16,25]. SCEs are crucially related to the
maximal clique covers of the interval order underlying the data. SCEs will only
place probability mass on the real representation of the maximal cliques of the in-
terval graph of the data, that is, on the maximal intersectidns= (\x c,;, X;.
where theX;, j = 1,...,n are taken to be the real intersections forming the data
[17,22]. If A is the cligue matrix of the data,; the probability mass placed on

H; andp = [p1,...,pm] ", then an SCE op is any vectorp > 0 (elementwise)
satisfying}_." , p; = 1 and

np = Dy A(ATp) ", (2.1)

whereD, is the diagonal matrix with diagonal andx~ = [1/2y,...,1/2,]"
[10]. Existence of an SCE follows from the existence of a unique nonparametric
maximum likelihood estimate (NPMLE), which is itself an SCE [9].

Clearly an incidental requirement gnfrom (2.1) is thatA "p > 0 elementwise,

that is,Cy = {M; € M (X) : p; > 0} must form a cover for the data. We can
also establish the converse as follows. A basic algorithm to obtain an SCE is the
EM algorithm [2], which in this instance consists of iterating Equation (2.1) with
replaced by-t" iteratep(”) on the right-hand side and Hy + 1)'" iteratep("+1)

on the left-hand side, starting from some initial vapi@ . Iterations are pursued
until convergence to a fixed point of (2.1).pf? > 0 elementwise, the incomplete
multinomial nature of the data [23] causp$’ to converge to the NPMLE op
through this iterative procedure [24].

If some of the entries gp(?) are identically zero buf = C«) remains a cover for

the data, thep(”) will converge to a unique SCfe, regardless of the values of the
non-zero entries gb(?). This can be seen by positing artificial interval censored data



with cliqgue matrix A* consisting of the rows oA corresponding to the maximal
cligues inC (see Lemma 3.4). The limji¢ is then isomorphic to the unique NPMLE
given these artificial interval censored data.

Thus every cover o corresponds to a unique self-consistent estimate, although
several “starting value coverg’,», may yield the same SCE. &f,«, is a minimal
cover, the EM algorithm will yield an SCR with C; = C,,0), since in the artificial

data posited above, every maximal clique is essential. Any empirical investigation of
SCEs on the semi-lattice of maximal cligue covers must start with an investigation
of the minimal covers, which form the base of this semi-lattice. This is what we
propose in the present article.

3 Enumerating minimal covers

In this section, we first present a simple algorithm in Construction 3.2 which enables
us to find a singleninimumcover. This procedure is similar to that found in [8]; its
expression is couched in the language of comparability rather than incomparability,
and serves to introduce its generalization to Construction 3.3.

The following result is the well-known dual expression of Dilworth’s Decomposition
Theorem [3] and concerns the cardinality of minimum covers.

Theorem 3.1 Let (X, <) be a partially ordered set. The length of the longest chain
of (X, <) equals the minimum number of cliques required to cover the elements of
X.

Since the minimum number of cliques can be no smaller than the minimum number
of maximal cliques which cover a poset, the theorem tells us that a minimum cover
has cardinality equal to the length of the longest chain in the poset.

This result can be shown constructively for interval orders, with the added bonus
that we produce a minimum cover and a maximum chain in the process. In essence,
the following Construction and Theorem state that there exists a minimum cover
consisting of a set of maximal cliques, each of which uniquely contains a certain
element. The set of these elements forms a maximum chain in the interval order.

Construction 3.2 Let{M;, ..., M,,} bethe linearly ordered set of maximal cliques
of interval orderX = (X, <). Lety,; be a simplicial element ok belonging to



the first maximal cliquel,, and lety; = M;. Form the setsy = {y;} and
Wi = {p1}. Then form the sefg/ and W/ for i > 1 as follows:

Whilei is suchthaf{y € X : p;_1Cy*} # 0, letY/ =Y/, J{y:}, where

Yi € {y € X :argmin max y*} ,

y  Mi—1CyT
is a particular selection of;, and let; = W;_, | {u}, where

\
pi = maxy;.

Theorem 3.2 Under Construction 3.2, there exisfssuch that{y : ur—y*} = 0
andW’ = Wj is a minimum cover foX.

Proof. The proofs of coverage and minimality fo¥’ are specializations of the
proofs of Claims 1 and 2 in Theorem 3.3, possible since Construction 3.2 is a special
case of Construction 3.3. Proof tHat’ is of minimal cardinality is simple viewed
from the context of Theorem 3.3. ]

The initial inclusion of{M;} in the sequence ofV!’s in Construction 3.2 is le-
gitimate and necessary singé, is always essential, and therefore required in any
cover. We note without proof thaf’ is a maximum chain ifX..

Example 3.1 (In the following example as in subsequent ones, elements[oblumns]
are identified by regular subscripts and maximal cliqueX ¢fows] by bolded sub-
scripts.)Consider the clique matrix

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
1 [111111000000O00O0°O0O0 ]
2 06011111111000O0O0O0O0
3 0601101111110000O0°O0O0
A= 4 0010011111 1000¢00O0
5 0 000O0O1O01111100O00O0
6 0000O0O1O0O0O1TO01111O00O0
7 0 000O0O0OO0OO0OT1TO0OT1T11110
8 |[0000O0COO0OO0COO0OOOOT1TT11 |

Construction 3.2 yield®V’ = {1,4, 7,8}, with I = 4. Members of these maximal
cligues which dmotbelong to maximal cliques previously chosen in the construction



have their clique matrix entries underlined abovE! could be either of the sets
{1,7,12,16} or {1,7,13,16}. The occurrences of thgs in the maximal cliques
for which they cause inclusion in the minimum cover are bolded in the matrix.

Before proceeding with minimal covers, it is necessary to perform a reduction of
the interval order. We call € X a C-minimal element, or a_-minimal for
short, if its dual,y*, is minimal in the subset ordering, or equivalentlyyif has

no other dual as a proper subset. ¥ (X) denote the set of-minimals of

X; in particular, ME (X)) will include all simplicial elements. As an illustration,
ME (X) ={1,7,10, 13,16} for the interval ordetX of Example 3.1.

We note thatV/E (X)) is an embedded semi-orderdn[7, Chapter 6]. We will order
C-minimals according to the relation—, where fory;, y» € ME (X),

Y1 < Y2 © miny]C miny; < maxy]C maxys.

We assume henceforth that no tweminimals share the same dual, an assumption
that is easy to enforce in practice. The ordering corresponds to both the left—
and the right—endpoint orderings~ and <* described in [7§2.2]; it is a linear
ordering onME (X). Itis obvious that the minimal covers 8fF (X) are exactly
the minimal covers ofX.

Construction 3.2 will yield a singlminimumcover. The natural generalization from
this setting is to broaden the choice forwithout changing the property that no two
elements ol” are covered by the same maximal clique. This generalization leads to
Construction 3.3.

Construction 3.3 Lety; be a simplicial element of/E (X)) belonging to the first
maximal cliqueM, and lety; = M;. Form the setd; = {y1} andW; = {1}
Then form the sefs; and W, for ¢ > 1 as follows:

Whilei is such tha{y € ME (X) : p;—1Cy*} # 0, letY; = Y;_1 J {y:}, where

Yi € {y € ME (X) : argmin max y*} ,

y pi—1Cy*
is a particular selection of;, and letW; = W,;_1 |J {u;}, where
i € Y; \ Y1

is a particular selection ofi;.



The requirement that thgs be limited to the set of--minimals can be illustrated
using the interval order of Example 3.1. Suppose that Construction 3.3 is being
applied and has so far generaéd= {1, 7} andW, = {1,4}. If we do not restrict

y3 to belong toY (X), then we could usgs = 12. If the selection of maximal
cligue yieldsus = 5, the next step of the Construction will for@e< vy, bypassing
elementl3. It should be clear that maximal clig@iebelongs to no minimal cover,

in this example.

Theorem 3.3 For every sequence of pai(¥V;,Y;),i = 1, ... formed in Construc-
tion 3.3, there existd < m such that{y : u;Cy*} = 0. Defining(W,Y) =
(Wi, Y7), the class of minimal covers &f is exactly the class of sewy which can
be produced by Construction 3.3.

A simple Lemma is necessary for the proof of Theorem 3.3.

Lemma 3.4 Let M’ c M (X). Then there exists an interval orderirg such that
M =M (X,<).

Proof of Lemma 3.4.Since(M (X), C) is linearly ordered(M’, Ty, 1p) S @
linearly ordered set of maximal cliques. Therefdvt is the set of maximal cliques
for some interval ordex’C X x X [1]. |

Proof of Theorem 3.3.First we must show that is well-defined for any selection
of y;, i, i = 1,..., I compatible with Construction 3.3. Singg_;Cy; and since
Wi € yf, it must be thafu,_1Cp;. Thus in at mosin steps we will reachy; =
M,,. SinceM,, = max M (X) we obtain{y : u;Cy*} = 0, and the construction
terminates.

We now show the theorem'’s statement in three steps:

1. EveryW produced by Construction 3.3 is a cover for
2. Every covenV produced by Construction 3.3 is minimal faf.

3. Every minimal cover fotX is a set’ compatible with the selection method
of Construction 3.3.



e Claim 1: EveryW is a cover forX.

LetY = Y; andW = Wy be particular realizations of Construction 3.3, and let
x € X be arbitrary. We must show thate x* for somey € W. If z € Y, x is
covered by construction, so assume X \ Y. Sinceu; = MiCa*C M, = ur,
there must be somésuch thaty; Cx* but p; 1 Zz*. Also, since we knowy; 1
minimizeslf?zaéc* y* and sincg;Cz*, we deduce thahax y;, | < maxz™.

We can now show thai; 1 € x*. Assume not; then we needax x* ;1. But
thenmax z*Cpi11 < maxy;,; < maxz*, a contradiction. Therefore is con-
tained inu;4+1, SOV is a cover.

e Claim 2: Every covedV is minimal forX.

LetY andV be particular realizations of Construction 3.3 as before, and/lét =
W\ {u;} for somei € {2,...,I — 1}, since neithey;; = My noruy = M, can
be removed. We show thav(?) is not a cover.

Sinceu; 1y}, we know thap; 1 ¢ y, whichimplies thaf ., ..., ui— 1} Ny =
@, by the linear ordering of the maximal cliques. By construction,, ¢ vy}, which
again implies thaf; 1,...,u:} N y: = 0. HenceWw does not covey;, and
thus)V is a minimal cover.

e Claim 3: Every minimal cover forX is produced by the algorithm of the
theorem

LetV = {v; = My, vs,...,v4_1,1y = M,,} be a minimal cover. We need to sup-
ply asetY” = {y1,...,y:} such thal” andY satisfy Construction 3.3. For this it is
enough to show that

if y; € {y ;argmin  max y*} fori=1,...,I,theny; € yi \y/_;. (3.2)
y

vi—1Cy*

Apply Construction 3.2 td/, which by Lemma 3.4 is the maximal clique set of
some interval order. SincE is minimal, it is its own minimum cover. The s&t
produced in the construction satisfies requirement (3.2). |



Though Construction 3.3 involves an arbitrary selection from a set, the available set
from which to selecj:; does not depend on the particular choiceg,of, andy;,

since onlymaxy; ; andmaxy; play a role in the determination of that set. Al-
gorithm 3.5ListMinCovers below explicitly recognizes this fact by retaining only
this information from the elements &f. On the other hand, the choiceof ; does

affect the set of availablg’s at every step.

We can translate Theorem 3.3 to the following algorithm, which returns the set of all
minimal covers ofX when called with arguments{pin, ), with Xmin the set ofc-
minimals of X. The second argumentfisonly on the first call, with the convention
that@dc M for all M € M (X); otherwise it is @ maximal cliqugo, which corre-
sponds tanax y;_; and contributes to defining the sgt\ y;_, of Construction 3.3.

Algorithm 3.5

ListMinCovers (Y, uo)
Arguments: Y, a set of C-minimals ordered according to <7
1o, a subset of Y.

begin
ify =190
return {0}
else
M~

L1: 1o < argmin max y*
y yey

L2: for each p € {M : M € y§, poC M}
RI: M « ListMinCovers ({y : uCy*}, max yg)
L3: for each W € M,
M = MU {{ro} UW}
return M
end

The callListMinCovers (ME (X), §) will return the list of minimal covers ok .

We now establish the time complexity of Algorithm 3.5. Let = |ME (X)|
andmy = maxycy |y*|. DefineT' (i) to be the time complexity of Algorithm 3.5
when called with a set; = {yi+1, ¥it1,---,Yno } C ME (X) of C-minimals,i =



0,...,n0—1. Let Nyyax(m) be the maximum number of minimal covers for an inter-
val order withm maximal cliques. We show i§6.1 thatV,.. (m) < O(1.84™~1).

We useko, k1, ko, k3 . .. to denote unknown constants. WltstMinCovers called
with argument;, i < ng, statement L1 is executed in constant tikaesince the or-
dering properties ok~ onY; imply thatargmin, max,cy y* = y;. The number of
iterations of L2 is bounded above by—i—1,i = 1,...,m—1. Atthe ;" iteration
of L2, statement R1 will require time bounded abovellfy+ ;) + ks, returning a set
containing at mosiVy,.x(m — ¢ — j) maximal cliqguesj = 1,...,no — i. The total
execution time of L3 within iteratiorj of L2 is thus bounded above Iy Ny« (m —

i —j). ThusT(i) < ki + 7% " [T(i + j) + k2 + k3Nmax(m — i — j)] for i =
0,...,n0 — 1. PositingT'(ny) = ko, and given the bound oW,,.,m, standard
manipulations shows that the overall time compleXit{0) is bounded above by
O(2ma(no.m=2))  \We note that the_-minimality of elements of\/E (X) forces
ny < m = |M(X)|. Part 1 of Observation 3.6, below, shows that we can remove
all simplicial elements from the set af-minimals to run the algorithm, yielding an
effective bound ofhg < m — 2. Hence the time complexity of Algorithm 4.1 is
bounded byO(2m~2).

In practice, this exponential time complexity shows that tractability can be main-
tained asn — +oco if m increases slowly enough with respectrto In general,
however, enumeration is impractical and we will need a random generation alterna-
tive to enumeration. 11§ 4, we see how Algorithm 3.5 can be adapted to a uniform
Metropolis independence sampler, thereby converting issues of tractability to issues
of efficiency.

In some settings involving a moderate amount of data, enumeration may remain a
viable option. Apart from the reduction of the originglto its C-minimals, several

other simplifications can be applied to the minimal cover enumeration procedure of
Construction 3.3. These simplifications may provide substantial gain in practice,

particularly in counting, rather than enumerating, minimal covers.

Observation 3.6

1. Every essential maximal clique in the minimal covét may be included
priori in a listed cover, thereby restricting tieminimal setME (X)) to non-
simplicial elements, as these elements can only generate their own essential
maximal clique in Construction 3.3.



2. Assuming still thatc-minimals are sorted according to the order of the ini-
tial maximal clique of their dual, we need only find minimal covers ¢or
minimals belonging to connected components of the interval graph, and com-
bine them at the end of the procedure.

3. Maximal cliqgues which overlap exactly the sammeminimals will be mutu-
ally exclusive and interchangeable in any minimal cover produced by Con-
struction 3.3. The classes of such elements can be kept track of and all but
one element from each class deleted from the problem, to be reinstated after
the covers are listed.

The above considerations lead to straightforward modifications to Algorithm 3.5 In
the time complexity analysis, parts 1 and 2 of the above Observation effectively
decreaser,, while part 3 effectively decreases,, though the worst-case time-
complexity remains unchanged.

4 Uniform sampling of minimal covers

4.1 Random generation

Since the number of minimal covers often precludes enumeration, a procedure for
pseudo-random generation must be devised. A random minimal cover generation
algorithm can be obtained from Algorithm 3.5. To generate one minimal cover, a
maximal clique is selected uniformly at random from those available at each itera-
tion. Algorithm 4.1 returns both a minimal cover and its probability of generation
by the algorithm.

The callRandomMinCover(ME (X)) described in Algorithm 4.1 will return aran-
dom minimal covedV, the corresponding random chain@fminimals) and the
probability of generatiomp.

Algorithm 4.1 does not generate minimal covers with uniform probability, but can be
adapted to this task. The simplest way to do so is to base an independence Metropolis
sampler [13] on the algorithm. A useful characteristic of the independence Metropo-
lis sampler in our context is that it allows perfect sampling, unlike most instances of
MCMC where only bounds on the total variation or some other measure of conver-
gence are available.



Algorithm 4.1

RandomMinCover(ME (X))
Argument: MFE (X), the set of C-minimals of interval order X;
begin
Y — ME (X)
W —10
Y10
po — 0
pe1
while Y # ()
begin

Yo < argmin max y*
y yey

T —{M € yg; poCM}
1o <— ChooseRandom(T")
p
P
P
W —=WU{uo}
V< YU{y}
Y — {y € V;maxyiCy*}
end

return WV, Y, p)
end

We briefly describe the Metropolis independence sampler for our application. We
call trial probability of a minimal cover the probability that it is generated by Al-
gorithm 4.1, and denote hy(W) the trial probability ofi). The Markov chain of
minimal covers is denotely, kK = 0,1,,.... The independence Metropolis sam-
pler starts with a minimal coverV, taken from thep(-) distribution. Thereafter,
given current chain stafi@/,, Algorithm 4.1 generates a proposal and a random
uniform variatel;, € (0, 1). The next state in the chain is determined by

. W, ifU, > p(Wk)/p(W)
W1 = { W otherwise. (4-3)
The stationary distribution of the chain is uniform.

The ability to perform perfect simulation is a property of all Metropolis indepen-
dence samplers for which the minimum and maximum trial probabilities as well as



their corresponding states are known. If we assign a weak ordering of the state space
corresponding to the natural ordering of the trial probabilities, it is easy to see that
the Markov chain given by transition rule (4.3) is monotone in the sense of Propp &
Wilson [18]. Their method of coupling from the past can be used to achieve station-
arity of the chain. Given a partial order on the minimal covers, coupling from the
past will start two chains from a maximal and a minimal state at some fixed time in
the past, and run them using the same proposals and the same sequégise 1bf

the chains are in the same state at time zero, the distribution of the resulting minimal
cover is exactly uniform. An overview of this form of coupling for independence
Metropolis samplers is provided in [15].

4.2  Minimum and maximum trial probabilities

Though the implementation just described is perhaps the simplest possible form of
coupling from the past, it requires knowledge of the minimum and maximum trial
probabilities. In order to find an expression for these, we first reduce the problem
along the lines of Observation 3.6, parts 1 and 2. Specifically, we remove all sim-
plicial elements from the list of -minimals, and we consider the problem only for

a list of c-minimals which forms a connected incomparability graph. Otherwise,
we can consider each component of the incomparability graph in turn, as the maxi-
mal cliques and--minimals returned by Algorithm 4.1 from one component do not
affect those returned from another component.

Algorithm 4.1 can be thought of as returning a list of pairs of maximal cliguesand
minimals, specifically a set(js;, , y;,.) : pi, € W,y;, € YV} Wherei,, < i; andj;, <

41 wheneverk < . We call such a set a minimal cover list. Since minimal cover
lists and minimal covers are in one-to-one relation, we can analyze trial probabilities
using minimal cover lists.

Let S(s,t) be the set of all sequences of the form

((ins Yis = Y1) (Bigs Yja)s s (B = Boss Y = Yt)]

whereu;, € yj, , k=1,...,r, u;, € M(X)andy;, € ME(X)fork=1,...,r,
andp,;, Cpip T ... Ty, = ps andy; = y;, <™ yj, < -+ <™ y;,. = y;. Note that
S(s,t) is larger than the set of minimal cover lists, in that it contains minimal cover
sublists as well as non-minimal and non-covering lists.



We set a probability measure on S(s, t) based on the trial probabilities. Specif-
ically, for o € S(s,t), Po] is the probability that the Algorithm 4.1 produces the
list or subliste at any step in its execution.

Definegs ; by
0 if Plo] =0forallo € S(s,t)
9ot = { min{P[o] > 0:0 € S(s,t)} otherwise.
It must then be true that
g=min{gs; >0:1<s<m,1<t<gq}

corresponds to the minimum trial probability of a minimal cover. To see why, sup-
pose that (s, t) has minimum non-zero trial probability. If the corresponding maxi-
mal clique sefu;,, - . ., us } is not a minimal cover, there exist a superset of it which
is, otherwiseP[o(s,t)] = 0. Since the probability of generating a minimal cover
list is never greater than that of generating a sublist included in it, there is therefore
a minimal cover with minimal non-zero trial probability.

We adopt the convention that,], [y;] and[(us, y:)] denote the events that, y; and
(s, yt), respectively, are generated by Algorithm 4.1 as part of a returned minimal
cover list. Consider now the following decomposition®fr] for o € S(s, t):

P[J] = P [(MS?yt)7(Mir—lvyjr—l)’""(lu’i17y1)]
= P [MS‘ Yt yj'rfl] P [ytl (Nir,~71’yjn71)] P I:(/’(‘irfl’yjrfl)7 R (uiwyl)]

In the above expression,

s € i\ v \ v,

P ps| ye, yj,_1]

Pyl Gusr vy )] = 1 [y — argmin {y : m,_lzy*}} .
Y

where the latter indicator is O ffy : p;,_,Cy*} = 0.

Now set

s0<s

Zgy = Max {1 (s € y; \ i | 1 [yt = argmin {y : MSUEy*}] gso,to} :
to<t v



and we can write

0 |f Zst = 0

Gs,t = min % otherwise. (4.4)
0<s [y \ i

Thus, given allg,, +,, it is possible to scan all pair§es,, y,) for sp < s and
to < t to obtain the minimum trial probability of generating a sequence ending

with (s, ye)-

The maximum trial probability can be determined in much the same way. Following
an argument similar to the one leading to (4.4), we define

hey = Plo(s, 1)].
st U(s,?)lg:é((s,t) [U(S )]

The following recurrence relation then holds:

hs t
h,st: max %
’ s0<s
O ‘yt \ ¥t

Determining the covers corresponding to the minimum and maximum trial proba-
bilities requires a small amount of bookkeeping associating minimal covers with the
relevantindex paifs, t). Because the procedure used followsteordering of the
C-minimals, the relevant index pair will be such thate y;, whereg = [ME (X)|.
The minimum trial probability minimal cover can thus be obtained from the index
pair

(307t0) = ar(grgin {gs,t >0: bs € y:;}

S,

while the index pair of the maximal trial probability minimal cover will be

(s1,t1) = ar(gm)ax{h(s,t) s € y;}
s,t

Aside from the possibility of performing perfect sampling for minimal covers, the
guestion of the efficiency of the independence Metropolis sampler has been ad-
dressed by [15] and [20]. In the present case, puiifig( V) to be the probability
that)V, = W in a chain started from some distributip(t) and lettingN' be the



number of minimal covers, we obtain the geometric convergence rate
P (W) = 1/N| < (1 = Npmin)"*

wherepmin is the minimum trial probability. An expression of this bound wholly in
terms ofg or m and of total variation is still missing.

5 Maximal removable sets

We now turn our attention to maximal removable sets (MRS). In Definition 2, an
MRS was defined to be a set of maximal cliques such that its complement, with
respect toM (X)), is a minimal cover. An equivalent characterization of minimal
covers can be obtained in terms of removable sets. A set of maximal cliques is
removable if no sequence of maximal cliques in the set is equéltor anyx € X.

A removable set is maximal if adding any maximal clique creates such a sequence.
Hence, an MRS is maximal among removable sets under inclusion ordering.

Algorithm 5.2 is discussed in this section for expository purposes. It stands in stark
contrast to the backtracking approach of Algorithm 3.5, and may eventually suggest
novel methods for random generation.

5.1 Simplifying Assumptions

For any minimal cover or maximal removable set problem, we can assume that the
only essential maximal cliques afd, and M,,. If any other maximal clique, say

M, is essential, the problem can be split into two subproblems: one dealing with
M, throughM,. and the other with maximal cliquéd,. throughM,,,. The solution

to the large problem is simply the union of the solutions to the two subproblems.

For a minimal cover this statement would be negated if there existed a maximal
cligue which belonged to the minimal cover of one subproblem but which could be
removed once the union were formed. This would imply that the elemeavered

by this maximal clique had now been covered by a maximal clique from the other
subproblem. However, by the contiguity (consecutive-one’s property) of the dual,
any such maximal cliqgue would be covered/My,, and hence a contradiction would
arise. Since every MRS is the complement of a minimal cover, the problems are
equivalent and the same simplification is obtained.



We also assume that amysuch thatz* contains an essential maximal clique has
been removed from the problem, since it is covered by the essential maximal clique.
In other words, since the essential maximal clique must have been retained, the
elementr imposes no other restrictions on the MRS.

5.2 MRS generation algorithm

Once the simplifying assumptions of Section 5.1 have been applied we may assume
that we are dealing with maximal cliquég, throughi/,, 1 and that none of these
maximal cliques are essential.

The following simple Lemma can be proven under these assumptions.

Lemma 5.1 For anyi such tha < i < m — 3 both M; and M, » can be removed
together.

Proof. Suppose not. Then there must existiasuch that:* includesM; and M, o
but not M, . For all interval orders* must be contiguous hence no sucfean
exist. O

The basis of our MRS generating algorithm lies in the following two properties of
interval orders.

Property | If M; is the largest maximal clique in a removable set, tiién , can
be removed fof < m — 2.

Property Il  There can exist MRSs containing badth and M, , 3 and neitherM;
nor M.

Property | is simply a special case of Lemma 5.1 and hence holds. Property Il can
hold When.’I)’{ = {Ma, e, M, MH—l}v a <1, andx;‘ = {MH_Q, Mi+37 . ,Mb},

i+ 3 < b. Inthis case, if{M,,...,M;} U{M,s,..., My} is removable and
removed then neithev/; ; nor M, 5 can be removed.

In principle, our algorithm consists of enumerating all removable sets and then delet-
ing from the enumeration those that are proper subsets of any other removable set.



The efficiency of the algorithm can be optimized by performing the deletions while
enumeration is taking place.

We first note the form of removable sets. We maintain the subscript ordering de-
scribed in Section 2.2. Consider the subscripts of any two adjacent elements of
an MRS. They must follow one of three pattern&/;, M;.1), (M;, M;;2), or

(M;, M;43). Itis not possible for(M;, M;4) to occur in sequence in an MRS
because, by a variant of Property |, it is possible to remidye, for any removable

set which include$M;, M, 4), and hence the removable set is not maximal.

This points to a further important property of MRSs. Consider constructing an MRS
starting with eitheM/, or M3 and subsequently adding maximal cliques with larger
indices. The partially constructed list will be termed a candidate set. Defitne#uk

of a candidate set as the set of maximal cliques with subscripts contiguous with the
largest maximal clique in that candidate set. Any two candidate sets with the same
head will evolve in exactly the same manner. A gap in the sequence of maximal
cligues making up a removable set provides a kind of independence: the future
evolution of a candidate set does not depend on those maximal cliques preceding the

gap.

For example, suppose two candidate sets{are, M3, M5} and{Ms, Ms}. There

is then no point in pursuingMs, M5} since its evolution can be no different from
that of { Ms, M35, M5} and therefore it cannot be maximal. On the other hand if one
candidate i My, M3, M4} and a second i§M3, My} then such elimination is not
possible. While the smaller is a proper subset of the larger, they do not share the
same head.

From the preceding argument we can deduce that there are agthossequences

to be examined. However, the number is actually much smaller. One needs to con-
sider(M;, M;3) only if (M;, M;1) is not possible. Hence the true upper bound is
2m=2_ A further substantial saving comes from identifying and deleting candidates
that will become proper subsets of other candidates.



Algorithm 5.2

ListMaxRemovableSet$S)
Arguments: S a list of candidates.

begin
if S =0 then
return ListMaxRemovableSet${{ Mo, M\Ma}}, { M3, M\ {M2, M3}})
else
begin
S*—10
for each w = {s, M} in S
begin
if isCovered (s, S*, S) break
S* = Append ( S*, {(s U Mz), M\ {M7, M3}})
if isRemovable(s U M)
S* = Append ( S*, {(s, M), M\M1})
else if isRemovable(s U M3)
S* = Append (S, {(s, M3), M\ {My, Ms, M3}})
end
if Finished (S*)
return (S*)
else
return ListMaxRemovableSet$S5™)
end
end

Our algorithmgrowscandidate lists starting at the left end. By Property | eithr

or M3 must be the first element of the MRS. From this point elements are added se-
guentially to the candidate lists according to Properties | and Il and the observations
made above.

Any candidate which is a proper subset of another candidate can be deleted if both
have the same head ; this is detected by the funiti@overed The functionisRe-
movabledetermines whether a given candidate can be removed. Finally the function
Finished determines whether all candidates have been pursukf,to

Since the workings of Algorithm 5.2 are slightly more complex than those of Algo-
rithms 3.5, we provide an example in Appendix A.



6 The number of minimal covers of an interval order

How many minimal covers doeX¥ have? The question is not only of theoretical
interest. In applications, if this number grows too large for the siz& ofve might
opt for random generation of minimal covers instead of enumeration.

The number of minimal covers will depend on four characteristics of the interval
order: the number of maximal cliques, the numbecefinimals, the cardinality of
eachc-minimal and the amount of overlap between theninimals. The problem

of determining the number of minimal covers for a general interval order is thus
fairly complex.

We aim at bounding the maximal number of minimal covAts.,(m) for an in-
terval order withm maximal cliques. The next section provides lower and upper
bounds onV,,.,, while the section following provides some simulation results de-
signed to supply an empirical approximation for this number and to determine the
applicability of Algorithm 3.5 in a realistic situation.

6.1 Bounds onN,.x(m)

Theorem 6.1 For m > 2 and under the simplifying assumptions;d.1,

1(0.69)1.44™ | < Nppax(m) < [(0.62)1.84™ " 4 0.5] (6.5)

Proof. An immediate lower bound on the maximum number of minimal covers
Nmax(m) for a givenm can be determined if we assume no overlap between
minimals. The number of minimal covet8N,,., in the case of no overlap is then
simply the product of the cardinalities of tkeminimals. SincelM; and M, are
essential and both containcaminimal of cardinalityl, we need to partitiom: — 2
elements into consecutive sequences such that the product of the lengths of these
sequences is maximized. The problem can be reformulated as that of maximizing
15, ax subject oY+ ax = m — 2 for K anday, . . ., ax, for which a solution

is exposed in [19, Theorem 4-6]. For all valuesmaf> 2, "N ., > 375 =
(3—1/3)(31/3)771—1.

For the upper bound, we bound the number of MRSs compatiblerwithaximal
cligues by using the properties of MRSs described in Section 5.2. Specifically, we



determine the numbeB,,, of ways in which a sequence of — 1 (ordered) items

can be partitioned exactly in consecutive groups of 1, 2 or 3 items, such that a group
of 3 items occurs neither at the beginning nor at the end of the sequence. If we take
the items to be the linearly ordered maximal cliques of an interval order beginning
at M,, then a set formed by the final maximal clique of each group, bar the last
group, will form a set of maximal cliques of the requisite structure for an MRS.
The number of such partitions thus forms an upper bound on the number of MRSs
achievable withn maximal cliques.

The reason for starting the sequenc@é/tand omitting to include the final maximal
clique from the last group is that/; and M,, are essential, and thus cannot be
removed. The requirement that a group of 3 neither start nor end a sequence of
groups formed in this manner ensures that at least one of maximal cliduesd

Ms, and at least one d¥/,,,_», andM,,,_1, will be included in the candidate set, the
necessity of which is stated in Section 5.2.

To determine the number of groupings+af — 1 items in sequence which satisfy
the above conditions, we start with the determination of the nu@heof general
groupings inl, 2 or 3 of m — 1 items which do not necessarily satisfy the condition
on the first and last group. Since each such sequence must start with a group of
lengthi = 1,2 or 3, and since the remainder of the sequence:of i — 1 elements
must satisfy the grouping requirements as well, it is clear that = G,,,—1 +

Gm_2 + G,_3 for m > 4. To determine the numbeB,,, of group sequences of

m — 1 items which satisfy the requirement of not starting or ending with a group of
length3, we simply subtract the number of unconstrained group sequences which
start or end with a grouping of 3. There &@&,,_; — G,,—g Such groupings, so that

By, = Gy — 2G—3 + Go—g for m > 4. A simple algebraic verification shows
thatB,, = By,—1 + By_2 + B,,—3 form > 4. Values for2 < m < 4 are depicted

in the following diagrams. Only the endpoint of each group is identified by a circle

(©)-

M2 (] (e}
e EEL] e
3 My|o|o]|o
m=2,Bb=1 m=3,B3=2 m=4,B,=3

SinceB, = 1, Bs =2, B, = 3, andBm =B,,_1+By,_2+ B_3 for m > 4,
B,, = T),_1, whereT,, is them™ Tribonacci number [4]. It was shown in [21] that



T = [ap™ + 0.5], wherea andp are given by

a = 9\}@ (K7 +K3) + g (K1 + K2) + % ~ 0.6184,
p = %(m + kg 4+ 1) ~ 1.8393
fork, = 1/19+3V33
andky, = \3/ 19 — 3v/33,
which completes the proof. ]

6.2 Simulations and simulation results

The above theorem shows that the maximal humber of minimal covers grows expo-
nentially large quite rapidly, lying somewhere between the cugves0.48)1.44™

andy = (0.33)1.84™ for m > 1. Having in mind practical applications for minimal
covers, we wish to determine whether, in practice, the number of minimal covers
tends to reach these large values. We adopted a simulation approach with this pur-
pose in mind, with the objectives of assessing the bounds mentioned above and of
determining the behaviour of the number of minimal covers of an interval order
likely to occur as a real data set. The simulation results we present are based on two
pseudo-random interval order generation mechanisms designed to provide answers
to both of these objectives.

The generation mechanisms we present warrant a preliminary explanation. It was
shown in [6] that all interval orderX can be represented as sets of intervals on the
real line

{[f(@), f@) +p@)]:ze X, f: X =R, p: X = RT},

characterized by left endpoint functighand non-negative length functign and

such that forr,y € X,z < yifand only if f(x) + p(z) < f(y). Thus itis enough,

in order to generate random finite interval orders, to generate left and right endpoints
defining real intervals.

In simulation series A, we systematically varied the numbef elements inX
between 10 and 115, and the ratio of expected left-endpoint placement to inter-



val length in the real representation. We produced real representations of interval
orders by generating left endpoints according to an Exponential distribution with
mean 1, then generating lengths according to an Exponential distribution with mean
u = 1/X, where\ took on the value$.4,0.6, ..., 3.0. A simple calculation shows

that the probability of overlap between any two intervals in such a setifgis+ \),

and so varied between 0.25 and 0.72 in the course of our simulation. By way of com-
parison, the proportion of pairs of overlapping intervals in the breast cosmesis data
presented in [5], was approximately 0.45. For each fain\), 50 interval orders
were generated, thus yielding 14,300 interval orders in total. Simulation series A
was designed to produce a large variety of overlapping patterns which would help
assess the bounds of Equation (6.5) (see Figure 1).

Interval

PNWRUTO~N®©O©

Time

Figure 1: Series A sample interval set= 20, A = 0.5.

For simulation series B, we generated intervals by setting potential inspection times
att = 0,1,2,...,30. For each interval , the inspection times were retained with a
probability of 1 fort = 0, a probability of 0.4 fort = 2,...,6, and a probability

of 0.1 fort = 7,...,30. A numbern of event times were generated according to

an Exponential distribution with mean = 2,2 x (1.25) = 3.5,2 x (1.25)2 =
3.125,...,2 x (1.25)' = 56.8, for values ofn = 10,20, ...,150. Intervals were
formed by using the largest inspection time smaller than the event time as the left
endpoint, and the smallest inspection time larger than the event time as the right end-
point. This setup mimics a long-term prospective study in which a condition is mon-
itored at fixed inspection times which may be missed; event time corresponds to the



moment of change in condition. This simulation setup can produce intervals without
a finite right endpoint, i.e. right-censored data, with a probability=gf(—30/p).

This probability ranged ove1.0667,0.0833, .. .,0.53. Sixty simulations were run

for each pair(n, 1), thus yielding a total of 13,500 simulated interval orders. Sim-
ulation series B was designed to mimic typical data from a long term prospective
study where a condition is periodically monitored for change (see Figure 2).

Interval
i
[

PNWRUO~N®©O©

Time

Figure 2: Series B sample interval set= 20, © = 15. (Intervals 1, 4, 11, 17 and 20 are
right censored)

Simulation results are illustrated graphically using boxplots. We adhered to standard
conventions in the use of boxplots. The range represented by the inner shaded box
corresponds to values &f lying between the first and third quartile of the data, with

the line within this box indicating the median of the values. The difference between
third and first quartiles is called thiaterquartile distance Whiskers are drawn
below to the nearest value which does not fall short of the first quartile minus 1.5
times the interquartile distance, and above to the nearest value which does not exceed
the third quartile plus 1.5 times the interquartile distance. Values exceeding the
whiskers above and below are drawn individually as small line segments. Details on
boxplots, their use and interpretation can be found in any good elementary applied
statistics textbook.
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The results of simulation series A are shown in Figures 3 and 4. The exponential
growth of the number of minimal covers with the cardinalityn of X is manifest

in both the average case and the maximal case, placing an exponential lower bound
on this growth for the general interval order. An approximate valu®Mf . (m),

the maximum number of minimal covers in termsmffor simulation series A, can

be determined by a Poisson regressiomobn n with identity link. Such a re-
gression yieldsn ~ 0.366n + 0.805, from which we can derive the approximation

A Nmax(m) = (0.485)1.023™ (see also the results quoted in the caption of Figure 3).
However, Figure 4 shows, as was expected, that this growth is more strongly associ-
ated with the growth of the numbeérof C-minimals inX than with the growth of:,
though both quantities are positively correlated. Because simulations were not run
an equal number of times for each valueiothe range of values a¥ as a function

of £ should not be interpreted as meaningful on the boxplot.

By contrast, simulation series B shows that the rate of increa®evath respect toy
diminishes with increasing in the average case, while the maximum valuéat-

self remains more or less constant#fol 80 (Figure 5). These results are explained
by the fact that the simulation series B setup creates an expected proportion of right
censored values which increases withhis increase causes the number of maximal
cligues to converge in probability to 1 asgrows larger. In the limit, all intervals
overlap, forming a single maximal clique and a single minimal cover. Thisnds

to 1 in probability. Figure 6, by contrast, shows that the relationship between the
number ofC-minimals and the number of minimal covers remains roughly expo-
nential, which indicates that right-censoring curbs the number of minimal covers by
preventing the creation of large numberseiinimals.

6.3 Perspectives

The results of simulation series A confirm a rapid exponential growth in the number
of minimal covers, which will preclude their enumeration even for modestly sized in-
terval orders. However, simulation series B provides an indication that some realistic
censoring mechanisms, at least, will maintain the number of minimal covers at man-
ageable levels. In this case, the censoring mechanism is based on fixed inspection
times, forces the number of maximal cliques, and thus the numberrafnimals,

to be at most the number of inspection times. We can expect this phenomenon to
curb the value ofV to manageable values in some applications.

Refinining the bound oiV,,,.x(m) remains an open problem of mostly theoretical
interest.
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A Example of the MRS algorithm

Consider the output of Algorithm 5.2 applied to the data of Example 3.1. In that
example onlyM; and Mg are essential.

Step 1Sy = {M;, M}
Ty = {My, M3}  removable
Ty = {My,M,}  removable
T3 = {Ms,M,}  removable
Ty = {Ms, M5}  removable
Step 2 S1 = {{My, M3}, { My, My}, { M3, My}, {Ms, M5}}
T, = {My, M3, M,} notremovablez: C Ty
T| = {Ms, M3, Mg} removable
Ty, = {Ms, M3, M5} removable
T3 = {M,, My, M5} removable
Ty = {Ms, My, Mg} removable
Ts = {Ms, My, M5} notremovablezox = T
T! = {Ms, My, M} removable



Ts = { M5, My, Mg} removable
{Ms;, M5} is not considered because it has the same hedig. as
Step 35 = {{MQ, Ms, M6}, {MQ, , M3, M5}, {MQ, My, M5},
{ My, My, Mg}, {Ms, My, M7}, {Ms, My, Mg}}
Ty = {Ma, M3, Mg, M7} notremovablezi; C T}
T] = {My, M3, M5, Mg} removable
T = {MQ,M37M5,M7} removable
T3 = {Mg, My, Ms, MG} removable
T, = {My, My, M5, M;} removable
Ts5 = {Ma, My, Mg, M7} notremovablezi; C T5
Tt = {Ms3, My, Mg} removable
Ts = {M5, My, M7} removable
DoneS = {{MQ, Ms, Ms, Mﬁ}, {Mg, Ms, Ms, ]\47}7 {]\427 My, Ms, M6}7
{ My, My, My, M7}, {Ms, My, Mg}, {Ms, My, M7}}



