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Marston D.E. Conder
Department of Mathematics, University of Auckland

Robert Gentleman
Fred Hutchison Cancer Research Center

ABSTRACT. We address the problem of determining all sets which form
minimal covers of maximal cliques for interval graphs. We produce an algo-
rithm enumerating all minimal covers using the⊂-minimal elements of the in-
terval order, as well as an independence Metropolis sampler. We characterize
maximal removable sets, which are the complements of minimal covers, and
produce a distinct algorithm to enumerate them. We use this last characteri-
zation to provide bounds on the maximum number of minimal covers for an
interval order with a given number of maximal cliques, and present some simu-
lation results on the number of minimal covers in different settings.
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1 Introduction

An interval order is a partially ordered set, members of which can be identified with
intervals on a linear order of the form[li, ui], with the order relation≺ given by
[li, ui] ≺ [lj , uj ] wheneverui < lj . Interval orders and the graph theory associ-
ated with their incomparability graphs, also called interval graphs, provide a natural
model for the study of scheduling and preference models. They have also recently
appeared as a promising abstraction tool in a branch of statistics called nonparamet-
ric survival analysis.

In this paper, we characterize the smallest sets of maximal antichains, calledmin-
imal covers, which cover the elements of an interval graph, and present two main
algorithms to enumerate these sets. The maximal antichains of an interval order are
the maximal cliques of its interval graph. For simplicity, we select the termmaximal
cliquesto indicate both instances; thus such phrases as “maximal cliques of interval
orders” carry no ambiguity. As well, we describe an algorithm to generate minimal
covers uniformly at random. We also discuss the maximal number of such minimal
covers.

Minimal covers are defined in Section 2 along with other necessary concepts associ-
ated with interval orders and the description of the substantive problem in statistics
which led us to the present investigation. We then consider the enumeration of
minimal covers from two points of view. The first, discussed in Section 3, is a back-
tracking algorithm which constructs all minimal covers of an interval order from the
so–called set of⊂-minimals of the interval order. We show that this algorithm is
a generalization of a classic procedure which generates one maximum chain along
with one minimum cover from an interval order. We use the backtracking struc-
ture of the algorithm in Section 4 to produce a uniform minimal cover generating
algorithm, a necessary extension since, as shown in Section 6, the number of min-
imal covers is of exponential order with respect to the number of elements in the
interval order. The structure of interval orders allows the efficient computation of
the minimum and maximum probabilities of generation, thus making it possible to
perform perfect simulation from an independence Metropolis sampler. The second
perspective, covered in Section 5, is that of a characterization of the complements
of minimal covers, termedmaximal removable sets. We provide properties and al-
gorithmic details concerning maximal removable sets. These, while of perhaps less
immediate applicability than the generating algorithm of Section 3, are valuable for
the insight they provide on the structure of minimal covers and ultimately provide
us with bounds on the maximum number of minimal covers achievable with a given



number of maximal cliques. Section 6 presents the derivation of these bounds as
well as some simulation results.

2 Notation and definitions

2.1 Interval orders

Let X = (X,≺) denote a partially ordered set, orposet. That is,X is a set together
with a binary relation≺⊂ X×X which is both irreflexive and transitive. An interval
orderX is a poset such that

(a ≺ x, b ≺ y) ⇒ (a ≺ y or b ≺ x), for all a, b, x, y ∈ X.

We shall use∼ to denote the symmetric complement of≺. That is,

x ∼ y if and only if not(x ≺ y) and not(y ≺ x).

The relation∼ is the incomparability relation. The undirected graph(X,∼) is called
the interval graphof X.

A linear order is an ordered set(X,≺∗) such thatx 6∼ y for all x, y ∈ X with
x 6= y. A chain in a poset(X,≺) is a linear order

(
C, ≺|C×C

)
with C ⊂ X. A

maximum chain is a chain of maximum cardinality in(X,≺).

Hereinafter, unless otherwise noted,X = (X,≺) will denote an interval order, and
we will let n = |X| andX = {x1, . . . , xn}.

2.2 Maximal cliques and their linear ordering

M ⊂ X is acliqueof X if x ∼ y for all x, y in M . A maximal cliqueis a clique
not properly contained in any other clique. We will denote byM (X) the set of
maximal cliques of an interval orderX.

A crucial characterization of interval orders is that there exists a natural linear order-
ing on their set of maximal cliques [1]. Specifically, ifMa,Mb ∈ M (X) and we
define the relation< overM (X) by

Ma<Mb ⇔ (Ma \Mb) ≺ (Mb \Ma) ,



then(M (X), <) is a linear order, where the relation≺ is extended to subsets ofX
in the obvious manner.

Settingm = |M (X)|, we will assign subscriptsi = 1, . . . , m to the elements of
M (X) according to their linear ordering, that is withMi<Mj ⇔ i < j. Minima
and maxima are thus well-defined elements over subsets ofM (X).

2.3 Properties of interval order elements

Elements ofX have properties which depend on the maximal cliques ofX. If x is
contained in only one maximal clique thenx is termed asimplicial element, since
its neighbourhood in the interval graph is complete. A maximal clique containing a
simplicial element is said to be essential. It can readily be shown that the first and
last maximal cliques inM (X), M1 andMm, must always be essential (see [14]
and [7], Section 2.3).

Forx ∈ X, we denote byx∗ = {M ∈M (X) : x ∈ M} the dual ofx with respect
toM (X). In such a case, the propositionsx ∈ M andM ∈ x∗ equivalently express
the fact thatx is contained within or covered by maximal cliqueM . For simplicity,
we will write M<x∗ for M< min x∗ andx∗<M for maxx∗<M , though clearly<
is not a linear order on contiguous subsets ofM (X).

The dual of every element of an interval order is a contiguous sequence of maximal
cliques. This property is referred to as theconsecutive–ones propertyof interval
orders.

2.4 Clique matrix

Theclique matrixrepresentation of an interval order is an indicator matrix relating
the elements ofX to the maximal cliques ofM (X). Specifically, the clique matrix
of X is given byA ∈ {0, 1}m×n, where

Aij =
{

1 if xj ∈ Mi

0 if xj 6∈ Mi
.

The definition implies that the rows ofA are ordered similarly to the elements of
M (X). Under this ordering, all interval orders will have a unique clique matrix



representation up to the subscript ordering ofX or, equivalently, up to ordering of
the columns ofA.

Our usage of the term “clique matrix” differs from the traditional one ([11], Chap-
ter 3) in that we require the rows of the clique matrix to be ordered according to
the maximal clique linear ordering, thus explicitly preserving the consecutive–ones
property.

2.5 Covers of maximal cliques

Minimal covers of interval orders form the focus of this paper. We formalize the
concept.

Definition 1 For X = (X,≺) an interval order, we callC ⊂ M (X) a coverof
X if X =

⋃
M∈C M . We will call the coverW a minimal coverof X if no proper

subset ofW is a cover ofX. A minimal cover is aminimum coverif it has lowest
possible cardinality.

Clearly all essential maximal cliques are contained in every minimal cover. The
fact that minimal covers of various cardinalities exist is not so immediately obvious.
Finding them is dealt with in Section 3.

Maximal removable sets (MRSs) are closely related to minimal covers.

Definition 2 A maximal removable set is a setR of maximal cliques such that
M (X) \ R is a minimal cover.

The properties of MRS’s and a direct enumeration method for them are discussed in
Section 5.

2.6 Covers and self-consistent estimates

This section briefly describes the substantive statistical problem which motivated
the present research. It may be skipped by readers without a break in continuity or
understanding.



Survival analysis is a branch of statistics concerned with the analysis of event-time
data. Such a datum consists of the time elapsed between an onset and an event, such
as between start of chemotherapy and relapse in a cancer patient. Data of this type
are often incompletely observed. For example, a study may end before the event
of interest is observed, in which case the duration is only known to be longer than
a certain value: this situation is referred to as right-censoring. Another common
pattern occurs when individuals are monitored periodically for the development of
a condition (the event of interest). In such a situation, the event time will only be
known to have occurred within a certain time interval, and the exact moment of
occurrence remains unknown. Such event-time data are said to beinterval censored.

Under interval censoring,self-consistent estimates(SCEs) form an important class
of event-time distribution estimates[12,16,25]. SCEs are crucially related to the
maximal clique covers of the interval order underlying the data. SCEs will only
place probability mass on the real representation of the maximal cliques of the in-
terval graph of the data, that is, on the maximal intersectionsHi =

⋂
Xj∈Mi

Xj ,
where theXj , j = 1, . . . , n are taken to be the real intersections forming the data
[17,22]. If A is the clique matrix of the data,pi the probability mass placed on
Hi andp = [p1, . . . , pm]>, then an SCE ofp is any vector̂p ≥ 0 (elementwise)
satisfying

∑m
i=1 p̂i = 1 and

np̂ = Dp̂A(A>p̂)−I, (2.1)

whereDx is the diagonal matrix with diagonalx andx−I = [1/x1, . . . , 1/xn]>

[10]. Existence of an SCE follows from the existence of a unique nonparametric
maximum likelihood estimate (NPMLE), which is itself an SCE [9].

Clearly an incidental requirement on̂p from (2.1) is thatA>p̂ > 0 elementwise,
that is, Cp̂ .= {Mi ∈M (X) : p̂i > 0} must form a cover for the data. We can
also establish the converse as follows. A basic algorithm to obtain an SCE is the
EM algorithm [2], which in this instance consists of iterating Equation (2.1) withp̂
replaced byrth iteratep(r) on the right-hand side and by(r + 1)th iteratep(r+1)

on the left-hand side, starting from some initial valuep(0). Iterations are pursued
until convergence to a fixed point of (2.1). Ifp(0) > 0 elementwise, the incomplete
multinomial nature of the data [23] causesp(r) to converge to the NPMLE ofp
through this iterative procedure [24].

If some of the entries ofp(0) are identically zero butC = Cp(0) remains a cover for
the data, thenp(r) will converge to a unique SCEpC , regardless of the values of the
non-zero entries ofp(0). This can be seen by positing artificial interval censored data



with clique matrixA∗ consisting of the rows ofA corresponding to the maximal
cliques inC (see Lemma 3.4). The limitpC is then isomorphic to the unique NPMLE
given these artificial interval censored data.

Thus every cover ofX corresponds to a unique self-consistent estimate, although
several “starting value covers”Cp(0) may yield the same SCE. IfCp(0) is a minimal
cover, the EM algorithm will yield an SCÊp with Cp̂ = Cp(0) , since in the artificial
data posited above, every maximal clique is essential. Any empirical investigation of
SCEs on the semi-lattice of maximal clique covers must start with an investigation
of the minimal covers, which form the base of this semi-lattice. This is what we
propose in the present article.

3 Enumerating minimal covers

In this section, we first present a simple algorithm in Construction 3.2 which enables
us to find a singleminimumcover. This procedure is similar to that found in [8]; its
expression is couched in the language of comparability rather than incomparability,
and serves to introduce its generalization to Construction 3.3.

The following result is the well-known dual expression of Dilworth’s Decomposition
Theorem [3] and concerns the cardinality of minimum covers.

Theorem 3.1 Let (X,≺) be a partially ordered set. The length of the longest chain
of (X,≺) equals the minimum number of cliques required to cover the elements of
X.

Since the minimum number of cliques can be no smaller than the minimum number
of maximal cliques which cover a poset, the theorem tells us that a minimum cover
has cardinality equal to the length of the longest chain in the poset.

This result can be shown constructively for interval orders, with the added bonus
that we produce a minimum cover and a maximum chain in the process. In essence,
the following Construction and Theorem state that there exists a minimum cover
consisting of a set of maximal cliques, each of which uniquely contains a certain
element. The set of these elements forms a maximum chain in the interval order.

Construction 3.2 Let{M1, . . . ,Mm} be the linearly ordered set of maximal cliques
of interval orderX = (X,≺). Let y1 be a simplicial element ofX belonging to



the first maximal cliqueM1, and letµ1 = M1. Form the setsY ′
1 = {y1} and

W ′
1 = {µ1}. Then form the setsY ′

i andW ′
i for i > 1 as follows:

Whilei is such that{y ∈ X : µi−1<y∗} 6= ∅, let Y ′
i = Y ′

i−1

⋃ {yi}, where

yi ∈
{

y ∈ X : argmin
y

max
µi−1<y∗

y∗
}

,

is a particular selection ofyi, and letW ′
i = W ′

i−1

⋃ {µi}, where

µi = max y∗i .

Theorem 3.2 Under Construction 3.2, there existsI such that{y : µI<y∗} = ∅
andW ′ = W ′

I is a minimum cover forX.

Proof. The proofs of coverage and minimality forW ′ are specializations of the
proofs of Claims 1 and 2 in Theorem 3.3, possible since Construction 3.2 is a special
case of Construction 3.3. Proof thatW ′ is of minimal cardinality is simple viewed
from the context of Theorem 3.3. 2

The initial inclusion of{M1} in the sequence ofW ′
i ’s in Construction 3.2 is le-

gitimate and necessary sinceM1 is always essential, and therefore required in any
cover. We note without proof thatY ′ is a maximum chain inX.

Example 3.1 (In the following example as in subsequent ones, elements ofX [columns]
are identified by regular subscripts and maximal cliques ofX [rows] by bolded sub-
scripts.)Consider the clique matrix

A =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8




1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1




Construction 3.2 yieldsW ′ = {1,4,7,8}, with I = 4. Members of these maximal
cliques which donotbelong to maximal cliques previously chosen in the construction



have their clique matrix entries underlined above.Y ′ could be either of the sets
{1, 7, 12, 16} or {1, 7, 13, 16}. The occurrences of they’s in the maximal cliques
for which they cause inclusion in the minimum cover are bolded in the matrix.

Before proceeding with minimal covers, it is necessary to perform a reduction of
the interval order. We cally ∈ X a ⊂-minimal element, or a⊂-minimal for
short, if its dual,y∗, is minimal in the subset ordering, or equivalently ify∗ has
no other dual as a proper subset. LetME (X) denote the set of⊂-minimals of
X; in particular,ME (X) will include all simplicial elements. As an illustration,
ME (X) = {1, 7, 10, 13, 16} for the interval orderX of Example 3.1.

We note thatME (X) is an embedded semi-order inX [7, Chapter 6]. We will order
⊂-minimals according to the relation<−, where fory1, y2 ∈ ME (X),

y1 <− y2 ⇔ min y∗1< min y∗2 ⇔ max y∗1<max y∗2 .

We assume henceforth that no two⊂-minimals share the same dual, an assumption
that is easy to enforce in practice. The ordering<− corresponds to both the left–
and the right–endpoint orderings≺− and≺+ described in [7,§2.2]; it is a linear
ordering onME (X). It is obvious that the minimal covers ofME (X) are exactly
the minimal covers ofX.

Construction 3.2 will yield a singleminimumcover. The natural generalization from
this setting is to broaden the choice forµi without changing the property that no two
elements ofY are covered by the same maximal clique. This generalization leads to
Construction 3.3.

Construction 3.3 Let y1 be a simplicial element ofME (X) belonging to the first
maximal cliqueM1, and letµ1 = M1. Form the setsY1 = {y1} andW1 = {µ1}.
Then form the setsYi andWi for i > 1 as follows:

Whilei is such that{y ∈ ME (X) : µi−1<y∗} 6= ∅, let Yi = Yi−1

⋃ {yi}, where

yi ∈
{

y ∈ ME (X) : argmin
y

max
µi−1<y∗

y∗
}

,

is a particular selection ofyi, and letWi = Wi−1

⋃ {µi}, where

µi ∈ y∗i \ y∗i−1

is a particular selection ofµi.



The requirement that they’s be limited to the set of⊂-minimals can be illustrated
using the interval order of Example 3.1. Suppose that Construction 3.3 is being
applied and has so far generatedY ′

2 = {1, 7} andW ′
2 = {1,4}. If we do not restrict

y3 to belong toY (X), then we could usey3 = 12. If the selection of maximal
clique yieldsµ3 = 5, the next step of the Construction will force7 ≺ y4, bypassing
element13. It should be clear that maximal clique5 belongs to no minimal cover,
in this example.

Theorem 3.3 For every sequence of pairs(Wi, Yi) , i = 1, . . . formed in Construc-
tion 3.3, there existsI ≤ m such that{y : µI<y∗} = ∅. Defining (W, Y ) =
(WI , YI), the class of minimal covers ofX is exactly the class of setsW which can
be produced by Construction 3.3.

A simple Lemma is necessary for the proof of Theorem 3.3.

Lemma 3.4 LetM′ ⊂M (X). Then there exists an interval ordering≺′ such that
M′ = M (X,≺′).

Proof of Lemma 3.4.Since(M (X), <) is linearly ordered,
(M′, <|M′×M′

)
is a

linearly ordered set of maximal cliques. ThereforeM′ is the set of maximal cliques
for some interval order≺′⊂ X ×X [1]. 2

Proof of Theorem 3.3.First we must show thatI is well-defined for any selection
of yi, µi, i = 1, . . . , I compatible with Construction 3.3. Sinceµi−1<y∗i and since
µi ∈ y∗i , it must be thatµi−1<µi. Thus in at mostm steps we will reachµI =
Mm. SinceMm = maxM (X) we obtain{y : µI<y∗} = ∅, and the construction
terminates.

We now show the theorem’s statement in three steps:

1. EveryW produced by Construction 3.3 is a cover forX.

2. Every coverW produced by Construction 3.3 is minimal forX.

3. Every minimal cover forX is a setW compatible with the selection method
of Construction 3.3.



• Claim 1: EveryW is a cover forX.

Let Y = YI andW = WI be particular realizations of Construction 3.3, and let
x ∈ X be arbitrary. We must show thatµ ∈ x∗ for someµ ∈ W. If x ∈ Y , x is
covered by construction, so assumex ∈ X \ Y . Sinceµ1 = M1<x∗<Mm = µI ,
there must be somei such thatµi<x∗ but µi+1 6<x∗. Also, since we knowyi+1

minimizes max
µi<y∗

y∗ and sinceµi<x∗, we deduce thatmax y∗i+1 ≤ max x∗.

We can now show thatµi+1 ∈ x∗. Assume not; then we needmax x∗<µi+1. But
thenmax x∗<µi+1 ≤ max y∗i+1 ≤ max x∗, a contradiction. Thereforex is con-
tained inµi+1, soW is a cover.

• Claim 2: Every coverW is minimal forX.

Let Y andW be particular realizations of Construction 3.3 as before, and letW(i) =
W \ {µi} for somei ∈ {2, . . . , I − 1}, since neitherµ1 = M1 nor µI = Mm can
be removed. We show thatW(i) is not a cover.

Sinceµi−1<y∗i , we know thatµi−1 6∈ y∗i , which implies that{µ1, . . . , µi−1}
⋂

y∗i =
∅, by the linear ordering of the maximal cliques. By construction,µi+1 6∈ y∗i , which
again implies that{µi+1, . . . , µt}

⋂
y∗i = ∅. HenceW(i) does not coveryi, and

thusW is a minimal cover.

• Claim 3: Every minimal cover forX is produced by the algorithm of the
theorem.

Let V = {ν1 = M1, ν2, . . . , νt−1, νt = Mm} be a minimal cover. We need to sup-
ply a setY = {y1, . . . , yt} such thatV andY satisfy Construction 3.3. For this it is
enough to show that

if yi ∈
{

y : argmin
y

max
νi−1<y∗

y∗
}

for i = 1, . . . , I, thenνi ∈ y∗i \ y∗i−1. (3.2)

Apply Construction 3.2 toV , which by Lemma 3.4 is the maximal clique set of
some interval order. SinceV is minimal, it is its own minimum cover. The setY ′

produced in the construction satisfies requirement (3.2). 2



Though Construction 3.3 involves an arbitrary selection from a set, the available set
from which to selectµi does not depend on the particular choices ofyi−1 andyi,
since onlymax y∗i−1 andmax y∗i play a role in the determination of that set. Al-
gorithm 3.5ListMinCovers below explicitly recognizes this fact by retaining only
this information from the elements ofY . On the other hand, the choice ofµi−1 does
affect the set of availableyi’s at every step.

We can translate Theorem 3.3 to the following algorithm, which returns the set of all
minimal covers ofX when called with arguments(Xmin, ∅), with Xmin the set of⊂-
minimals ofX. The second argument is∅ only on the first call, with the convention
that∅<M for all M ∈ M (X); otherwise it is a maximal clique,µ0, which corre-
sponds tomax y∗i−1 and contributes to defining the sety∗i \y∗i−1 of Construction 3.3.

Algorithm 3.5

ListMinCovers(Y, µ0)
Arguments: Y , a set of ⊂-minimals ordered according to <−;

µ0, a subset of Y .

begin
if Y = ∅

return {∅}
else

M← ∅
L1: y0 ← argmin

y
max
y∈Y

y∗

L2: for each µ ∈ {M : M ∈ y∗0 , µ0<M}
R1: M0 ← ListMinCovers({y : µ<y∗} ,max y∗0)
L3: for each W ∈M0

M←M⋃ {{µ0}
⋃W}

return M
end

The callListMinCovers(ME (X), ∅) will return the list of minimal covers ofX.

We now establish the time complexity of Algorithm 3.5. Letn0
.= |ME (X)|

andm0
.= maxy∈Y |y∗|. DefineT (i) to be the time complexity of Algorithm 3.5

when called with a setYi = {yi+1, yi+1, . . . , yn0} ⊂ ME (X) of ⊂-minimals,i =



0, . . . , n0−1. LetNmax(m) be the maximum number of minimal covers for an inter-
val order withm maximal cliques. We show in§6.1 thatNmax(m) ≤ O(1.84m−1).

We usek0, k1, k2, k3 . . . to denote unknown constants. WithListMinCovers called
with argumentYi, i < n0, statement L1 is executed in constant timek1, since the or-
dering properties of<− onYi imply thatargminy maxy∈Y y∗ = yi. The number of
iterations of L2 is bounded above bym− i−1, i = 1, . . . ,m−1. At thejth iteration
of L2, statement R1 will require time bounded above byT (i+j)+k2, returning a set
containing at mostNmax(m− i− j) maximal cliques,j = 1, . . . , n0 − i. The total
execution time of L3 within iterationj of L2 is thus bounded above byk3Nmax(m−
i − j). ThusT (i) ≤ k1 +

∑n0−i
j=1 [T (i + j) + k2 + k3Nmax(m− i− j)] for i =

0, . . . , n0 − 1. PositingT (n0) = k0, and given the bound onNmaxm, standard
manipulations shows that the overall time complexityT (0) is bounded above by
O(2max(n0,m−2)). We note that the⊂-minimality of elements ofME (X) forces
n0 ≤ m = |M (X)|. Part 1 of Observation 3.6, below, shows that we can remove
all simplicial elements from the set of⊂-minimals to run the algorithm, yielding an
effective bound ofn0 ≤ m − 2. Hence the time complexity of Algorithm 4.1 is
bounded byO(2m−2).

In practice, this exponential time complexity shows that tractability can be main-
tained asn → +∞ if m increases slowly enough with respect ton. In general,
however, enumeration is impractical and we will need a random generation alterna-
tive to enumeration. In§ 4, we see how Algorithm 3.5 can be adapted to a uniform
Metropolis independence sampler, thereby converting issues of tractability to issues
of efficiency.

In some settings involving a moderate amount of data, enumeration may remain a
viable option. Apart from the reduction of the originalX to its⊂-minimals, several
other simplifications can be applied to the minimal cover enumeration procedure of
Construction 3.3. These simplifications may provide substantial gain in practice,
particularly in counting, rather than enumerating, minimal covers.

Observation 3.6

1. Every essential maximal clique in the minimal coverW may be includeda
priori in a listed cover, thereby restricting the⊂-minimal setME (X) to non-
simplicial elements, as these elements can only generate their own essential
maximal clique in Construction 3.3.



2. Assuming still that⊂-minimals are sorted according to the order of the ini-
tial maximal clique of their dual, we need only find minimal covers for⊂-
minimals belonging to connected components of the interval graph, and com-
bine them at the end of the procedure.

3. Maximal cliques which overlap exactly the same⊂-minimals will be mutu-
ally exclusive and interchangeable in any minimal cover produced by Con-
struction 3.3. The classes of such elements can be kept track of and all but
one element from each class deleted from the problem, to be reinstated after
the covers are listed.

The above considerations lead to straightforward modifications to Algorithm 3.5 In
the time complexity analysis, parts 1 and 2 of the above Observation effectively
decreasen0, while part 3 effectively decreasesm0, though the worst-case time-
complexity remains unchanged.

4 Uniform sampling of minimal covers

4.1 Random generation

Since the number of minimal covers often precludes enumeration, a procedure for
pseudo-random generation must be devised. A random minimal cover generation
algorithm can be obtained from Algorithm 3.5. To generate one minimal cover, a
maximal clique is selected uniformly at random from those available at each itera-
tion. Algorithm 4.1 returns both a minimal cover and its probability of generation
by the algorithm.

The callRandomMinCover(ME (X)) described in Algorithm 4.1 will return a ran-
dom minimal coverW, the corresponding random chain of⊂-minimalsY and the
probability of generationp.

Algorithm 4.1 does not generate minimal covers with uniform probability, but can be
adapted to this task. The simplest way to do so is to base an independence Metropolis
sampler [13] on the algorithm. A useful characteristic of the independence Metropo-
lis sampler in our context is that it allows perfect sampling, unlike most instances of
MCMC where only bounds on the total variation or some other measure of conver-
gence are available.



Algorithm 4.1

RandomMinCover(ME (X))
Argument: ME (X), the set of ⊂-minimals of interval order X;
begin
Y ← ME (X)
W ← ∅
Y ← ∅
µ0 ← ∅
p ← 1
while Y 6= ∅

begin
y0 ← argmin

y
max
y∈Y

y∗

T ← {M ∈ y∗0 ;µ0<M}
µ0 ← ChooseRandom(T )
p ← p

|T |
W ← W ∪ {µ0}
Y ← Y ∪ {y0}
Y ← {y ∈ Y ;max y∗0<y∗}
end

return (W,Y, p)
end

We briefly describe the Metropolis independence sampler for our application. We
call trial probability of a minimal cover the probability that it is generated by Al-
gorithm 4.1, and denote byp(W) the trial probability ofW. The Markov chain of
minimal covers is denotedWk, k = 0, 1, , . . . . The independence Metropolis sam-
pler starts with a minimal coverW0 taken from thep(·) distribution. Thereafter,
given current chain stateWk, Algorithm 4.1 generates a proposalW and a random
uniform variateUk ∈ (0, 1). The next state in the chain is determined by

Wk+1 =
{ Wk if Uk ≥ p(Wk)/p(W)

W otherwise.
(4.3)

The stationary distribution of the chain is uniform.

The ability to perform perfect simulation is a property of all Metropolis indepen-
dence samplers for which the minimum and maximum trial probabilities as well as



their corresponding states are known. If we assign a weak ordering of the state space
corresponding to the natural ordering of the trial probabilities, it is easy to see that
the Markov chain given by transition rule (4.3) is monotone in the sense of Propp &
Wilson [18]. Their method of coupling from the past can be used to achieve station-
arity of the chain. Given a partial order on the minimal covers, coupling from the
past will start two chains from a maximal and a minimal state at some fixed time in
the past, and run them using the same proposals and the same sequence ofUk ’s. If
the chains are in the same state at time zero, the distribution of the resulting minimal
cover is exactly uniform. An overview of this form of coupling for independence
Metropolis samplers is provided in [15].

4.2 Minimum and maximum trial probabilities

Though the implementation just described is perhaps the simplest possible form of
coupling from the past, it requires knowledge of the minimum and maximum trial
probabilities. In order to find an expression for these, we first reduce the problem
along the lines of Observation 3.6, parts 1 and 2. Specifically, we remove all sim-
plicial elements from the list of⊂-minimals, and we consider the problem only for
a list of⊂-minimals which forms a connected incomparability graph. Otherwise,
we can consider each component of the incomparability graph in turn, as the maxi-
mal cliques and⊂-minimals returned by Algorithm 4.1 from one component do not
affect those returned from another component.

Algorithm 4.1 can be thought of as returning a list of pairs of maximal cliques and⊂-
minimals, specifically a set{(µik

, yjk
) : µik

∈ W, yjk
∈ Y}whereik < il andjk <

jl wheneverk < l. We call such a set a minimal cover list. Since minimal cover
lists and minimal covers are in one-to-one relation, we can analyze trial probabilities
using minimal cover lists.

Let S(s, t) be the set of all sequences of the form

[(µi1 , yj1 = y1), (µi2 , yj2), ..., (µir = µs, yjr = yt)]

whereµik
∈ y∗jk

, k = 1, . . . , r, µik
∈ M (X) andyjk

∈ ME (X) for k = 1, . . . , r,
andµi1<µi2< . . . <µir = µs andy1 = yj1 <− yj2 <− · · · <− yjr = yt. Note that
S(s, t) is larger than the set of minimal cover lists, in that it contains minimal cover
sublists as well as non-minimal and non-covering lists.



We set a probability measureP on S(s, t) based on the trial probabilities. Specif-
ically, for σ ∈ S(s, t), P [σ] is the probability that the Algorithm 4.1 produces the
list or sublistσ at any step in its execution.

Definegs,t by

gs,t =
{

0 if P [σ] = 0 for all σ ∈ S(s, t)
min{P [σ] > 0 : σ ∈ S(s, t)} otherwise.

It must then be true that

g = min{gs,t > 0 : 1 ≤ s ≤ m, 1 ≤ t ≤ q}

corresponds to the minimum trial probability of a minimal cover. To see why, sup-
pose thatσ(s, t) has minimum non-zero trial probability. If the corresponding maxi-
mal clique set{µi1 , . . . , µs} is not a minimal cover, there exist a superset of it which
is, otherwiseP [σ(s, t)] = 0. Since the probability of generating a minimal cover
list is never greater than that of generating a sublist included in it, there is therefore
a minimal cover with minimal non-zero trial probability.

We adopt the convention that[µs], [yt] and[(µs, yt)] denote the events thatµs, yt and
(µs, yt), respectively, are generated by Algorithm 4.1 as part of a returned minimal
cover list. Consider now the following decomposition ofP [σ] for σ ∈ S(s, t):

P [σ] = P
[
(µs, yt), (µir−1 , yjr−1), . . . , (µi1 , y1)

]

= P [µs| yt, yjr−1

]
P [yt| (µir−1 , yjr−1)

]
P

[
(µir−1 , yjr−1), . . . , (µi1 , y1)

]

In the above expression,

P [µs| yt, yjr−1

]
= 1l

[
µs ∈ y∗t \ y∗jr−1

] ∣∣∣y∗t \ y∗jr−1

∣∣∣
−1

P [yt| (µir−1 , yjr−1)
]

= 1l
[
yt = argmin

y

{
y : µir−1<y∗

}]
.

where the latter indicator is 0 if
{
y : µir−1<y∗

}
= ∅.

Now set

zs,t = max
s0<s
t0<t

{
1l
[
µs ∈ y∗t \ y∗t0

]
1l
[
yt = argmin

y
{y : µs0<y∗}

]
gs0,t0

}
,



and we can write

gs,t =





0 if zs,t = 0
min
s0<s
t0<t

gs0,t0∣∣y∗t \ y∗t0
∣∣ otherwise. (4.4)

Thus, given allgs0,t0 , it is possible to scan all pairs(µs0 , yt0) for s0 < s and
t0 < t to obtain the minimum trial probability of generating a sequence ending
with (µs, yt).

The maximum trial probability can be determined in much the same way. Following
an argument similar to the one leading to (4.4), we define

hs,t = max
σ(s,t)∈S(s,t)

P [σ(s, t)].

The following recurrence relation then holds:

hs,t = max
s0<s
t0<t

hs0,t0∣∣y∗t \ y∗t0
∣∣ .

Determining the covers corresponding to the minimum and maximum trial proba-
bilities requires a small amount of bookkeeping associating minimal covers with the
relevant index pair(s, t). Because the procedure used follows the<− ordering of the
⊂-minimals, the relevant index pair will be such thatµs ∈ y∗q , whereq = |ME (X)|.
The minimum trial probability minimal cover can thus be obtained from the index
pair

(s0, t0) = argmin
(s,t)

{
gs,t > 0 : µs ∈ y∗q

}

while the index pair of the maximal trial probability minimal cover will be

(s1, t1) = argmax
(s,t)

{
h(s, t) : µs ∈ y∗q

}
.

Aside from the possibility of performing perfect sampling for minimal covers, the
question of the efficiency of the independence Metropolis sampler has been ad-
dressed by [15] and [20]. In the present case, puttingp(k)(W) to be the probability
thatWk = W in a chain started from some distributionp(·) and lettingN be the



number of minimal covers, we obtain the geometric convergence rate
∣∣∣ p(n)(W)− 1/N

∣∣∣ ≤ (1−Npmin)
k

wherepmin is the minimum trial probability. An expression of this bound wholly in
terms ofq or m and of total variation is still missing.

5 Maximal removable sets

We now turn our attention to maximal removable sets (MRS). In Definition 2, an
MRS was defined to be a set of maximal cliques such that its complement, with
respect toM (X), is a minimal cover. An equivalent characterization of minimal
covers can be obtained in terms of removable sets. A set of maximal cliques is
removable if no sequence of maximal cliques in the set is equal tox∗ for anyx ∈ X.
A removable set is maximal if adding any maximal clique creates such a sequence.
Hence, an MRS is maximal among removable sets under inclusion ordering.

Algorithm 5.2 is discussed in this section for expository purposes. It stands in stark
contrast to the backtracking approach of Algorithm 3.5, and may eventually suggest
novel methods for random generation.

5.1 Simplifying Assumptions

For any minimal cover or maximal removable set problem, we can assume that the
only essential maximal cliques areM1 andMm. If any other maximal clique, say
Mr, is essential, the problem can be split into two subproblems: one dealing with
M1 throughMr and the other with maximal cliquesMr throughMm. The solution
to the large problem is simply the union of the solutions to the two subproblems.

For a minimal cover this statement would be negated if there existed a maximal
clique which belonged to the minimal cover of one subproblem but which could be
removed once the union were formed. This would imply that the elementx covered
by this maximal clique had now been covered by a maximal clique from the other
subproblem. However, by the contiguity (consecutive-one’s property) of the dual,
any such maximal clique would be covered byMr, and hence a contradiction would
arise. Since every MRS is the complement of a minimal cover, the problems are
equivalent and the same simplification is obtained.



We also assume that anyx such thatx∗ contains an essential maximal clique has
been removed from the problem, since it is covered by the essential maximal clique.
In other words, since the essential maximal clique must have been retained, the
elementx imposes no other restrictions on the MRS.

5.2 MRS generation algorithm

Once the simplifying assumptions of Section 5.1 have been applied we may assume
that we are dealing with maximal cliquesM2 throughMm−1 and that none of these
maximal cliques are essential.

The following simple Lemma can be proven under these assumptions.

Lemma 5.1 For anyi such that2 6 i 6 m− 3 bothMi andMi+2 can be removed
together.

Proof. Suppose not. Then there must exist anx such thatx∗ includesMi andMi+2

but notMi+1. For all interval ordersx∗ must be contiguous hence no suchx can
exist. 2

The basis of our MRS generating algorithm lies in the following two properties of
interval orders.

Property I If Mi is the largest maximal clique in a removable set, thenMi+2 can
be removed fori < m− 2.

Property II There can exist MRSs containing bothMi andMi+3 and neitherMi+1

nor Mi+2.

Property I is simply a special case of Lemma 5.1 and hence holds. Property II can
hold whenx∗1 = {Ma, . . . , Mi,Mi+1}, a ≤ i, andx∗2 = {Mi+2,Mi+3, . . . , Mb},
i + 3 ≤ b. In this case, if{Ma, . . . , Mi}

⋃ {Mi+3, . . . , Mb} is removable and
removed then neitherMi+1 norMi+2 can be removed.

In principle, our algorithm consists of enumerating all removable sets and then delet-
ing from the enumeration those that are proper subsets of any other removable set.



The efficiency of the algorithm can be optimized by performing the deletions while
enumeration is taking place.

We first note the form of removable sets. We maintain the subscript ordering de-
scribed in Section 2.2. Consider the subscripts of any two adjacent elements of
an MRS. They must follow one of three patterns:(Mi, Mi+1), (Mi, Mi+2), or
(Mi,Mi+3). It is not possible for(Mi, Mi+4) to occur in sequence in an MRS
because, by a variant of Property I, it is possible to removeMi+2 for any removable
set which includes(Mi, Mi+4), and hence the removable set is not maximal.

This points to a further important property of MRSs. Consider constructing an MRS
starting with eitherM2 or M3 and subsequently adding maximal cliques with larger
indices. The partially constructed list will be termed a candidate set. Define thehead
of a candidate set as the set of maximal cliques with subscripts contiguous with the
largest maximal clique in that candidate set. Any two candidate sets with the same
head will evolve in exactly the same manner. A gap in the sequence of maximal
cliques making up a removable set provides a kind of independence: the future
evolution of a candidate set does not depend on those maximal cliques preceding the
gap.

For example, suppose two candidate sets are{M2,M3,M5} and{M3,M5}. There
is then no point in pursuing{M3, M5} since its evolution can be no different from
that of{M2,M3, M5} and therefore it cannot be maximal. On the other hand if one
candidate is{M2, M3,M4} and a second is{M3, M4} then such elimination is not
possible. While the smaller is a proper subset of the larger, they do not share the
same head.

From the preceding argument we can deduce that there are at most3m−2 sequences
to be examined. However, the number is actually much smaller. One needs to con-
sider(Mj ,Mj+3) only if (Mj , Mj+1) is not possible. Hence the true upper bound is
2m−2. A further substantial saving comes from identifying and deleting candidates
that will become proper subsets of other candidates.



Algorithm 5.2

ListMaxRemovableSets(S)
Arguments: S a list of candidates.

begin
if S = ∅ then

return ListMaxRemovableSets({{M2,M\M2}} , {M3,M\ {M2,M3}})
else

begin
S∗ ← ∅
for each w = {s,M} in S

begin
if isCovered(s, S∗, S) break
S∗ = Append ( S∗, {(s ∪M2),M\{M1,M2}})
if isRemovable(s ∪M1)

S∗ = Append ( S∗, {(s,M1),M\M1})
else if isRemovable(s ∪M3)

S∗ = Append (S∗, {(s,M3),M\{M1,M2, M3}})
end

if Finished (S∗)
return (S∗)

else
return ListMaxRemovableSets(S∗)

end
end

Our algorithmgrowscandidate lists starting at the left end. By Property I eitherM2

or M3 must be the first element of the MRS. From this point elements are added se-
quentially to the candidate lists according to Properties I and II and the observations
made above.

Any candidate which is a proper subset of another candidate can be deleted if both
have the same head ; this is detected by the functionisCovered. The functionisRe-
movabledetermines whether a given candidate can be removed. Finally the function
Finisheddetermines whether all candidates have been pursued toMm.

Since the workings of Algorithm 5.2 are slightly more complex than those of Algo-
rithms 3.5, we provide an example in Appendix A.



6 The number of minimal covers of an interval order

How many minimal covers doesX have? The question is not only of theoretical
interest. In applications, if this number grows too large for the size ofX, we might
opt for random generation of minimal covers instead of enumeration.

The number of minimal covers will depend on four characteristics of the interval
order: the number of maximal cliques, the number of⊂-minimals, the cardinality of
each⊂-minimal and the amount of overlap between the⊂-minimals. The problem
of determining the number of minimal covers for a general interval order is thus
fairly complex.

We aim at bounding the maximal number of minimal coversNmax(m) for an in-
terval order withm maximal cliques. The next section provides lower and upper
bounds onNmax, while the section following provides some simulation results de-
signed to supply an empirical approximation for this number and to determine the
applicability of Algorithm 3.5 in a realistic situation.

6.1 Bounds onNmax(m)

Theorem 6.1 For m ≥ 2 and under the simplifying assumptions of§ 5.1,

⌊
(0.69)1.44m−1

⌋ ≤ Nmax(m) ≤ ⌈
(0.62)1.84m−1 + 0.5

⌉
(6.5)

Proof. An immediate lower bound on the maximum number of minimal covers
Nmax(m) for a givenm can be determined if we assume no overlap between⊂-
minimals. The number of minimal coversnoNmax in the case of no overlap is then
simply the product of the cardinalities of the⊂-minimals. SinceM1 andMm are
essential and both contain a⊂-minimal of cardinality1, we need to partitionm− 2
elements into consecutive sequences such that the product of the lengths of these
sequences is maximized. The problem can be reformulated as that of maximizing∏K

k=1 ak subject to
∑K

k=1 ak = m − 2 for K anda1, . . . , ak, for which a solution

is exposed in [19, Theorem 4-6]. For all values ofm ≥ 2, noNmax ≥ 3
m−2

3 =
(3−1/3)(31/3)m−1.

For the upper bound, we bound the number of MRSs compatible withm maximal
cliques by using the properties of MRSs described in Section 5.2. Specifically, we



determine the numberBm of ways in which a sequence ofm − 1 (ordered) items
can be partitioned exactly in consecutive groups of 1, 2 or 3 items, such that a group
of 3 items occurs neither at the beginning nor at the end of the sequence. If we take
the items to be the linearly ordered maximal cliques of an interval order beginning
at M2, then a set formed by the final maximal clique of each group, bar the last
group, will form a set of maximal cliques of the requisite structure for an MRS.
The number of such partitions thus forms an upper bound on the number of MRSs
achievable withm maximal cliques.

The reason for starting the sequence atM2 and omitting to include the final maximal
clique from the last group is thatM1 and Mm are essential, and thus cannot be
removed. The requirement that a group of 3 neither start nor end a sequence of
groups formed in this manner ensures that at least one of maximal cliquesM2 and
M3, and at least one ofMm−2 andMm−1, will be included in the candidate set, the
necessity of which is stated in Section 5.2.

To determine the number of groupings ofm − 1 items in sequence which satisfy
the above conditions, we start with the determination of the numberGm of general
groupings in1, 2 or 3 of m− 1 items which do not necessarily satisfy the condition
on the first and last group. Since each such sequence must start with a group of
lengthi = 1, 2 or 3, and since the remainder of the sequence ofm− i− 1 elements
must satisfy the grouping requirements as well, it is clear thatGm = Gm−1 +
Gm−2 + Gm−3 for m > 4. To determine the numberBm of group sequences of
m− 1 items which satisfy the requirement of not starting or ending with a group of
length3, we simply subtract the number of unconstrained group sequences which
start or end with a grouping of 3. There are2Gm−3−Gm−6 such groupings, so that
Bm = Gm − 2Gm−3 + Gm−6 for m > 4. A simple algebraic verification shows
thatBm = Bm−1 + Bm−2 + Bm−3 for m > 4. Values for2 ≤ m ≤ 4 are depicted
in the following diagrams. Only the endpoint of each group is identified by a circle
(◦).

M2 ◦ M2 ◦
M3 ◦ ◦

M2 ◦ ◦
M3 ◦ ◦
M4 ◦ ◦ ◦

m = 2, B2 = 1 m = 3, B3 = 2 m = 4, B4 = 3

SinceB2 = 1, B3 = 2, B4 = 3, andBm = Bm−1 + Bm−2 + Bm−3 for m > 4,
Bm = Tm−1, whereTm is themth Tribonacci number [4]. It was shown in [21] that



Tm = dαρm + 0.5e, whereα andρ are given by

α =
1

9
√

33

(
κ2

1 + κ2
2

)
+

5
2

(κ1 + κ2) +
1
3
≈ 0.6184,

ρ =
1
3

(κ1 + κ2 + 1) ≈ 1.8393

for κ1 =
3
√

19 + 3
√

33

andκ2 =
3
√

19− 3
√

33,

which completes the proof. 2

6.2 Simulations and simulation results

The above theorem shows that the maximal number of minimal covers grows expo-
nentially large quite rapidly, lying somewhere between the curvesy = (0.48)1.44m

andy = (0.33)1.84m for m > 1. Having in mind practical applications for minimal
covers, we wish to determine whether, in practice, the number of minimal covers
tends to reach these large values. We adopted a simulation approach with this pur-
pose in mind, with the objectives of assessing the bounds mentioned above and of
determining the behaviour of the number of minimal covers of an interval order
likely to occur as a real data set. The simulation results we present are based on two
pseudo-random interval order generation mechanisms designed to provide answers
to both of these objectives.

The generation mechanisms we present warrant a preliminary explanation. It was
shown in [6] that all interval ordersX can be represented as sets of intervals on the
real line

{
[f(x), f(x) + ρ(x)] : x ∈ X, f : X 7→ IR, ρ : X 7→ IR+

}
,

characterized by left endpoint functionf and non-negative length functionρ, and
such that forx, y ∈ X, x ≺ y if and only if f(x) + ρ(x) < f(y). Thus it is enough,
in order to generate random finite interval orders, to generate left and right endpoints
defining real intervals.

In simulation series A, we systematically varied the numbern of elements inX
between 10 and 115, and the ratio of expected left-endpoint placement to inter-



val length in the real representation. We produced real representations of interval
orders by generating left endpoints according to an Exponential distribution with
mean 1, then generating lengths according to an Exponential distribution with mean
µ = 1/λ, whereλ took on the values0.4, 0.6, . . . , 3.0. A simple calculation shows
that the probability of overlap between any two intervals in such a setup is1/(1+λ),
and so varied between 0.25 and 0.72 in the course of our simulation. By way of com-
parison, the proportion of pairs of overlapping intervals in the breast cosmesis data
presented in [5], was approximately 0.45. For each pair(n, λ), 50 interval orders
were generated, thus yielding 14,300 interval orders in total. Simulation series A
was designed to produce a large variety of overlapping patterns which would help
assess the bounds of Equation (6.5) (see Figure 1).
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Figure 1: Series A sample interval set;n = 20, λ = 0.5.

For simulation series B, we generated intervals by setting potential inspection times
at t = 0, 1, 2, . . . , 30. For each interval , the inspection times were retained with a
probability of 1 fort = 0, a probability of 0.4 fort = 2, . . . , 6, and a probability
of 0.1 for t = 7, . . . , 30. A numbern of event times were generated according to
an Exponential distribution with meanµ, µ = 2, 2 × (1.25) = 3.5, 2 × (1.25)2 =
3.125, . . . , 2 × (1.25)15 = 56.8, for values ofn = 10, 20, . . . , 150. Intervals were
formed by using the largest inspection time smaller than the event time as the left
endpoint, and the smallest inspection time larger than the event time as the right end-
point. This setup mimics a long-term prospective study in which a condition is mon-
itored at fixed inspection times which may be missed; event time corresponds to the



moment of change in condition. This simulation setup can produce intervals without
a finite right endpoint, i.e. right-censored data, with a probability ofexp(−30/µ).
This probability ranged over0.0667, 0.0833, . . . , 0.53. Sixty simulations were run
for each pair(n, µ), thus yielding a total of 13,500 simulated interval orders. Sim-
ulation series B was designed to mimic typical data from a long term prospective
study where a condition is periodically monitored for change (see Figure 2).
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Figure 2: Series B sample interval set;n = 20, µ = 15. (Intervals 1, 4, 11, 17 and 20 are
right censored)

Simulation results are illustrated graphically using boxplots. We adhered to standard
conventions in the use of boxplots. The range represented by the inner shaded box
corresponds to values ofN lying between the first and third quartile of the data, with
the line within this box indicating the median of the values. The difference between
third and first quartiles is called theinterquartile distance. Whiskers are drawn
below to the nearest value which does not fall short of the first quartile minus 1.5
times the interquartile distance, and above to the nearest value which does not exceed
the third quartile plus 1.5 times the interquartile distance. Values exceeding the
whiskers above and below are drawn individually as small line segments. Details on
boxplots, their use and interpretation can be found in any good elementary applied
statistics textbook.
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Figure 3:N as a function ofn for simulation series A. The lower solid line is a least-
squares regression line ofN on n (intercept≈ log(0.461), slope≈ log(1.065));
the upper solid line is a least-squares regression line ofmaxn N on n [intercept
≈ log(1.37), slope≈ log(1.12)].
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Figure 4:N as a function ofk for simulation series A.
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Figure 5: N as a function ofn for simulation series B. Smooth curves were com-
puted using local regression (loess).
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Figure 6:N as a function ofk for simulation series B.



The results of simulation series A are shown in Figures 3 and 4. The exponential
growth of the number of minimal coversN with the cardinalityn of X is manifest
in both the average case and the maximal case, placing an exponential lower bound
on this growth for the general interval order. An approximate value ofANmax(m),
the maximum number of minimal covers in terms ofm for simulation series A, can
be determined by a Poisson regression ofm on n with identity link. Such a re-
gression yieldsm ≈ 0.366n + 0.805, from which we can derive the approximation
ANmax(m) ≈ (0.485)1.023m (see also the results quoted in the caption of Figure 3).
However, Figure 4 shows, as was expected, that this growth is more strongly associ-
ated with the growth of the numberk of⊂-minimals inX than with the growth ofn,
though both quantities are positively correlated. Because simulations were not run
an equal number of times for each value ofk, the range of values ofN as a function
of k should not be interpreted as meaningful on the boxplot.

By contrast, simulation series B shows that the rate of increase ofN with respect ton
diminishes with increasingn in the average case, while the maximum value ofN it-
self remains more or less constant forn ≥ 80 (Figure 5). These results are explained
by the fact that the simulation series B setup creates an expected proportion of right
censored values which increases withµ; this increase causes the number of maximal
cliques to converge in probability to 1 asµ grows larger. In the limit, all intervals
overlap, forming a single maximal clique and a single minimal cover. ThusN tends
to 1 in probability. Figure 6, by contrast, shows that the relationship between the
number of⊂-minimals and the number of minimal covers remains roughly expo-
nential, which indicates that right-censoring curbs the number of minimal covers by
preventing the creation of large numbers of⊂-minimals.

6.3 Perspectives

The results of simulation series A confirm a rapid exponential growth in the number
of minimal covers, which will preclude their enumeration even for modestly sized in-
terval orders. However, simulation series B provides an indication that some realistic
censoring mechanisms, at least, will maintain the number of minimal covers at man-
ageable levels. In this case, the censoring mechanism is based on fixed inspection
times, forces the number of maximal cliques, and thus the number of⊂-minimals,
to be at most the number of inspection times. We can expect this phenomenon to
curb the value ofN to manageable values in some applications.

Refinining the bound onNmax(m) remains an open problem of mostly theoretical
interest.
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A Example of the MRS algorithm

Consider the output of Algorithm 5.2 applied to the data of Example 3.1. In that
example onlyM1 andM8 are essential.

Step 1S0 = {M1, M2}
T1 = {M2,M3} removable
T2 = {M2,M4} removable
T3 = {M3,M4} removable
T4 = {M3,M5} removable

Step 2 S1 = {{M2, M3}, {M2,M4}, {M3,M4}, {M3,M5}}
T1 = {M2,M3,M4} not removablex∗7 ⊂ T1

T ′1 = {M2,M3,M6} removable
T2 = {M2,M3,M5} removable
T3 = {M2,M4,M5} removable
T4 = {M2,M4,M6} removable
T5 = {M3,M4,M5} not removablex10∗ = T5

T ′5 = {M3,M4,M7} removable



T6 = {M3,M4,M6} removable
{M3,M5} is not considered because it has the same head asT2.

Step 3 S2 = {{M2, M3,M6}, {M2, ,M3,M5}, {M2, M4,M5},
{M2, M4,M6}, {M3,M4,M7}, {M3,M4, M6}}

T1 = {M2,M3,M6,M7} not removablex∗13 ⊂ T1

T ′1 = {M2,M3,M5,M6} removable
T2 = {M2,M3,M5,M7} removable
T3 = {M2,M4,M5,M6} removable
T4 = {M2,M4,M5,M7} removable
T5 = {M2,M4,M6,M7} not removablex∗13 ⊂ T5

T ′5 = {M3,M4,M6} removable
T6 = {M3,M4,M7} removable

DoneS = {{M2,M3, M5,M6}, {M2,M3,M5,M7}, {M2, M4,M5,M6},
{M2, M4,M5,M7}, {M3,M4,M6}, {M3, M4,M7}}


