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ABSTRACT
Motivation: Structural studies of metabolic networks yield
deeper insight into topology, functionality and capabilities of
the metabolisms of different organisms. Here, we address
the analysis of potential failure modes in metabolic networks
whose occurrence will render the network structurally incap-
able of performing certain functions. Such studies will help
to identify crucial parts in the network structure and to find
suitable targets for repressing undesired metabolic functions.
Results: We introduce the concept of minimal cut sets for
biochemical networks. A minimal cut set (MCS) is a minimal
(irreducible) set of reactions in the network whose inactiva-
tion will definitely lead to a failure in certain network functions.
We present an algorithm which enables the computation of
the MCSs in a given network related to user-defined object-
ive reactions. This algorithm operates on elementary modes.
A number of potential applications are outlined, including net-
work verifications, phenotype predictions, assessing structural
robustness and fragility, metabolic flux analysis and target
identification in drug discovery. Applications are illustrated by
the MCSs in the central metabolism of Escherichia coli for
growth on different substrates.
Availability: Computation and analysis of MCSs is an addi-
tional feature of the FluxAnalyzer (freely available for academic
users upon request, special contracts for industrial companies;
see web page below).
Contact: klamt@mpi-magdeburg.mpg.de
Supplementary information: http://www.mpi-magdeburg.
mpg.de/projects/fluxanalyzer

INTRODUCTION
Cellular life is characterized by a vast number of direct
or indirect interactions of cellular components. Thus, a
holistic understanding of cellular processes means under-
standing the structure, dynamic behavior and regulation of
cellular networks. Depending on how the network nodes
interact, different types of cellular networks—and abstrac-
tions thereof—can be identified, such as metabolic networks
(transport, conversion, synthesis and degradation of material),

∗To whom correspondence should be addressed.

signal transduction networks (signal flow and integration) or
gene and regulatory networks (activation and inhibition of
genes or gene derivatives). Interfaces between these networks
provide exchange of material and information.

Systems biology (Kitano, 2002) aims at investigating
cellular networks by combining experiments and mathemat-
ical modeling and computer simulations. Knowledge of the
network elements and their interactions is a fundamental pre-
requisite for ‘forward’ modeling. So far, of all network types,
metabolic networks are structurally best-characterized as they
can now be reconstructed for many organisms up to genome-
scale (Ouzonis and Karp, 2000; Ma and Zeng, 2003a; Förster
et al., 2003). Studies relying on the stoichiometry of (meta-
bolic) reaction systems have demonstrated that the underlying
network structure limits the possible overall behavior. Thus,
a number of physiologically important results can be derived
solely from the well-known structure without knowledge of
kinetic mechanisms and parameters. For example, mass-
action theory (Clarke, 1988; Feinberg, 1995; Bailey, 2001)
allows for predictions of the existence, multiplicity and sta-
bility of steady states in reaction networks. Studies on the
large-scale topology have yielded deeper insights into the
global organization of metabolic networks (e.g. Fell and
Wagner, 2000; Ma and Zeng, 2003a,b). Flux Balance Ana-
lysis has been used to study and predict optimal flux patterns
(Ibarraet al., 2002; Priceet al., 2003) and mutant phenotypes
(Edwards and Palsson, 2000). Pathway analysis relying on
elementary modes or the very closely related extreme path-
ways (Schusteret al., 2000; Schillinget al., 2000; Klamt and
Stelling, 2003a) enables the assessment of structural robust-
ness and redundancy (e.g. Papinet al., 2002; Stellinget al.,
2002). In (Stellinget al., 2002), pathway analysis has been
used to predict mutant phenotypes and to give rough estim-
ates of gene expression ratios taking into account network
flexibility and efficiency.

In this work we introduce the concept of minimal cut sets
(MCSs). They can be considered as the smallest ‘failure
modes’ in the network that render the correct functioning of
a cellular reaction impossible. Analyzing MCSs is somewhat
opposite to the approaches mentioned above, which determine
rather the capabilities of a network. However, we will illustrate
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Fig. 1. Network example (NetEx).

a number of potential applications, including target identifica-
tion in metabolic engineering and drug discovery, network
verifications, structural fragility analysis and observability in
metabolic flux analyses. An algorithm for computing MCSs
in arbitrary biochemical reaction networks will be described
and the applicability of MCSs will be illustrated for the central
carbon metabolism inEscherichia coli.

Definition of MCSs
For illustration, we first consider a simple fictitious reaction
network called NetEx (Fig. 1). Reactions crossing the sys-
tem boundaries may be thought of as coming from/leading
to buffered metabolites. The only reversible reaction is R4.
In NetEx we are particularly interested in the flux through
reaction obR (exporting synthesized metabolite X), which we
therefore call the objective reaction. It is easy to see that there
are different possibilities for synthesizing X. One approach
for finding qualitatively distinct pathways is to calculate the
elementary (flux) modes (EMs) of the network (Schusteret al.,
2000). An EM describes a feasible and balanced (steady-
state) flux distribution through the network, which is minimal
with respect to utilized reactions (enzymes). The condition
of being ‘minimal’ (elementary, non-decomposable, irredu-
cible) is fundamental and means that removing any reaction
in an EM impedes the realization of a non-zero steady-state
flux distribution (and therefore of a functionality) by means of
the remaining reactions of the EM. It is important to see that
the condition of being ‘minimal’ is related to the exclusion
of involved reactions and not to their total number. We will
see that a similar property is also characteristic for MCSs.
Computation of EMs in a given network only requires the
stoichiometric matrix and the (practically relevant) reversib-
ilities of the reactions (Schusteret al., 2000, 2002). In NetEx,
one finds four EMs (Table 1). Three of them (EM2–EM4,
shaded region in Table 1) allow the production of metabol-
ite X, i.e. they involve the objective reaction exporting the
produced X.

Now assume that we want to prevent the production of
metabolite X. Using a structural approach we demand that

Table 1. Elementary modes (EMx) and minimal cut sets (MCSx) in the
network example (NetEx, Fig. 1)

R1 R2 R3 R4 R5 R6 R7 R8 obR

Elementary modes
EM1 1 1 1 −1 0 0 0 0 0
EM2 1 0 0 0 0 1 1 1 1
EM3 2 1 1 0 1 0 0 0 1
EM4 1 0 0 1 1 0 0 0 1

Minimal cut sets (objective reaction: obR)
MCS0 ×
MCS1 ×
MCS2 × ×
MCS3 × ×
MCS4 × ×
MCS5 × × ×
MCS6 × × ×
MCS7 × × ×
MCS8 × × ×
MCS9 × × ×
MCS10 × × ×

Fi 1 1/3 1/3 1/3 1/2 3/8 3/8 3/8 1

The three EMs involving the objective reaction (obR) are highlighted.Fi : fragility
coefficient of reactioni.

there is no balanced flux distribution possible, which involves
the objective reaction obR. One strategy would be to inactivate
(cut) one or several reactions in the network, e.g. by deleting
the genes of certain enzymes or by other manipulations res-
ulting in an inhibition of enzyme activity. This leads us to the
definition of a cut set:

Definition. We call a set of reactions a cut set (with
respect to a defined objective reaction) if after the removal
of these reactions from the network no feasible balanced flux
distribution involves the objective reaction.

Obviously, a trivial cut set is the objective reaction itself:
C0 = {obR}. However, there are different reasons why we
might be interested in other potential cut sets. For example,
from an engineering point of view, it might be desirable to
cut reactions at the beginning of a pathway (whereas obR,
e.g. is at the end). Another example is biomass synthesis,
which in structural network analyses often is considered as
one lumped ‘reaction’. This reaction is not related to a single
gene or enzyme and can therefore not be directly inactivated.
Furthermore, from a physiological point of view, it might be
interesting to see under which distinct conditions the synthesis
of metabolite X is definitely impossible. Finally, one can also
define a set of several objective reactions (see below), whose
simultaneous failure might be achieved more efficiently by
cutting away other reactions.

An extreme choice is the removal of all reactions except
obR. However, this would not be an efficient and intelligent cut
set. For example, C1= {R5, R8} is a cut set already sufficient
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for preventing the production of X. Moreover, removing only
R5 or only R8 cannot exclude the possibility that the objective
reaction works in a balanced manner. Thus, we have found a
minimal cut set because no subset of C1 would be a cut set
anymore.

Definition. A cut set C (related to a defined objective reac-
tion) is a minimal cut set (MCS) if no proper subset of C is a
cut set.

Another cut set not that simple is C2= {R2, R4, R6}, which is
also minimal. A third cut set is C3= {R2, R5, R7}. However,
this cut set is not minimal, because{R5, R7} is already a cut
set. Thus, C3 contains a redundant deletion which makes this
cut set sub-optimal (non-minimal) for manipulating the sys-
tem. Finally, C4 = {R1} is the only MCS with only one
reaction (except the trivial C0). This would be an especially
suitable candidate if we want to prevent production of X. We
would say that R1 is essential for synthesizing X.

An algorithm for computing MCSs is given below. All
MCSs in NetEx related to obR are given in Table 1.

Remark 1. The removal of all reactions contained in an
MCS ensures a dysfunction of the objective reaction from a
perspective of the network structure. Thus, as the structural
integrity of the network is the fundamental prerequisite for its
function, an MCS always guarantees dysfunction as long as
the assumed network structure is correct. However, it might
be possible that even a proper subset of an MCS is a cut set
as the often unknown regulatory circuits or capacity restric-
tions may impose further constraints with respect to network
function. For example, if removal of one reaction of an MCS
leads, by means of cellular control, to a repression of another
reaction from this MCS, then this MCS would not be minimal
anymore. Therefore, when in the following we speak about
MCSs and network dysfunction it should always be seen from
a purely structural point of view. Extending the concept by
considering also regulatory rules is possible, as will be indic-
ated below. Finally, tolerating the inactivation of reactions
not forming a cut set can, nevertheless, be accompanied by
an altered performance of the objective reaction (e.g. lower
rate or yield). This is also not further considered here.

Remark 2. Removing a complete MCS from the network
represses the functioning of the objective reaction by defini-
tion. However, other pathways might still be active: in NetEx,
the metabolites B and C can still be produced from A after
removal of MCS2 = {R5, R6}. In some applications, it is just
the goal to find those MCSs that repress the objective reaction
but spare certain other pathways.

Remark 3. When looking at MCS4 = {R5, R8} it is clear
that metabolite X cannot be produced in any case as all
pathways to it are interrupted. However, for the MCS6 =
{R3, R4, R6} it seems that metabolite X might be still produced
via R1, R2, R5. However, an MCS always ensures that

this would only be possible in an unbalanced (and therefore
physiologically problematic) fashion. For MCS6, metabol-
ite B would accumulate and a continuous operation of the
objective reaction is therefore physiologically impossible.

Remark 4. In our example we consider only one object-
ive reaction. However, one can easily generalize the above
definition of (minimal) cut sets by using a set of several object-
ive reactions. It is then demanded that after the removal of
the (minimal) cut set each feasible balanced flux distribution
does not involve any of the objective reactions. For example,
all reactions in the network are objective reactions, if any
balanced flux in the network is to be prevented.

Minimal cut sets in risk assessment and graph theory An
MCS can be considered as a minimal set of events (loss of
reactions) which—if these events occur together—leads to
system failure, i.e. that the objective reaction cannot oper-
ate in a balanced fashion anymore. A very similar definition
of MCSs exists for fault trees studied in reliability and risk
assessment of industrial systems (Fard, 1997; Sinnamon and
Andrews, 1997). A fault tree is a non-recursive boolean net-
work and consists of a number of events, which are combined
by logic gates leading to other events. Basic events are the
‘entries’ at the lowest level (leafs of the tree) and intermedi-
ate events are those obtained by binary operations (e.g. AND,
OR, XOR) of other events. At the top of the fault tree is the
top event which represents a usually undesired system fail-
ure. A cut set in a fault tree is a set of basic events, whose
occurrence will cause the top event, and an MCS possesses
no proper subset which can cause the top event. The approach
pursued here is completely analogous: our top event is that the
objective reaction cannot operate correctly. A basic event is the
removal/inhibition of one reaction. An intermediate event is
a set of several inactivated reactions. The difference between
fault trees and our approach is that we cannot directly con-
struct a fault tree, as we—at least for metabolic networks—do
not know which combinations of removed reactions cause
our top event. Therefore, for calculating MCSs in meta-
bolic networks, we cannot directly apply algorithms used for
fault trees.

A similar definition of (minimal) cut sets does also exist
in graph theory (Bollabas, 1998) where they ensure a dis-
connection of a given graph. However, as far as we can see,
these graph-theoretical concepts (even if applied in bipartite
graphs) do not fit into the definition of MCSs as defined here
and would, in general, lead to other results. The reason is that
we need an explicit consideration of the hypergraphical nature
of metabolic networks. Hypergraphs are generalized graphs,
where an edge (reaction) can linkk nodes (reactants) with
l nodes (products), whereas in graphs only 1 : 1-relations are
allowed. For illustration, consider the simple network shown
in Figure 2 (first row). Metabolite A is an available substrate
and we are interested in inhibiting the production of E. Thus,
R4 is our objective reaction. It is easy to see, that E can no
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Fig. 2. Hypergraph, substrate and bipartite graph representations of
a simple reaction network (first row). After removing reaction R2
(second row) product E can no longer be produced from substrate A
in the hypergraph, although there is still a path from A to E in both
graph representations.

longer be produced if reaction R2 is removed from the net-
work (because C cannot be provided for driving reaction R3).
Thus,{R2} is an MCS. However, R2 would not be an MCS in
terms of graph theory, neither in the substrate nor in the bipart-
ite graph representation of this network. All metabolites are
still connected when R2 is removed and it seems, that E can
still be produced from A via{R1, R3, R4} (Fig. 2, second
row). The hypergraphical feature of reaction R3—it needs B
and C simultaneously—is not taken into account. One obtains
the same result when assuming all reactions to be reversible
(leading to undirected graphs).

Algorithm for computing MCSs
The MCSs for a given network and objective reaction are
members of the power set of the set of reaction indices and
are uniquely determined. In NetEx, it is relatively easy to
determine all MCSs. Obviously, for larger networks we need
a systematic computation scheme. This scheme must ensure
that the calculated MCSs are

(1) cut sets (‘destroying’ all possible balanced flux distri-
butions involving the objective reaction) and

(2) that the MCSs are really minimal and

(3) that all MCSs are found.

Concerning condition (1) our developed algorithm exploits the
fact that any feasible steady-state flux distribution in a given
network—expressed by a vectorr of theq net reaction rates—
can be represented by a non-negative linear combination of
elementary modes:

r =
N∑

i=1

γi EMi with γi ≥ 0,

N = number of elementary modes

Thus, if we want to ensure that the rate rk of the objective
reaction is zero in all feasible and balanced flux distribu-
tions r, then each EM must contain a zero at thek-th place.
Therefore, ifC is a proper cut set the following condition
must hold:

Cut set condition (CSC): For each EM involving the objective
reaction (with a non-zero value), there is at least one reaction
in C also involved in this EM.

The condition guarantees that all EMs, in which the object-
ive reaction participates, will vanish when the reactions in the
cut set are removed from the network. We say that a cut set
‘covers’ all EMs where the objective reaction is involved. The
CSC explicitly exploits the important conservation property
of EMs: if a reaction is removed from a network, all EMs not
involving this reaction build up the complete set of EMs in the
new (smaller) network without need of recalculation (Schuster
et al., 2002; Klamt and Stelling, 2003a). Utilizing the CSC,
computing a cut set can be done by successively building up
a set of reactions (preliminary cut set) until all EMs involving
the objective reaction are covered by this reaction set. Keep-
ing also in mind conditions (2) and (3), the pseudo-code of
our iterative algorithm is as follows:

Algorithm:

(1) Calculate the EMs in the given network

(2) Define the objective reaction obR

(3) Choose all EMs where reaction obR is non-zero and
store it in the binary arrayem_obR (em_obR[i][ j]==1
means that reactionj is involved in EMi)

(4) Initialize arraysmcs and precutsets as follows (each
array contains sets of reaction indices): append{j} to
mcs if reactionj is essential (em_obR[i][ j]=1 for each
EM i), otherwise toprecutsets

(5) FOR i=2 TO MAX_CUTSETSIZE
(5.1) new_precutsets=[ ];

(5.2) FORj = 1 TOq (q: number of reactions)
(5.2.1) Remove all sets fromprecutsets where

reactionj participates

(5.2.2) Find all sets of reactions inprecutsets
that do not cover at least one EM in
em_obR where reactionj participates;
combine each of these sets with reaction
j and store the new preliminary cut sets
in temp_precutsets

(5.2.3) Drop all temp_precutsets which are a
superset of any of the already determined
minimal cut sets stored inmcs

(5.2.4) Find all retainedtemp_precutsets which
do now cover all EMs and append them to
mcs; append all others tonew_precutsets

ENDFOR
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(5.3) If isempty(new_precutsets)
(5.3.1) Break

ELSE
(5.3.2) precutsets=new_precutsets

ENDIF

ENDFOR

(6) result:mcs contains the MCSs

Additional remarks:

• All used arrays contain sets of the reaction indices
(1 · · · q) that can efficiently be stored bit-wise and allow
for quick bit-operations.

• An important property of MCSs—which can easily be
seen—is that at most one reaction per enzyme subset is
contained in an MCS. Enzyme subsets are sets of reac-
tions that must always operate together in steady state,
i.e. either all or none of the reactions of an enzyme
subset participate in an EM (Pfeifferet al., 1999). In
NetEx two enzyme subsets occur: ES1= {R2, R3} and
ES2= {R6, R7, R8}. For example, if one reaction of ES2
appears in an EM, then also the other two do. In contrast,
no pair of this triple occurs together in any MCS. On the
other hand, for each MCS in which R6 occurs, there are
equivalent MCSs in which R6 is exchanged by R7 or R8.
This property can be exploited in a preprocessing step
(before the main loop): all reactions (columns inem_obR)
of an enzyme subset are removed except for one repres-
entative. After computation, the equivalent sets can easily
be built up for each enzyme subset and be appended to
mcs. Thus, if an enzyme subset comprisese reactions,
and if the representative is contained inz MCSs after
computation, thenz · (e − 1) equivalent sets are appen-
ded tomcs. This can drastically reduce memory demand
and computation time.

• Reactions catalyzed by a common multifunctional
enzyme (like transketolase) must be considered properly
because a removal of one enzyme removes all these reac-
tions simultaneously. This can easily be achieved by
considering only one ‘reaction’ (column) inem_obR con-
taining a ‘1’ for each EM, if any of the reactions of that
multifunctional enzyme is involved in the respective EM.

• Knowledge about regulatory rules can be incorporated by
eliminating those EMs (before step 3) which can, by reg-
ulatory actions, never occur (Covert and Palsson, 2003).
For example, uptake of glucose and lactate does not
occur simultaneously inEscherichia coli due to catabol-
ite repression and, hence, all EMs involving both uptake
reactions might be deleted. This reduces the set of EMs
each MCS has to cover.

• For considering a set of several objective reactions (see
Remark 4) one selects all EMs, where any of the objective
reactions participates (step 3).

Table 2. Overview on computed MCSs in the central metabolism ofE.coli
for growth on four different substrates

Acetate Succinate Glycerol Glucose

No. of EMs with growth 363 3421 9479 21 592
No. of MCSs (objective

reaction: growth)
245 1255 2970 4225

Maximal number of
preliminary MCSs (during
computation)

3563 69 628 344 196 902 769

Computation time
(Intel Pentium, 1 MHZ;
4 GB RAM)

7 s 20 min 5.42 h 29.67 h

Fi values (in parentheses: size of the smallest MCS in which the reaction
occurs)

F16P-bisphosphatase 1 (1) 1 (1) 1 (1) 0.102 (6)
ATP-synthase 1 (1) 0.325 (3) 0.141 (3) 0.149 (3)
SuccCoA-synthetase 0.207 (2) 0.145 (2) 0.125 (2) 0.131 (2)
PEP-carboxylase 0.128 (2) 0.117 (2) 0.120 (2) 0.143 (2)
Malic enzyme 0.5 (2) 0.5 (2) 0.114 (2) 0.123 (2)
Rl5P-X5P (epimerase) 0.198 (2) 0.135 (2) 0.128 (2) 0.148 (2)

F 0.783 0.718 0.699 0.643

The computation time does not involve the time needed for computing the elementary
modes.Fi : fragility coefficient of reactioni; F: network (overall) fragility coefficient.
See text for further explanations.

• Step 5.2.1 avoids redundant combinations of reactions
for finding the MCSs.

• The current coverage (of EMs) of each preliminary cut
set may be saved accelerating step 5.2.2. However, this
can drastically increase the memory demand.

• Step 5.2.3 ensures that the computed MCSs are really
minimal. This check is analogous to the one used for
calculating elementary modes (cf. Schusteret al., 2000).
This emphasizes the conceptual similarities of EMs and
MCSs with respect to the ‘minimal’ (non-redundant,
elementary, non-decomposable) property.

• Calculating the elementary modes is known to be a com-
binatorial complex problem, as the number of EMs grows
rapidly with network size (Klamt and Stelling, 2002b).
Computing the MCSs is similarly complex due to a very
high number of possible permutations. Although in a
larger example (see below and Table 2), the final number
of MCSs is lower than the number of EMs, the number
of preliminary MCSs occurring during the calculation
is up to 100 times higher than the number of EMs. On the
other hand—in contrast to EMs—computing MCSs only
involves bit arrays and fast bit operations. In the large
example, the required memory space was more limiting
than the computation time.

Therefore, the opportunity to limit the maximal size of
the MCSs to be calculated is a very useful feature of our
algorithm (MAX_CUTSETSIZE, step 5). The algorithm
ensures that after finishing thei-th outer loop, all existing
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MCSs with equal to or less thani elements have been
found and stored inmcs.

• Computation, display and subsequent analysis of MCSs
[subject to arbitrary objective reaction(s)] are incor-
porated as additional features in the FluxAnalyzer—a
MATLAB package for studying metabolic networks on
interactive flux maps (Klamtet al., 2003b).

Minimal cut sets in the central metabolism
of E.coli
We calculated the MCS in the central metabolic network
of E.coli with objective reaction ‘biomass synthesis’. The
network comprises 110 reactions and 89 metabolites and
has already been investigated by elementary-mode analysis
(Stelling et al., 2002). The catabolic part was modeled
in detail, whereas for the anabolic part predominately
lumped reactions were considered. The set of catabolic reac-
tions includes pseudo-reactions enabling excretion of five
metabolites and the uptake of four substrates (glucose, acetate,
glycerol and succinate). As in the prior work, growth is
considered on each of the four substrates individually. Thus,
actually four networks are investigated differing only in the
respective substrate uptake/transport reactions. Using Flux-
Analyzer we determined the EMs and then the MCSs for
each case (Table 2). Note that the number of EMs is smal-
ler than in the original paper as we consider here only the
growth-related modes according to our objective reaction.
The computed MCSs are discussed below in connection with
potential applications for MCSs.

Applications of MCSs
The conceptual properties of MCSs offer a number of
potential applications both for obtaining a deeper under-
standing of structural fragility of cellular (sub)networks as
well as for finding targets that efficiently repress cellular
functions.

Target identification and repressing cellular functions The
concept of MCSs is an excellent theoretical tool for tar-
get identification in drug discovery as well as for metabolic
engineering towards rational strain design (Stephanopoulos
et al., 1998; Wiechert, 2002). The MCSs define all efficient
(irreducible) sets of interventions that will lead to an inten-
ded dysfunction in the manipulated network. Here, it becomes
clear why we have chosen the term ‘objective reaction’ instead
of ‘target reaction’: each MCS represents a set of targets to
prevent the functioning of the objective reaction (the MCS
containing the objective reaction itself is the trivial target
set). A screening of all MCSs allows for the identification
of the best suitable manipulation from a structural point of
view, which, for practical reasons, will probably have to fulfill
certain conditions:

• Usually, a small number of interventions is desirable
(i.e. small size of the MCS).

• Other pathways in the network should only be weakly
affected, i.e. one searches for an MCS where these
routes are still—at least structurally—functioning (see
Remark 2). Whether an MCS fulfills this condition can
easily be checked: the set of remaining EMs [not covered
(destroyed) by the MCS] must contain at least one EM
involving the desired pathway. For example, in NetEx,
the MCSs 0, 2, 3, 4 do not contain any reaction involved
in EM1. Hence, when removing one of these MCSs, EM1
would still be intact and metabolites B and C could be
still produced.

• Some of the cellular functions might be difficult to turn
off genetically or by inhibition, e.g. if many isozymes for
a reaction exist. The set of MCSs contains all alternatives
not involving these network edges.

Network verification and mutant phenotype predictions Cut-
ting away an MCS from the network can be predicted
to be definitely intolerable with respect to certain cellu-
lar reactions/processes. These predictions, derived purely
from network structure, might be suitable for verification of
hypothetical or reconstructed networks.

Applying this procedure to metabolic networks with
‘growth’ as the objective reaction is straightforward. If a set
of gene deletions (single, double, triple,. . . mutants) com-
pletely contains an MCS then (case 1) it should lead to a
non-viable phenotype, otherwise (case 2) growth is structur-
ally possible. A wrong prediction for case (1) would be a
false negative prediction and is then a proof for an incorrect or
incomplete network structure. A wrong prediction for case (2)
would be a false positive prediction and is—due to the explan-
ation given in Remark 1—a clue but not necessarily a proof
of a false assumption in the network structure. Especially,
‘marginally’ structurally tolerable deletions will probably lead
to false positive predictions where all reactions except one
of a large MCS are inactivated. For instance, several MCSs
with 12 elements occur forE.coli (substrate: glucose) and
it seems questionable—but would be interesting to check—
whether 11 deletions in such a set would be tolerated. Note
that each of the 12 deletions in these MCSs contribute to the
dysfunction and are therefore non-redundant. In contrast, in
a non-essential linear pathway with 11 reactions deleting all
11 reactions could also be tolerated but only the deletion of a
single reaction is a non-redundant deletion set.

Using the non-redundant MCSs for such experiments is
efficient and important. For illustration, assume that in NetEx
we have not yet recognized that there is another reaction
Rx: B + C + D = X. Deleting all reactions (except obR and
the unknown Rx) and looking whether obR is functioning
would not be an intelligent choice. Besides the high experi-
mental effort, we would also indirectly destroy the pathway
from Rx to obR and could then not falsify our network struc-
ture. In contrast, applying MCS4 could reveal that there is
another reaction in the network not recognized so far.
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Phenotype predictions for single mutants ofE.coli have
already been conducted by means of Flux Balance Analysis
(FBA; Edwards and Palsson, 2000) and elementary-mode ana-
lysis (Stellinget al., 2002). In these works, the viability of
mutants could be predicted with high agreement with real
mutants. The prediction of whether a single mutation is lethal
or not is equivalent to whether the respective reaction is essen-
tial (MCS with only one element) and depends on the chosen
substrate. Owing to mathematical equivalence, the predic-
tions of FBA, elementary-mode analysis and MCSs are the
same. However, the MCSs enable a systematic search for
reasonable single, double, triple,. . . mutants. For example, a
triple mutant where the subset of two of the three knocked out
genes are already structurally intolerable has no correspond-
ing MCS. Hence, the MCSs calculated forE.coli could be a
basis for systematically falsifying the catabolic part of the net-
work by mutants growing on different substrates. For instance,
{Rl5P-epimerase, transhydrogenase, Succ-CoA-Synthase} is
an MCS for all four substrates. Thus, if only a proper subset
of this MCS would be removed, thenE.coli would structur-
ally be able to grow.{PEP carboxylase, isocitrate lyase} is an
MCS for growth on glucose and glycerol, it is a cut set but
not a minimal one for acetate (already a mutant missing the
isocitrate lyase cannot grow on acetate) and it is not a cut set
for succinate. Hence, these two simultaneous deletions could
only be tolerated byE.coli for growth on succinate.

Structural fragility and robustness As described above, one
important application of MCSs in risk assessment is to evalu-
ate the reliability of a system and to find those combinations
of events that have the highest probability to cause a system
failure. Similarly, we can use the MCS for assessingstruc-
tural fragility and robustness in metabolic networks, which
are here inversely related (cf. Csete and Doyle, 2002). For
simplicity, we assume that each reaction in a metabolic net-
work has the same probability to fail. This directly implies that
small MCSs are most probable to be responsible for a failing
objective reaction. This is in line with the suggestion that the
number of elementary modes occurring in a network is a meas-
ure of the (structural) robustness (Papinet al., 2002; Stelling
et al., 2002). The more EMs—and thus available pathways—
exist in which the objective reaction participates, the more
network elements have to fail for a guaranteed dysfunction of
the objective reaction. Thus, the larger the number of EMs,
the larger will be the size of the resulting MCSs. This is con-
firmed by the MCSs inE.coli: the highest number of EMs and
MCSs occurs for growth on glucose (Table 2) and one also
finds the largest MCSs for this substrate (Fig. 3). The ranking
of the other substrates with respect to number and size distri-
bution of the MCSs corresponds to the ranking of the number
of EMs. Accordingly, for growth on acetate one finds pre-
dominately small MCSs (with the highest number of essential
reactions: 12 more than for glucose) and only few MCSs with
more than five elements. These results clearly support what

Fig. 3. Size distribution of the MCSs in the central metabolism of
E.coli for four different substrates.

has been claimed by Stellinget al. (2002): growth on glucose is
structurally less fragile (more robust) than growth on acetate.
However, the size distribution of the MCSs gives a somewhat
more subtle view on network fragility and allows a direct iden-
tification of the small and therefore most ‘dangerous’ MCSs
with respect to the objective reaction.

Besides, the set of MCSs allows not only for assessment of
the overall fragility of the network structure but also to invest-
igate the importance of each single reaction in the network. If
a reaction is predominately part of larger MCSs, then a mal-
function of this reaction will be less crucial for the operation
of the objective reaction. As a quantitative measure we define
for each reaction a fragility coefficientFi as the reciprocal
of the average size of all MCSs in which reactioni particip-
ates. The minimal value forFi is zero (defined for the case
where reactioni is not member in any of the MCSs) and
reaches the highest value of one for the most crucial edges
in the network, namely for essential reactions. TheFi for all
nine reactions in NetEx are given in Table 1 indicating that—
beside the essential reaction R1—reaction R5 is most crucial
for the objective process. The loss of its function makes reac-
tions R2, R3 and R4 automatically meaningless for obR. As
expected, an inverse correlation betweenFi andNi (the num-
ber of modes in which the objective reaction AND the reaction
i participate) is apparent: the higherNi the smallerFi . How-
ever, the ranking is not always the same (e.g.NR2 = NR6 = 1
butFR2 = 1/3 < FR6 = 3/8).

The fragility coefficients for some selected reactions in the
E.coli network (Table 2) strongly depends on the respect-
ive substrate. For example, as is intuitively clear, the
fructose-bisphosphatase is not crucial for growth on glucose
(Fi = 0.102) but becomes essential for the other three sub-
strates. The relatively highFi of malic enzyme for growth
on acetate and succinate can be explained by the necessary
carbon efflux from the TCA cycle fed by these substrates into
the cycle.
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Alternative fragility coefficients may also be defined. For
example, the smallest MCS in which a certain reaction occurs
might also be important (Table 2). InE.coli, theFi for the
malic enzyme under growth on glucose is low. However,
there is one crucial combination (MCS with only two ele-
ments): if the malic enzyme AND the malate dehydrogenase
fail together, then this will result in a non-viable phenotype.

One might also think about a rigorous probabilistic defini-
tion of the fragility coefficient. We would then need for each
reaction a probability value for its failure. In case reactioni is
deleted in the network, one might calculate the probability of
a failure in the objective reaction. However, this would require
a precise analysis of the underlying complex combinatorics.

Finally, for an overall quantification of the structural fra-
gility, we propose a network fragility coefficientF, which
is the average fragility coefficient over allq reactions:
F = ∑q

i Fi/q. For NetEx we haveF = 0.514, the values
for E.coli for the different substrates are given in Table 2.

Observability of reaction rates in metabolic flux analyses
In (Klamt et al., 2002a) it has been demonstrated how
elementary-mode analysis supports the identification of those
setsM of known (measured) reaction rates, which enable the
calculation of a certain unknown reaction rateru in a steady-
state flux distribution in a given network. The procedure is as
follows: (1) calculate the elementary modes in the network
and thereby consider all reactions as reversible. (2) Select for
the next step (3) only those modes whereru is unequal to
zero. (3) Construct the setM of rates to be measured in such
a way, that of all the reactions participating in an EM at least
one is a member ofM. Comparing this rule with our com-
putation scheme shows that a suitable setM is a cut set with
respect toru. Thus, if we determine the MCSs for the (com-
pletely reversible) network then we get all possible sets of
measurements being minimal and non-redundant. Screening
these MCSs enables one to find the best-suited sets of meas-
urements and is therefore also useful for preparing metabolic
flux analyses.

The reader might be a bit confused why the reaction revers-
ibilities must not be taken into account. For illustration,
assume the rate of obR in NetEx at steady state is to be calcu-
lated. We know that{R1} is an essential reaction in NetEx and,
hence, an MCS. However, if we measured only the rate of R1
we would not be able to calculate the rate of obR uniquely—
except in the very special case where the reaction rate of R1
is zero. In this case, we can directly conclude that the flux
through obR must be zero—this is simply the condition to be
a cut set. However, in the general case with a non-zero rate
for R1, we need more information for determining the rate of
obR. Indeed, first calculating the (9) EMs for the network with
all reactions considered as reversible and then the (16) MCSs
with respect to obR, one finds out that R1 alone is not an MCS
anymore (results not shown). The smallest MCS—and there-
fore the minimal number of necessary measurements—is two.

For instance,{R5, R8} would remain valid. Usually, only the
rates crossing the boundaries can be measured (here R1, R3,
R4, R6). A screening of the MCSs reveals that the best set of
measurements would then be{R1, R3}. Even in this simple
example it is not easy to see that measuring these rates is suf-
ficient for computing the stationary rate of obR, which is the
difference of R1 and R3. All other MCSs comprising only the
measurable rates have a size of 3 (note: there are three degrees
of freedom in the system).

CONCLUSION
The concept of MCSs is promising for studying and predicting
the non-decomposable failure modes in biochemical reaction
networks. An MCS is a irreducible combination of network
elements whose simultaneous inactivation leads to a guaran-
teed dysfunction of certain cellular reactions or processes.
MCSs are inherent and uniquely determined structural fea-
tures of metabolic networks similar to EMs. Analyzing the
EMs proved to be a useful tool for assessing a variety of
structural and functional network properties. They are here
also needed for computing the MCSs. Both MCSs as well as
EMs possess the property of being minimal or irreducible.
Whereas an EM is a minimal set of reactions which can per-
form a function, an MCS is a minimal set of reactions whose
removal impedes a certain function. The computation of both
features becomes challenging in large networks.

We illustrated a number of far-reaching applications.
Analyzing the MCSs yields deeper insights in the structural
fragility of a given metabolic network. MCSs are useful for
identifying target sets for an intended repression of network
functions. Such target sets are also relevant for a verification
of a given network structure by systematic falsification. This
is important especially for network topologies that are sup-
posed to be incomplete. MCSs are also a suitable concept to
find the necessary information one needs to make unknown
stationary network fluxes observable.

Applying the concept of MCSs also to gene and signal trans-
duction networks is very appealing. However, stoichiometric
matrices do not seem to be an adequate approach for describ-
ing the flow and processing of information in these networks.
Therefore, we need appropriate representations for such
network topologies that allow for searching for functional
or failure modes similar to EMs and MCSs, respectively.
Boolean networks is one suitable approach for simulating
genetic control circuits (Thomas, 1973) and could be also one
for describing signal transductions (cf. Genoud and Metraux,
1999). In non-recursive boolean networks, MCSs can be iden-
tified as in the above mentioned fault trees emerging in risk
assessment.
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