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Abstract 

 

                   Explicit expressions for all 2(nd+1) primitive idempotents in the ring                        

 1/])[( 2

2

n

n

p

p
xxlGFR , where p and l are distinct odd primes such that 

dplo n

pn /)2()(
2

 , d ≥ 1 

an integer, are obtained. The minimum distance, generating polynomials and 

dimension of the minimal cyclic codes generated by these primitive idempotents are 

also discussed. As example, we discuss the parameters of the minimal cyclic codes of 

length 22.  
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1. Introduction 
 

   Let F be a field of odd prime order l and k ≥1 be an integer such that gcd(l, k)=1.  

Let
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])[(
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xlGF
R . Then, Rk is semi-simple. As, every ideal in Rk is the direct sum of  
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its minimal ideals. Hence, to describe the complete set of ideals (codes over F) in Rk, 

it is sufficient to find its complete set of primitive idempotents. Let klo )(  denotes the 

order of l  modulo k. For k = 2, 4, p
n
, 2p

n
, p is odd prime and klo )( = (k), the 

complete set of primitive idempotents in Rk are obtained by Arora and Pruthi [4,9].   

k=p
n 

, 2p
n
 (n 1), p odd prime and klo )(

2

)(k
 , the complete set of primitive 

idempotents in Rk are obtained by Batra, Arora [8]. For k = p
n
q (n 1),  p and q 

distinct odd primes where l  is primitive root modulo p
n
 and q both with 

gcd( )(),2( qp n  ) = 2, the primitive idempotents in Rk are obtained by Bakshi and  

Raka  [3]. For k = p
n
 (n  1), p odd prime, klo )(

e

k)(
 , e is positive integer, the 

primitive idempotents in Rk are obtained by Sharma, Raka and Dumir [5]. Ranjeet 

Singh and Manju Pruthi [6] obtain the primitive idempotents of the quadratic residue 

codes of length p
n
q

m
, p, q are distinct odd primes and 

2

)(
)(,

2

)(
)(

m

q

n

p

q
lo

p
lo mn


 ,  gcd(

2

)( np
,

2

)( mq
)= 1. Amita Sahni and P.T. 

Sehgal [1] describe the primitive idempotents of minimal cyclic codes of length p
n
q, 

p, q are distinct odd primes and, )()(),()( qloplo q

n

pn   , gcd ( )(),( qp n  ) = d, 

p does not divide q-1.  

            In this paper, we have extended the results of  Batra, Arora [8]. We consider 

the case when k = 2p
n
, where p and l are distinct odd primes, dplo n

pn /)2()(
2

 , d ≥ 

1 an integer. We obtain explicit expressions for all the 2(nd+1) primitive idempotents 

in Rk. The minimum distance, generating polynomials and dimension of the minimal 

cyclic codes generated by these primitive idempotents are also discussed. In Section2 

(Lemmas 1- 9 and Theorem 1), we discuss the cyclotomic cosets modulo 2p
n
 and 

some basic results for describing the primitive idempotents in Rk. In Section 

3(Theorem 3), the explicit expression of primitive idempotents have obtained. In 

Section 4 (Theorem 4-6), we discuss the dimension, generating polynomial and 

minimum distance of minimal cyclic codes of length 2p
n
. In section 5, we discuss the 

various parameters of minimal cyclic codes of length 22.  

 

 

2. Primitive idempotents in 



1

])[(
22 nn

pp
x

xlGF
R  and minimal cyclic codes 

of length 2p
n
 over F(=GF(l))   

 

              In this section we describe the minimal cyclic codes of length 2p
n
 over F, 

where p and l are distinct odd primes and dplo n

pn /)2()(
2

 , d ≥ 1 an integer. A set 

of )(n  integers a1, a2,…, a )(n  , where gcd ),( nai  = 1 and ai  aj (mod n) for all i, j, 

1 ≤ i, j ≤ )(n , i ≠ j form a reduced residue system modulo n. Let l be a positive  
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integer of order )(n , then l is called primitive root modulo n. We know that primitive 

root modulo n exists only when n = 2, 4, p
e
, 2p

e
 where  p is an odd prime.     

Lemma 1. Let  p and  l  be  distinct  odd    primes and n  1 be an  integer . 

 If  dplo n

pn /)2()(
2

  ,  then 
d

p
lo

jn

p jn

)2(
)(

2







 
, for all 0  j  n  1. 

Proof. Trivial. 

Lemma 2. There exists a positive integer g, 1 < g < 2p, such that  gcd (g, 2pl) = 1, 

and pgo 2)( )(p
 
, where g, g

2
, …, g

d-1
  {1, l, l

2
, …, 

1
)2(


d

p

  }. 

Proof. See [1, Lemma4]. 

Lemma 3. There exists a positive integer g, 1 < g < 2p, such that gcd (g, 2pl) = 1and 

g
i
  l

k
 (mod 2p) for any i, k; 1  i  d 1 and 0  k  

d

p)(
 . Further, for any j, 1  j < 

n, the set {1, l, l
2
, …, 

1
)(




d

p jn

 , g, gl, gl
2
 …, g

1
)(




d

p jn

  ,..., g
d-1

, g
d-1

l, g
d-1

l
2
,…, g

d-1
 

1
)(




d

p jn

 } form a reduced residue system modulo 2p
n-j

. 

Proof. Trivial. 

         Let S = {0, 1, 2,…, 2p
n
 -1}. For a, b   S, say that a ~b iff a  b il

 
(mod 2p

n
) for 

some integer i ≥ 0.This defines an equivalence relation on the set S. The equivalence 

classes due to this relation are called l-cyclostomic cosets modulo 2p
n
. The l -

cyclotomic coset containing s  S is denoted by 

}...,,,,{
12 

 st

s slslslsC , 

where ts is the least positive integer such that ssl st  (mod 2p
n
) and |Cs| denotes the 

order of the l-cyclotomic coset Cs, containing s. 

Theorem 1. If p is an odd prime dplo n

pn /)2()(
2

 , d ≥ 1 an integer, then for the 

integer n ≥ 1, there are  2(nd+1) cyclotomic cosets (mod 2p
n
)  given by  

(i) C0 = {0}                                 

(ii) 
np

C
 
= {p

n
 } 

For 0  j  n1, 0 k  d1 

   (iii)      jk pg
C  = {g

k
 p

j
, g

k
 p

j
 l, …, g

k
 p

j
 

1
)(




d

p jn

 }      

   (iv)    jk pg
C

2
 = {2g

k
 p

j
, 2g

k
 p

j
 l, …, 2g

k
 p

j
 

1
)(




d

p jn

 }, 

  where g is the fixed integer as defined in Lemma 2.   

 

Proof. Trivial. 

Note 1. (i) 1Cg u  , for any integer u if and only if u ≡ 0 (mod d). 

(ii) 11 C  or 2/1 dg
C , if 11 C  then 11 CC   otherwise  1C 2/dg

C . 
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(iii) If 11 CC   then ikik pgpg
CC  , otherwise idkik pgpg

CC 2/  for all i, k;  

0  i   n-1 and 0  k   d-1. 

 

Lemma 4. For any odd prime p and positive integer k, if  is primitive p
k
 th root of 

unity in some extension field of GF(l) and )()( k

p
plo k  (mod p

k
), then 












 .1if0

1if11)(

0 k

k
k

s
p

s

l


  

 

Proof. See [3, Lemma 4]. 

 

 

Lemma 5. For any odd prime p and positive integer k, if  is primitive 2p
k
 th root of 

unity in some extension field of GF(l) and )2()(
2

k

p
plo k  (mod 2p

k
), then 












 .1if0

1if11)2(

0 k

k
k

s
p

s

l


  

 

Proof. Similar as Lemma 4. 

Let   is primitive 2p
n
th root of unity in some extension field of GF(l). For 0  i   n-

1 and 0  k   d-1, define 



kg

i

Cs

spk

iA 2)(  and 



kg

i

Cs

spk

iB )( .Since kk glg
CC  , 

therefore )()( )( k

i

lk

i AA  , so that each )(, )()( lGFBA k

i

k

i  .  

Lemma 6. For each i, 0  i   n-1, 














1

0
1

)(

.1if

2if0d

k
n

k

i
nip

ni
A  

Proof. See [1, Lemma 10].   

Lemma 7. For each i, 0  i   n-1, 














1

0
1

)(

.1if

2if0d

k
n

k

i
nip

ni
B  

 

Proof. Similar as above.   

 

Lemma 8. For each h, k, 0 h, k  d1, 0  i, j   n,  

                        

































.1if
1

,1,if
)(

,,if1

)(

2

njiA
p

njnji
d

p

njnji
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jij

jn
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spg

jphg

ik 
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Proof. Case (i) For j = n, i + j  n, jh pg
C =

 
nk pg

C = np
C , So, 

 np

ik

Cs

spg2 = 1. 

Case (ii) Let i + j  n and j  n  1, then the above sum equals  
d

p jn )(   .  

Case (iii) If i + j  n 1, then 








1
)2(

0

2
d

p

s

l

Cs

spg

jn

s

jphg

ik



 , where 
jikh pg 


)(2 , then 

 is primitive p
nij 

th root of unity. Therefore, ,
sr ll   if and only if  l

r
 ≡ ls

 (mod 

p
n-i-j

 ), if and only if r ≡ s (mod
d

p jin )( 
). 

Then  






1
)2(

0

d

p

s

l

jn

s



  = 






1
)(

0

d

p

s

li

jin

s

p



  . Also, 

)( kh

jiA 

  = 




 khg

ji

Cs

sp2  = 




1
)2(

0

d

p

s

l

n

s



  = 







1
)(

0)(
.

)2( d

p

s

l

jin

n

jin

s

p

d

d

p







 = )(1 kh

jiji
A

p




    

Then,  by above discussion we get the required sum. 

 

Lemma 9. For each h, k, 0 h, k  d1, 0  i, j   n,  

 

 

                        

































.1if
1

,1,if
)(

,,if1

)( njiB
p

njnji
d

p

njnji

kh

jij

jn

Cs

spg

jphg

ik 


  

 

 

Proof. Similar as Lemma 8. 

 

 

3. Evaluation of primitive idempotents 
 

  If   is a primitive mth root of unity in some extension field GF(l), then the 

polynomial M
(s)

(x) = )( i

Ci x
s

  is the minimal polynomial over GF(l). Let Ωs be  
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the minimal ideal in Rm generated by 
)(M

1

x

x
s

m 
and θs(x) be the primitive idempotent  

of Ωs and define σs(x) = 
 sCi

ix .  

Theorem 2. ,)(
1

0







m

i

i

is xx   where 



sCj

ij

i  for all i ≥ 0. 

 

Proof. See [1, Theorem 1]. 

 

Theorem 3. The 2 (nd+1) primitive idempotents in np
R

2
 are given by  

(i)    )...1(
2

1
)( 122

0


np

n
xxx

p
x  

(ii)  )(1
2

1
)( x

p
x nn pnp

 








 








1

0

1

0
2

))()((
2

1 d

k

n

i
pgpgn

xx
p

ikik   

(iii) For 0 ≤ j ≤ n-1, 0 ≤ k ≤ d-1, 

     











  









1

0

1

21
))()(()(1

2

1
)(

d

h

n

jni
pgpgpjpg

xxx
dp

p
x ihihnjk   

                      

















1

0

1

0
2

)()( ))()((
2

1 d

h

jn

i
pg

h

jipg

h

jijn
xAxB

p
ihih    

(iv) For 0 ≤ j ≤ n-1, 0 ≤ k ≤ d-1, 

     











  









1

0

1

212
))()(()(1

2

1
)(

d

h

n

jni
pgpgpjpg

xxx
dp

p
x ihihnjk   

       

                      













1

0

1

0
2

)( ))()((
2

1 d

h

jn

i
pgpg

h

jijn
xxA

p
ihih  . 

 

Proof. (i) By Theorem 2, 





12

0

0 )(

np

r

r

r xx  , where 



0

2

1

Cs

rs

nr
p

 = 
np2

1
 for all r. 

Therefore, )...1(
2

1
)( 122

0


np

n
xxx

p
x . 

(ii) By Theorem 2, 





12

0

)(

n

n

p

r

r

rp
xx  , where 




np

Cs

rs

nr
p


2

1
.Since by Note 1, 

nn pp
CC  , therefore, 




np

Cs

rs

nr
p


2

1
.Now, 0 = 

np2

1
, np
 = 

np2

1
   

For 0 ≤ i ≤ n-1, 0 ≤ k ≤ d-1, by using Lemma 8 and Lemma 9, we have 
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np

ik

ik

Cs

spg

npg p


2

1
= 

np2

1
 , 




np

ik

ik

Cs

spg

npg p

2

2 2

1
 = 

qp n2

1
. 

Thus,  )(1
2

1
)( x

p
x nn pnp

 








 








1

0

1

0
2

))()((
2

1 d

k

n

i
pgpgn

xx
p

ikik  . 

(iii) For 0 ≤ j ≤ n-1, 0 ≤ k ≤ d-1, 

If 





12

0

),()(

n

jk

p

r

rjk

rpg
xx  , then by Theorem 2 and Note 1, 




jpkg

Cs

rs

n

jk

r
p


2

1),( = 





jpukg

Cs

rs

np


2

1
, u = 0 or u = d/2 according as 11 C  or 2/1 dg

C . Thus, 





jpg

Cs
n

jk

r
p




2

1),( , where )(mod duk  and 0 ≤  ≤ d-1. Now, 





jpg

Cs
n

jk

p


 0),(

0
2

1
 = 

dp

p
n

jn

2

)2( 
, 




jpg

n

n

Cs

sp

n

jk

p p



2

1),(  = 
dp

p
n

jn

2

)( 




. 

For 0 ≤ i ≤ n-1, by using Lemma 8 and Lemma 9, we have 





jpg

ih

ih

Cs

spg

n

jk

pg p



2

1),( = 























.1if
1

,1,if
)(

2

1

)( jniB
p

njjni
d

p

p kh

jij

jn

n



 





jpg

ih

ih

Cs

spg

n

jk

pg p


 2),(

2 2

1
= 























.1if
1

,1,if
)(

2

1

)( jniA
p

njjni
d

p

p kh

jij

jn

n



 

Thus   











  









1

0

1

21
))()(()(1

2

1
)(

d

h

n

jni
pgpgpjpg

xxx
dp

p
x ihihnjk   

                      

















1

0

1

0
2

)()( ))()((
2

1 d

h

jn

i
pg

h

jipg

h

jijn
xAxB

p
ihih   . 

Similarly, we can evaluate )(
2

xjk pg
 . 

Lemma 10. For 0 ≤ i ≤ n-1, 0 ≤ k ≤ d-1, then  

(i)   )(k

iA  = 0, if 0 ≤ i < n-1. 

(ii) 






















odd,iskif,
2

)1(

even;iskif,
2

)1(

1

21

)(

1





n

n

k

n

p

pp

A  where d/2 is even. 
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(iii) 























odd,iskif,
2

)1(

even;iskif,
2

)1(

1

21

)(

1





n

n

k

n

p

pp

A  where d/2 is odd. 

 

Proof. Using Lemma 8 and putting all values of )( 2 jk

n

pg

p
 , )( 2 jk

ih

pg

pg
 and 

).( 2

2

jk

ih

pg

pg
 in )( 2

2

jk

jk

pg

pg
 = 1, we get  

 
















1

0

1

0

)()(1d

h

jn

i

hk

ji

uhk

jiji
AA

p
=

d

pdpn )1)1((1 

.                      (1) 

On the similar lines 

 
















1

0

1

0

)()(1d

h

jn

i

hm

ji

uhk

jiji
AA

p
=

d

ppn )1(1 

.                                 (2) 

 
















1

0

1

0

)()(1d

h

jn

i

hk

sji

uhk

jiji
AA

p
=0.                                                   (3) 

Also, we can solve above three equations for particular value j = n-1. Then these   

equations     read       as  














1

0

)(

1

)(

1

d

h

hk

n

uhk

n AA =
d

pdp n )1)1((22 

,                                    (4) 














1

0

)(

1

)(

1

d

h

hm

n

uhk

n AA =
d

pp n )1(22 

,                                             (5)    














1

0

)(

1

)(

1

d

h

hm

sn

uhk

n AA = 0, for all 1 ≤ s ≤ n -1. 

In view of above discussion, we conclude that,     







1

0

)()(
d

h

hk

j

uhk

j AA = 0, 





1

0

)()(
d

h

hm

j

uhk

j AA = 0 and 









1

0

)()(
d

h

hm

sj

uhk

j AA  = 0, 

for all 0 ≤ s ≤ j < n -1,  0 ≤ k, m ≤ d-1. 

(i) By [1, Lemma 14], we have 0)( k

jA  for all 0 ≤ j < n -1 and 0 ≤ k ≤ d-1. 

(ii) For k = 0 , after a simple calculation  , we have 

2

)1(
...

1
)2(

1

)2(

1

)0(

1









n
d

nnn

p
AAA , 

2

)1(
...

1
)1(

1

)3(

1

)1(

1









n
d

nnn

p
AAA  where 

p = 2 .. 

(iii) If u = d/2 is odd, 
2

)1(
...

1
)2(

1

)2(

1

)0(

1









n
d

nnn

p
AAA ,  

2

)1(
...

1
)1(

1

)3(

1

)1(

1









n
d

nnn

p
AAA where -p = 2 .     
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Lemma 11. For 0 ≤ i ≤ n-1, 0 ≤ k ≤ d-1, then  

(i)   )(k

iB  = 0, if 0 ≤ i < n-1. 

(ii) 





















odd,iskif,
2

)1(

even;iskif,
2

)1(

1

21

)(

1





n

n

k

n

p

pp

B  where d/2 is even. 

(iii) 





















odd,iskif,
2

)1(

even;iskif,
2

)1(

1

21

)(

1





n

n

k

n

p

pp

B  where d/2 is odd.  

Proof. As discussed in Lemma 11. 

 

 

 4. Dimension, generating polynomial and minimum distance of 

minimal cyclic codes of length 2p
n
  

 

The dimension of minimal cyclic code Ωs is the number of non-zeros of the 

generating idempotent θs; which is the cardinality of the cyclotomic coset Cs that is 

dim(Ωs) = | Cs |. We denote the minimum distance of Ωs by d(Ωs). 

 

Lemma 12.   If C is the cyclic code of length m generated by g(x) and is of 

minimum distance d, then the code C is of length mk generated by g(x)(1 + x
m

 + x
2m

 

+ … + x
(k-1)m

) is a repetition code of C repeated k times and minimum distance is kd. 

 

Proof. Trivial. 

4.1 Dimension, generating polynomial and minimum distance of Ω0
 
 

By definition, 




1x

1x
n2p

1 + x + x
2
 + … + 1-2pn

x  is the generating polynomial of 

Ω0.Further, dim (Ω0) = | C0 |
 
=1 and d (Ω0) = 2p

n
. 

4.2 Dimension, generating polynomial and minimum distance of np


 
 

By definition, the generating polynomial of np
 is 





1x

1x
n2p

-(1 - x + x
2
 - … - 

1-2pn

x ), thus dim ( np
 ) = 1 and d ( np

 ) = 2p
n
.
 
 

4.3 Dimension, generating polynomial and minimum distance of jk pg2
 , for 0 ≤ j ≤ 

n-1and 0 ≤ k ≤ d-1. 

We observe that, 




1

0

)2( )(M
d

k

pg x
lk

= (
111 )1(2 ...1
 

jnjnjn PPpp xxx ). 
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Also, 1x
n2p  = )x...xx1)(1 x(

j-njj-nj-nj-n p 1)-(2p2ppp   

                       = 

)x...xx1)(1 x(
1-j-n1-j-n1-j-n1-j-n 1)p-(p2ppp  )x...xx(1

j-njj-nj-n p 1)-(2p2pp  . 

Therefore, we have       







1

0

)2(

2

)(M

1
d

k

pg

p

x

x

jk

n

= 1) x(
1-j-np  )x...xx(1

j-njj-nj-n p 1)-(2p2pp  . 

 Let j  be the code of length p
n-j

q over GF(l) generated by g(x) = 1) x(
1-j-np  . Then 

the minimum distance of j  is 2. 

4.3.1. We shall further discuss some results for finding out the minimum distance of 

the minimal cyclic codes jk pg2
 , for 0 ≤ j ≤ n-1and 0 ≤ k ≤ d-1.   

 

Lemma 13. Let C1 and C2 be cyclic code of length n over GF(l). Then C1 and C2 are 

equivalent under the mapping  g (i) ≡ ig(mod n) with gcd(n, g) = 1 and g acting on 

Rn by g (f(x)) ≡ f(xg
)(mod (x

n
-1)) . 

 

Theorem 4. For any integer t, θst(x) = 1s
 (θt(x)) if gcd(s, m) =1, where θs(x) is the 

generating idempotent of irreducible cyclic code s .     

 

Proof. See [1, Theorem 3]. 

 

Theorem 5. For each j, 0 ≤ j ≤ n-1and 0 ≤ k ≤ d-1 

(i)  jk pg2
 are equivalent codes. 

(ii) The minimum distance of each jk pg2
  is at least 4p

j
.   

 

Proof. (i) In view of Theorem 4 and Lemma 13, the proof follows trivially. 

(ii) Let 
*

j  be the cyclic code of length 2p
n
, generated by      







1

0

)2(

2

)(M

1
d

k

pg

p

x

x

jk

n

.  

Then
*

j  is a repetition code of j  repeated 2p
j
 times and its minimum distance is 

4p
j
. Further, 

*

j  = jk pg

d

k 2

1

0  

 , thus jk pg2
  is sub code of 

*

j  .Therefore, the 

minimum distance of jk pg2
  is at least 4p

j
.  

 

Theorem 6. For each j, 0 ≤ j ≤ n-1and 0 ≤ k ≤ d-1 

(i)  jk pg
 are equivalent codes. 
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(ii) The minimum distance of each jk pg
  is at least 4p

j
.   

  

Proof. The proof follows on the similar lines as Theorem 5. 

 

5. Example.Let  p = 11, n = 1, l = 3. Then length of the cyclic code is 22, g = 7 and 

d = 2. 

The 3-cyclotomic cosets modulo 22 are given by:  

C0 = {0}, C11 = {11}, C1 = {1, 3, 5, 9, 15}, C2 = {2, 6, 8, 10, 18} 

C7 = {7, 13, 17, 19, 21},  C14 = {4, 12, 14, 16, 20}. 

Explicit expression for the primitive idempotents of the irreducible cyclic code of 

length 22 are given by: 

0(x)  = 1 + x + x
2
 +…+ x

21                             
1(x)  = 2 + 1(x) + 11(x) -14(x) 

2(x)  = 2-7(x) -11(x) -14(x)                   7(x) = 2 -2(x) +7(x) + 11(x) 

11(x) = 1-1(x) + (x) - 7(x) - 11(x)+ 14(x)      14(x) = 2-(x) - 2(x) - 11(x) 

The minimal ternary cyclic codes of length 22 have the following parameters: 

Code            Dimension              Minimum Distance               Generating Polynomial 

0                         1                          22                                            1 + x + x
2 

+…+x
21 

11                        1                          22                                            1- x + x
2
 -…+ x

21 
*

j                        10                          4                                               )1)(1( 11xx                                                                                                                                                                                    

**

j                       10                          4                                               )1)(1( 11xx   

Note that 2 , 14  and 1 , 7 are sub codes of *

j  and 
**

j  respectively. 

Therefore, the minimum distance of  2 , 14  and 1 , 7  is at least  4. 
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