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Abstract

Explicit expressions for all 2(nd+1) primitive idempotents in the ring
R,y =GF(N[x]/ <x** —-1>, where p and | are distinct odd primes such that
o(l),, =4(2p")/d,d>1

an integer, are obtained. The minimum distance, generating polynomials and
dimension of the minimal cyclic codes generated by these primitive idempotents are
also discussed. As example, we discuss the parameters of the minimal cyclic codes of
length 22.

Mathematics Subject Classification: 11A03; 15A07; 11R09; 11T06; 11T22; 11T71;
94B05; 94B15

Keywords: Cyclotomic cosets; Primitive idempotents; Minimal cyclic codes;
Generating polynomials;Minimum distance and Dimension

1. Introduction

Let F be a field of odd prime order 1 and k >1 be an integer such that gcd(l, k)=1.

Letr, :%I)[lx]' Then, R is semi-simple. As, every ideal in Ry is the direct sum of
<X —=1>
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its minimal ideals. Hence, to describe the complete set of ideals (codes over F) in Ry,
it is sufficient to find its complete set of primitive idempotents. Let o(l), denotes the
order of | modulo k. For k = 2, 4, p", 2p", p is odd prime and o(l), = ¢(k), the
complete set of primitive idempotents in Ry are obtained by Arora and Pruthi [4,9].

¢()

k=p", 2p" (n >1), p odd prime and o(l), = , the complete set of primitive

idempotents in Ry are obtained by Batra, Arora [8]. For k = p"g (n> 1), pandq
distinct odd primes where | is primitive root modulo p" and g both with

ged(4(2p"), #(q) ) = 2, the primitive idempotents in Ry are obtained by Bakshi and
Raka [3]. For k = p" (n > 1), p odd prime, o(l), :@, e is positive integer, the
e

primitive idempotents in Ry are obtained by Sharma, Raka and Dumir [5]. Ranjeet
Singh and Manju Pruthi [6] obtain the primitive idempotents of the quadratic residue
codes of length p"gq™, p, q are distinct odd primes and

o(l)
Sehgal [1] descrlbe the prlmltlve idempotents of minimal cyclic codes of length p"q,
p, g are distinct odd primes and, o(l),. = $(p"),o(l), =4(q), ged (4(p"), #(q)) = d,

p does not divide g-1.
In this paper, we have extended the results of Batra, Arora [8]. We consider

the case when k = 2p", where p and | are distinct odd primes, o(I)an =¢(2p")/d,d>

¢(p ) o(I) ¢(q ), gcd(%pn),(é(%m)): 1. Amita Sahni and P.T.

1 an integer. We obtain explicit expressions for all the 2(nd+1) primitive idempotents
in Ry. The minimum distance, generating polynomials and dimension of the minimal
cyclic codes generated by these primitive idempotents are also discussed. In Section2
(Lemmas 1- 9 and Theorem 1), we discuss the cyclotomic cosets modulo 2p" and
some basic results for describing the primitive idempotents in Ry. In Section
3(Theorem 3), the explicit expression of primitive idempotents have obtained. In
Section 4 (Theorem 4-6), we discuss the dimension, generating polynomial and
minimum distance of minimal cyclic codes of length 2p". In section 5, we discuss the
various parameters of minimal cyclic codes of length 22.

2. Primitive idempotents in g, zw and minimal cyclic codes
<X -1>

of length 2p" over F(=GF(1))
In this section we describe the minimal cyclic codes of length 2p" over F,
where p and | are distinct odd primes and o(I)zpn =¢(2p")/d,d>1 an integer. A set

of ¢(n) integers ay, ay,..., a,,, , where ged (a;, n) =1anda # a (mod n) forall i, j,
1 <i,j<¢(n),i+#j form a reduced residue system modulo n. Let | be a positive
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integer of order ¢(n), then | is called primitive root modulo n. We know that primitive
root modulo n exists only when n = 2, 4, p°, 2p® where p is an odd prime.
Lemma 1. Let pand | be distinct odd primesandn>1bean integer.

n-j
If o(l),, =¢(2p")/d , then o(I)zpn,i :% Jforall0<j<n-1.
Proof. Trivial.
Lemma 2. There exists a positive integer g, 1 < g < 2p, such that gcd (g, 2pl) = 1,

#(2p)_
and 0(g),,=¢(p) ,whereg, g ..., g" € {1, 1,15 .., ¢ ¢ "1
Proof. See [1, Lemma4].
Lemma 3. There exists a positive integer g, 1 < g < 2p, such that gcd (g, 2pl) = 1land

g 1(mod 2p) foranyi, k;1<i<d-land0<k< (/5((jp) . Further, forany j, 1<j <

s g™
ntheset {1, L, P ..., ¢ ¢ " gglgl. gl ¢ .. g g™ g g
s _
¢ 9} form areduced residue system modulo 2p™’.
Proof. Trivial.

LetS=1{0,1,2,...,2p"-1}. Fora, b € S, say thata~b iffa=bl' (mod 2p") for
some integer i > 0.This defines an equivalence relation on the set S. The equivalence
classes due to this relation are called I-cyclostomic cosets modulo 2p". The | -
cyclotomic coset containing se S is denoted by

C, ={s,sl, sl?, ..., sI"},

where t; is the least positive integer such that sl =s(mod 2p") and |Cs| denotes the
order of the I-cyclotomic coset Cs, containing s.

Theorem 1. If p is an odd primeo(l)an =¢(2p")/d, d > 1 an integer, then for the

integer n > 1, there are 2(nd+1) cyclotomic cosets (mod 2p") given by
()  Co={0}
(i) c,={n"}

For0<j<n-1,0<k<d-1

e . #(p"") 4
(i) C,,={gp.gpl..gp¢ ¢ }
(iv) C,y =£20P\ 20" 'l ... 2¢" pP 0 ¢ 7},

where g is the fixed integer as defined in Lemma 2.

Proof. Trivial.
Note 1. (i) g € C,, for any integer u if and only if u =0 (mod d).
(i)—1eC,or —1e Core if —-1eC, then —C, =C, otherwise —C, = Care-
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(i) If -C, =C, then-C , , =C , ,, otherwise -C , , =C ,,,,, , forall i, k;
g'p gp g'p g p
0<i<nland0<k< d-1.
Lemma 4. For any odd prime p and positive integer Kk, if B is primitive pk th root of
unity in some extension field of GF(l) and o(I)pk = ¢(p*) (mod p“), then
MZkilﬁ's -1 ifk=1
Sl o0 ifk>L

s=0

Proof. See [3, Lemma 4].

LLemma 5. For any odd prime p and positive integer k, if B is primitive 2p* th root of
unity in some extension field of GF(l) and o(I)2pk = ¢(2p*) (mod 2p"), then

Wi)_l/?'s—l if k=1
— o ifk>1.

Proof. Similar as Lemma 4.
Let « is primitive 2p"th root of unity in some extension field of GF(I). For0 <i < n-

i (k) _ 2p's k) _ 's Qi _
1and 0 < k < d-1, define AY = S;ka P*and BM = s;kap SinceC , =C,
therefore (A")"' = A, so that each A®,BY e GF(l).

d-t 0 ifi<n-2
Lemma 6. Foreachi, 0 <i< n-1, > A = L

=0 —p" ifi=n-1.
Proof. See [1, Lemma 10].

-t 0 ifi<n-2
Lemma 7. Foreachi,0<i< n-1, > B" = Lo

k=0 p"* if i=n-1.
Proof. Similar as above.
Lemma 8. For each h, k, 0<h, k<d-1,0<i,j< n,
1 ifi+j>n, j=n,

ki n-J
> a0 = % if i+j>n j<n-1

seC | i
g"p)

%Ai‘hfk) ifi+j<n-1.

+J



Minimal cyclic codes of length 2p" 83

- - — " . = — zgkpiS -
Proof. Case (i) Forj=n,i+j=n, Cn ;= C i »=Cn, S0, da 1.

seC
pn

Case (ii) Leti+j>nandj<n-1,then the above sum equals ﬂan_J) .

p2p" ") |
- - - i d S (h+k) i+
Case (i) IfFi +j<n—1,then S ?9Fs = " where B=a%"""" then
J
seC y s=0
gp

B is primitive p" th root of unity. Therefore, 8" = 8" ,if and only if I' = I° (mod
p™), if and only if r = s (modw).

pp"h) | pep" N
d . o d .
Then > p" =p' > " .Also,
s=0 s=0
$2p") | p" "
. d : 2p") d d |

(h+k) _ 2pitls _ Z = _ #(2p (- (h+k)
T = a = g = : — po= —A"
VAT R ey &

Then, by above discussion we get the required sum.

Lemma 9. For each h, k, 0<h, k<d-1,0<i,j< n,

-1 if i+j=n,j=n,
k i n_j
Zagps: _% if i+j>=n j<n-1
SeChpj
’ 1 (h+k) o
— B, if i+j<n-1
Y

Proof. Similar as Lemma 8.

3. Evaluation of primitive idempotents

If « isa primitive mth root of unity in some extension field GF(l), then the
polynomial M®(x) = IT; . (X —a') is the minimal polynomial over GF(l). Let Qs be
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the minimal ideal in Ry, generated by X

of Qs and define o¢(X) = Z X'

ieCg

Theorem 2. 0,(x) = Ze x', where & = > a™ foralli>0.

jeCq
Proof. See [1, Theorem 1].
Theorem 3. The 2 (nd+1) primitive idempotents in R2pn are given by

(i) 6,(x)= :)(l+x+x o+ X2

{f"f,(ozg NOEC. (x))}

i=0

m)%4@:2pnh-awuﬁ
(iii)For0<j<n-1 0<k<d-1,

0 i (X) = 2p 1d {1 o, (x)+2l nZ_l(a2g vy () =0 s (X))}-i-

h=0 i=n-j
1 GE o ()
2pn+j ; ;(BIJrJ o h I(X)+A| 29 p' (X))

(iv) For0<j<n-1,0<k <d-1,
d—

1 n-1
0, (X) = 2': d{lw () + _Oi_n_j(aghpi(x)+ozghp.(x>)}+

LN

=>

-1n-j-1
Alwh)(d \ ,(X)+0'

-
Q
|_\

. ().

2g"p

Il
o

i=0

2p"-1
Proof. (i) By Theorem 2, 6,(x) = Zg,xr , Where ¢, = 21n Za‘“ = ZL
r=0 seCy
Therefore, 6,(x) = 201y
2p"-1 1
(if) By Theorem 2, 6, (x) = > &x", where &, =oor Y a™™ Since by Note 1,
r=0 seC
—C ,=C ,, therefore, ¢, 1 Za“ Now, ¢,= L £, = - 1
e 2p" &, 2p" ° 2p"

For 0 <i<n-1,0 <k <d-1, by using Lemma 8 and Lemma 9, we have

_§ and 05(x) be the primitive idempotent

- forallr.
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= 1 agkpis - _ 1 e .= 1 azgkpis — 1 '
v 2p" & 2p" P 2p" i, 2p"q
1 d-1 n-1
Thus, 6, (x)= 20" {1—0IOn (x)} {kz(;.z_o:(azg o (X) =0 (x))}.

(iii) For 0 <j <n-1,0 <k <d-1,
2p"-1

It 0, (x)= > &fVx", then by Theorem 2 and Note 1, &V =
r=0

Za—rs -

2pn sngkpj
_ L Za“, u=0 oru = d2 according as -1C, or —1€C ,,,. Thus,
2pn seC g g
gV = —_ Za , where y=k+u(modd)and 0 < y< d-1. Now,
seC

("”—i >a :_¢(2pn_j) g(k,j):i zap”s :_¢(p"_j).

€o n o n P n n
2p SEngpj 2p d 2p Sechpj 2p d
For 0 <i<n-1, by using Lemma 8 and Lemma 9, we have
n-j
. 1 b _op) if i>n—j,j<n-1,
g(l;,Ji) — - zag ps = 1 d
9'p 2p s<C_, | 2p" 1

I+]

—B{ if i<n-j-1
p’

if i2n—j,j<n-1

#(p"")
d

l hi
ki) _ 2g"p's — 1
829p - n Za n

2P s, 2p A<“+k> if i<n-j-1

Thus 0, (X) = P-1 ), o, (x)+i nZ_l:(azghp.(x) ah.(X))}

2pj+1d h=0 i=n—j
1 d-1n-j-1 (o) ( h)
7t 7t
2T 2 2By () + AL, (0)

Similarly, we can evaluate 0,y (x).

Lemma 10. For 0 <i<n-1, 0 <k <d-1, then
(i) A% =0,if0<i<n-1.

p”‘lﬂ, if kisewven; p =«?
(i) Y AY) = 12 where d/2 is even.
~ o 89 e s odd,
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—p"’lM, if kiseven, —p=r°
(iii) > A% = 2 where d/2 is odd.
ot (T;D . if kis odd,

Proof. Using Lemma 8 and putting all values of o, (@®""), T (@®"*")and

Ty i(oczgk"j).in 0, j(azgkpj): 1, we get

< 1an:1 A|(k+h+u) (k+h) _p"i(( 1)p+1) )
—0 =0 p'” d
On the S|m|Iar lines
d-1n-j-1 n—1 1—
Z - A|(k+h+u) (m+h) _ @-p) . @)
p d
& k+h k+h
h=0 =0 p'ﬂ A'( j +u)A'(ﬂ+-3 =0. ©)

Also, we can solve above three equations for particular value j = n-1. Then these
equations read  as

ZArgk+h+u) (k+h) _p 2((dd p +1) (4)
d-1 2n-2

u m+ 1-
> Aoy =B82P) ©)
d-1

> A AT =0, forall 1 <s<n-1.

In view of above discussion we conclude that,
ZA(k+h+u) A(k+h) - 0 ZA(k+h+u)A(m+h) =0 and ZA§k+h+u)AJ§TS+h) - 01

h=0
forall0<s<j<n 1, OSk,de 1.

(i) By [1, Lemma 14], we have A =0 forall0<j<n-1and 0 <k <d-1.
(i) For k = 0, after a simple calculation , we have

O+ A% v A = DD pe ey = P e
p= K.

n-1
(iii) If u=d/2is odd, A + A® +..+ALD = %

n-1
AP+ A® 4+ A = %where -p=7?
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Lemma 11. For 0 <i<n-1,0 <k <d-1, then
(i) B® =0,if0<i<n-1.

”‘1M, if kisewen; p=x?

(i) Y BY = 2 where d/2 is even.
pht (1;2’() if kis odd,
p”‘lM, if kiseven; —p=r?

(iii) Y BY) = 2 where d/2 is odd.
p”‘lg, if k isodd,

Proof. As discussed in Lemma 11.

4. Dimension, generating polynomial and minimum distance of
minimal cyclic codes of length 2p"

The dimension of minimal cyclic code Qg is the number of non-zeros of the
generating idempotent 0s; which is the cardinality of the cyclotomic coset Cs that is
dim(€)s) = | Cs |. We denote the minimum distance of Qg by d(€s).

Lemma 12. If C is the cyclic code of length m generated by g(x) and is of
minimum distance d, then the code C is of length mk generated by g(x)(1 + x™ + x*"
+ ... +x*M) js a repetition code of C repeated k times and minimum distance is kd.

Proof. Trivial.
4.1 Dimension, generating polynomial and minimum distance of Qg
2p" .
L ixex X
x-1
Qo.Further, dim (Qg) = | Co |=1 and d (Qg) = 2p".

4.2 Dimension, generating polynomial and minimum distance of Qpn

is the generating polynomial of

By definition, X

n

x® -1

=-1-x+x*-..-
x+1

By definition, the generating polynomial of Qpn is

x#'), thus dim (Q,,)=landd(Q ) =2p"
4.3 Dimension, generating polynomial and minimum distance of Q
n-land 0 <k <d-1.

d-1
kol n-j-1 n-j-1 n-j-1
We observe that, [TM®) (x) = (1+xP + x4+ +x®2P),
k=0

_ <i<
ngIDJ,forO_J_
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Also, x®" —1= (X" ~1)(1+x*" +x®" 4. +x@0P")

n-j

(XP™" D)@+ X X XY (1 x4 x P L X @R
X*P -1 prit P y 2p™ @p’-1)p"
Therefore, we have = (X" =1) (1+xP +XT +.+X ).
[0
k=0

Let y, be the code of length p™iq over GF(l) generated by g(x) = (x*”" ~1). Then
the minimum distance of y; is 2.

4.3.1. We shall further discuss some results for finding out the minimum distance of
the minimal cyclic codes ngkp,. ,for0<j<n-land 0 <k <d-1.

Lemma 13. Let C; and C; be cyclic code of length n over GF(I). Then C; and C; are
equivalent under the mapping 4, (i) = ig(mod n) with ged(n, g) = 1 and x acting on

Rn by s, (f(x)) = f(x*)(mod (x™-1)) .

Theorem 4. For any integer t, 0s(X) = x_, (0(x)) if ged(s, m) =1, where 65(X) is the
generating idempotent of irreducible cyclic code Q2. .

Proof. See [1, Theorem 3].

Theorem 5. Foreach j, 0 <j<n-land 0 <k <d-1

Q) ngkpj are equivalent codes.

(ii) The minimum distance of each Q. , , is at least 4p'.

29°p
Proof. (i) In view of Theorem 4 and Lemma 13, the proof follows trivially.
X2 1

d-1

HM(ngpj)(X) .

k=0
Then ;(]7 is a repetition code of y; repeated 2p’ times and its minimum distance is

4p). Further, y| = ®i5Q thus Q

ii) Let y. be the cyclic code of length 2p", generated by
@i L :b h lic code of | h 2p" db

2451 2%p) is sub code of ;(J .Therefore, the

minimum distance of ngkpj is at least 4pj.

Theorem 6. For eachj, 0 <j<n-land 0 <k <d-1
Q) ngp,. are equivalent codes.
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(if) The minimum distance of each ngpj is at least 4p’.

Proof. The proof follows on the similar lines as Theorem 5.

5. Example.Let p=11,n=1, | =3. Then length of the cyclic code is 22, g = 7 and
d=2.

The 3-cyclotomic cosets modulo 22 are given by:

Co = {O}, C11 = {11}, C1 = {1, 3, 5, 9, 15}, Cz = {2, 6, 8, 10, 18}
C,={7,13,17,19, 21}, Ci4 =44, 12, 14, 16, 20}.

Explicit expression for the primitive idempotents of the irreducible cyclic code of
length 22 are given by:

Bo(X) =1 +x+x*+...+x* 01(X) =2 + 61(X) + 611(X) -014(X)

ez(X) = 2-67(X) 'Gj_]_(X) -(514(X) 67(X) =2 -Gz(X) +G7(X) + G]_]_(X)

011(X) = 1-61(X) + 62(X) - 67(X) - 611(X)+ 614(X) 014(X) = 2-61(X) - 62(X) - 611(X)
The minimal ternary cyclic codes of length 22 have the following parameters:

Code Dimension Minimum Distance Generating Polynomial
Q, 1 22 T+ x+ X+ +x2
Q, 1 22 1-x + X% -+ x2
x; 10 4 (x—-D@+x")
x; 10 4 (x -1 —-x")

Note thatQ,, €, and ©Q,, Q,are sub codes of y; and y; respectively.
Therefore, the minimum distance of Q,, Q,, and Q,, Q, is at least 4.
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