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Abstract

For a given rational matrix G with complex coefficients and a given domain I' in the closed com-
plex plane, both arhitrary, we develop a complete theory of coprime factorizations of G over I', with
denominators of McMillan degree as small as possible. The main tool is a general pole displacement
theorem which gives conditions for an inveriible rational matrix to dislocate by multiplication a part
of the poles of G. We apply this result to obtain the parametrized class of all coprime factorizations
over ' with denominators of minimal McMillan degree ny, — the number of poles of G outside T
Specific choices of the parameters and of T allow to determine coprime factorizations, as for instance,
with polynomial, proper or stable factors. Further, we consider the case in which the denominator
has a certain symmetry, namely it is J all-pass, either with respect to the imaginary axis or to
the unit circle. We give necessary and sufficient solvability conditions for the problem of coprime
factorization with J all-pass denominator of McMillan degree ny, and, when a solution exists, we
give a construction of the class of coprime factors. When no such solution exists, we discuss the
existence of and give solutions to coprime factorizations with J all-pass denominators of minimal
McMillan degree (> n;). All the developments are carried out in terms of descriptor realizations
associated with rational matrices, leading to explicit and computationally efficient formulas.

Keywords: Rational Matrices; Coprime factorizations; .J all-pass; Descriptor realizations; Pole
assignment; Numerical algorithms.

1 Introduction

Let G be an arbitrary rational matrix (possible improper) and let T' be a given domain of the
closed complex plane. A left coprime factorization (I.CF) over I' of G is a fractional representation
of the form G = M !N, with N and M rational matrices having poles only in I" and satisfying
MU+NV = I for certain rational matrices I/ and V with all poles in T'. Analogously, a factorization
in the form G = NM ™', with N and M having poles only in T, and satisfying UM + VM = I for
certain rational matrices U and V with poles in T is called a right coprime factorization over T.

In this paper we develop a complete theory of LCFs over I with denominators M of smallest
possible McMillan degree (see the precise definition below). For brevity, we call such factorizations
of minimal degree, and define the degree of the factorization to be the McMillan degree of the
denominator M. We address only LCF's since all results for right coprime factorizations follow by
duality.

Apparently, the theory of minimal degree coprime factorizations has not been previously con-
sidered as such in the literature, although it is crux to solving various problems encountered in the
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theory of linear systems and networks [24, 27], to canonical and noncanonical spectral factoriza-
tions of unstable rational matrices [3], to several conjugation based approaches to nonstandard H,
control problems (25, 26], and brings important numerical advantages as for instance in computing
coprime factorizations with denominators which are either polynomial, proper, stable, all-pass, or
J lossless [19, 20]. The only noticeable exception is [2], where coprime factorizations are addressed
with another requirement of minimality, namely the sum of the McMillan degrees of the denomi-
nator and nominator to be as small as possible. However, even in the quite particular case treated
in [2] where the matrix to be factored is square and of full rank over rationals this sum—minimality
leads to combinatorial problems over an infinite set which have little interest from an algorithmic
viewpoint as well as for the type of applications that we have mentioned above.

Qur main tool in the derivations — which has also an independent interest — is a general pole
displacement theorem which gives a characterization in terms of realizations for an invertible rational
matrix M to cancel in the product MG all poles of G in I". An important feature of our result is the
posgibility to cope with domains containing infinity, without using conformal mapping techniques.
In particular, we show that the minimal degree of a LCF over T is n;, where n; is the number of
poles of G outside I, and give a description in terms of realizations of all factors solving the minimal
degree LCF over T'. It turns out that the basic ingredient in computing LCFs of minimal degree lies
in the solution of a generalized eigenvalue assignment problem of order ny.

We develop also a theory of minimal degree LCFs with the additional requirement that the
denominator has a certain symmetry. We consider here two cases, in which the denominator is J
all-pass, either with respect to the imaginary axis or to the unit circle, and the domain I is adequately
chosen to reflect the respective symmetry. We study first LCFs with .J all-pass denominator of degree
ne which we call the canonical cuse, and give necessary and sufficient solvability conditions. When
solutions exist we give a parametrized description of the factors in terms of associated realizations.
When such canonical solutions do not exist, we discuss the solution of noncanonical LCFs with
J all-pass denominators of McMillan degree as small as possible (> ns). The computation of
factors in the canonical case relies on solving a generalized Lyapunov equation of order my. In the
noncanonical case, the rank r of the solution of the same Lyapunov equation allows to determine the
minimal degree of the factorization as 2ny, —r. The noncanonical factors can then be constructed by
embedding the solution of this Lyapunov equation of order ng into a 2n, —r order Lyapunov equation
with nonsingular solution. The noncanocnical case treated here has important connections with the
noncanonical Wiener~Hopf and J spectral factorizations as discussed in [3] for proper and invertible
rational matrices. Another connected work is [26] which in contrast to our results is restricted to
the canonical case with J lossless denominator with respect to the imaginary axis, and involves the
solution of a Riccati equation of order equal to the McMillan degree of G.

The paper is organized as follows. The main definitions and notation used throughout the
paper are presented in a preliminary section together with a brief discussion on various descriptor
realizations of rational matrices. In Section 3 we obtain formnlas for an invertible factor that
dislocates by left multiplication certain prescribed poles of a given rational matrix. In Section 4 we
give a parametrization of the class of factors that solve the minimal degree LCF over I. Section 5
is devoted to the theory of minimal degree LCFs with J all-pass denominators with respect to the
imaginary axis. In Section 6 we develop the analogous results in the case in which the denominator
is J all-pass with respect to the umit circle. Several numerical examples are presented in Section 7
together with a discussion of appropriate computational methods. Some conclusions summarize the
main aspects of the proposed theory and provide hints to possible applications and extensions. We
defer to an Appendix the characterization in terms of realizations of an arbitrary J all-pass rational
matrix.

2 Preliminaries

2.1 Basic notation

We start with some notation and definitions. For a matrix A we denote by AT and A*, its transpose
and its conjugate transpose, respectively, and if 4 is invertible by A7 and 4 * its transposed



inverse and its conjugated transposed inverse, respectively.

By C, €, €*, ©° and IR we denote the complex plane, the open left half plane, the open right
half plane, the imaginary axis, and the real axis, respectively, and let € := €U {o0} be the closed
complex plane, and € = €"UC"U{co}, € =ctu €U {oo}, T .= cu {oc}. Here “overbar”
denotes closure. By ID we denote the open unit disk and ID¢ = € \ ID stands for the exterior of the
closed unit disk, containing the infinity.

Consider the disjoint partition of the closed complex plane into a “good” region I'y and a “bad”
region I'y as

C=I,ul}. (1)
A frequent interpretation of I’y in system theory is related to the standard stability concept, that
is, for linear continuous—time systems I’y == €, while for linear discrete-time systems I'y = ID (or,
sometimes, their closures). However, we use also other interpretations, as for instance I'y = {o0} to
obtain coprime factorizations with polynomial factors. When dealing with LCF's of rational matrices
with real coefficients, we assume that I'; is symmetric with respect to the imaginary axis, that is,
if A € T, then X € I',. This is in particular true for all the aforementioned examples of I'y and
guarantees that the resulting factors of the LCF have real coefficients as well.

2.2 Rational matrices

Throughout the paper we consider matrices with coefficients in the field IF, where F denotes either
IR or C. We view a p x m rational matrix G(A) as a matrix whose entries are rational functions
with coeflicients in F and of the complex variable A. Alternatively, we shall assimilate the rational
matrix G(A) with the fransfer-function matriz {TFM) of a linear time-invariant continuous—time
or discrete-time descriptor system, and X is either s or z, the complex variables appearing in the
Laplace—- or Z—transform, respectively, according to the type of the system. We denote with G~ the
edjoint of 7, where G™(s) = G*(—3) in continuous-time and G~ (z) = G*(1/Z) in discrete—time. In
particular, if G has real coefficients we have G~(s) = G7(—s) and G~(z) = GT(1/z), respectively.
Let J be a signature matrix, i.e., a matrix satislying J = J* = J~!. We say that the rational
matrix G is J all-pass with respect to the imaginary ozis if G~JG = J, where G~ denotes the
adjoint in continuous—time. Accordingly, we say that G is J all-pass with respect to the unit circle
it G~JG = J, where G™ denotes now the adjoint in discrete-time.

2.3 Structural elements of rational matrices

For an arbitrary rational matrix we recall now several structural elements that play an important
role in the sequel: normal rank, finite and infinite poles and zeros, and their orders. It is easy to
realize that G/(A) has constant rank for all but a finite number of points A € € for which it has
smaller rank. The normal rank of G is by definition the rank of G()) for almost all A € €. A rational
matrix which is square (say p x p) and has full normal rank p is called nonsingular, otherwise it is
called singular. Clearly, a nonsingular rational matrix has an inverse which is a rational matrix as
well.

In this paper, a particular focus is on the peles and zeros of a rational matrix, defined now. For
an arbitrary p x m rational matrix G of normal rank r there always exist a p x p polynomial matrix
U(A) with det /(A) = 1, and an m x m polynomial matrix V' (A) with det V(A) = 1 that bring G to
the so—called Smith—-McMillan form

D(A) = U(NGMV (N, (2)
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The polynomials €;{A) and 7;(A) are uniquely defined by G{A), and are called elemeniary divisors

of G. Define
) = al)--a, )
p(A) = m(A)-ne(A)
Then the n, (n,) roots of z(X) (p(A)) are by definition the finite zeros (poles) of G and their
multiplicities are by definition the multiplicities of the roots of z{d) (p(\)). The orders of the
zero (pole) Ag of G are by definition the nonzero multiplicities of Ay as a root of &;(A) (m(A)},

for i = 1,...,r. We say that oo is a zero (pole) of G if 0 is a zero (pole) of the rational matrix
@(/\) = G(%), and we define the orders of the (zero) pole A = oo of G(A) as the orders of the pole
A=0of G(A).

By definition, the McMillan degree of G - denoted &(G) — is the sum of the orders of all its
poles (finite and infinite}. Once a partition (1) is fixed, we have 6(G) = ny + n,, where n, denotes
the number of “good” poles in I'; and n; denotes the number of “bad” poles in I'sy {counting
multiplicities).

A rational matrix & which is J all-pass with respect to the imaginary axis features a pole—zero
symmetry with respect to the imaginary axis. Precisely, if {A1,Az,...,An} is the union of poles of
G, then {—A;, —As2,...,—A,} is the union of zeros of G. A similar property holds for a rational
matrix G which is J all-pass with respect to the unit circle where now the pole-zero symmetry is
of course with respect to the unit circle.

2.4 Descriptor realizations of rational matrices
Standard descriptor realizations of rational matrices

It is well known (see for example [23, 22]) that any p X m rational matrix G()) with coefficients in
FF (even improper or polynomial) has a descriptor realization of the form

A—AE B]

c D (6)

G(A) =D+ C(\E-AY'B = {
where 4, E € F**", B € F™™, C € FP** D € F?*™, and the so called pole pencil A — AE
is regular, i.e., it is square and det(4 — AE) £ 0. The dimension n of the square matrices A and
E is called the order of the realization (6). We use A(A — AE) to denote the union of generalized
eigenvalues of the regular pencil A — AE (finite and infinite, multiplicities counting). Occasionally,
we shall also use the more compact notation G = (4 — AFE, B, C, D) to denote (6). The descriptor
realization (6) of G is called mindmal if its order is as small as possible among all realizations of this
kind. Well known criteria for minimality of a descriptor realization (6) are (see for example [22]):

(i) rank [ A-~AE B ]=mn, VicC,

(ii) rank | E B ] =n,

A-AE

(3ii) rank [ c } =n, Yie(, (7)
(iv) rank [ g ] =,

{v) Aker(E) C Im(E).

The conditions of minimality (i}-(v) are usually known as finite and infinite controllability, finite
and infinite observability, and absence of nondynamic modes, respectively. For a minimal descriptor
realization (6) of order n we have §(G) = rank E < n.

The principal inconvenience of realizations of the form (6) is that their minimal possible order
is greater than the McMillan degree of G, unless @ is proper, and this brings important technical
difficulties in factorization problems in which the McMillan degree plays a paramount role. A remedy
to this is to use a generalization of (6) in which either the “B” or the “C” matrix is replaced by a
matrix pencil, as explained in the next section.



Alternative descriptor realizations

Any rational p x m matrix G has a realization

—AE | B—AF
G(A) =D+ CQAE - A)"YB ~AF) = 4 l : {8)
C l D
and for any fixed o, 7 € F, not both zero, there exists a realization
A—AE | Bla— X
G(A) = D+ C(AE - A 'Bla— A3) =: [ 7 } (aD 2) ] , {9)

where A, E € F™*" B, F € F™*™ C € F?*", D € F?™, and the pole pencil A — AE is regular.
A realization (9) will be called centered at § (if § = 0 we interpret 3 as o0). Occasionally, we shall
use also the more compact notation G = (A—AE,B—AF,C,D)and G = (A— AE, B(a—A3),C, D)
to denote {8) and (9), respectively.

All realizations (6), (8) and (9) are formally contained in the following general realization of a
rational matrix due to Rosenbrock [14]

— -1 _ | T U
G =W(A) - V(AT (WU = [ Ty T WOy (10)
where T(X), U(A), V{}), aud W{A) are matrix polynomials, with 7(A) square and invertible. It is
easy to see that

=13 7100 wiy]lo 7] o

where @ and Z are constant invertible matrices, and X and Y are arbitrary constant matrices,
defines an equivalent realization in the form

T UW
V(A W)

T\ | U
vy | Wy

{see also [14] for a more general case). This type of transformation performed on a realization is
called equivalence, and if in addition X = 0 and ¥ =0 it is called state-space equivaience.

We call realizations of the type {8) or (9) minimal if the dimension of the square matrices 4
and E (also called the order of the realization} is as small as possible among all realizations of the
respective kind. It can be easily shown that any rational matrix G{A) has a minimal realization of
type {8) of order equal to 8(G). For any fixed o and 3, not both zero, and such that F isnot a
pole of G there also exists a minimal realization of type (9) of order equal to §(G). The condition
imposed on % is needed only for writing down minimal realizations (9) which have order equal to
8(G). More precisely, even if 5 is a pole of G we can still write a realization (9) but the minimal
order will with necessity be greater than §(G). This is exactly what is happening for realizations
{6) which are obtained from (9) for @ == 1 and = 0, and for which the minimal order is necessary
greater than 6(G), provided % = oo is a pole of . Notice that for (9) we can always choose freely
a and A such as to ensure % is not a pole of ¢. For the rest of the paper, if not otherwise stated,
we assume this choice implicitly. The nice feature of {8) and (9) that their minimal order equals the
McMillan degree of G recommends them for the kind of problems treated in this paper.

It is relatively straightforward to show that the criteria of minimality for a descriptor realization
of type (8) are

G(A) =

) rank [ A—AE B-AF |=n, VAeC,

(it} rank | E F | =n,

(i) rank [ A ‘C’\E ] —n, ViEC, (12)
{iv) rank { g ] =mn,



while for realizations of type (9) similar conditions result by simply replacing (i) and (ii) in {12)
with
(i) rank [ A—AE Bla-A8) |=n, VAeC(,

(i) rank [ E B ] =n. (13)

Of particular importance in the case of (9) is that any two minimal realizations G = (A — AE, B{a—
AB),C, D) and G = (;f - )\E,E(a —A3), 5,5) are always related by an equivalence transformation
as

E=QEZ, A=QAZ. B=QB, C=cCZ D=D,
where (} and Z are unique invertible matrices. Moreover, for an invertible rational matrix G(A), it
is possible to choose a realization (9) with D invertible, provided o and 3 are such that % is neither
a pole nor a zero of G(A). In this case we can use explicit formulas for the inverse G~! in the form

A—AE ~BD™'Cla—A8) | BD™(a — A\j)
-D-IC D1 ’

G N = (14)
An additional nice feature of realizations (9) is revealed in Appendix where we show that an ap-
propriate choice of o and § leads to nice formulas in case of rational matrices featuring certain
syrametries.

Conversions between the representations (6), (8) and {9) are straightforward. Here we only show
how to obtain from a n—th order realization (6} a realization of the form (8) of order equal to rank E.
We can always determine two invertible (even unitary) matrices @ and Z such that

Ag—AE3 Aan — AEa | By
— B
G(A) = [ Q(ACZ).E)Z { CE’D ] = O An J B, |, (15)

Cy Cy | D
where the invertible matrix A, € R™*”* contains the so-cailed infinite nondynamic modes, and
rank [ B4 FEun | = rankE. By using a general transformation as in (11) we get an equivalent
realization of the type (8) in the form

G = [Ad = AEs | By — Agn A7 By, + AEs AZ'B,
= Ca | D-TC,A'E,

(16)

which has order equal to rank F. Provided (6) is minimal, the realization (16) is minimal as well.

All the above stated features of realizations (8) and (9) although not well-known, follow by
standard arguments from the realization theory [14, 22], and therefore we do not give here detailed
proofs.

Structural elements in terms of realizations

The following result adapted from [14) and [23] will be instrumental in the sequel.
Theorem 2.1 Let G(A) be an arbitrary rational matriz with o realization (8) (or (9)).

1. Poles. The poles of G(A) are among the generalized eigenvalues of the pole pencil A — AE.
If the realization (8) is minimal {or if § 1s not a pole of G(A), and (9) s minimal) then the
poles of G(A) are ezactly the generalized eigenvalues of A — AE, and the orders of the poles are
pairwise equal to the multiplicities of the generulized eigenvalues of A — AE.

2. Zeros. The zeros of G(A) are among the zeros of the system pencil associated with (. 8)

A—XE B-AF
{or of the system pencil associated with (9)
A—AE Blo— A
[ o e ] ) (18)



Tor a careful discussion of the delicate notions of pole and zero at infinity of a rational matrix and
connection with the realization theory we refer to [23].

Separated realizations

As a methodological question, throughout the paper we assume that the rational matrix G to start
with is given by a minimal descriptor realization (6) as this type of realization is most frequently
used in the literature to represent arbitrary {possibly improper) rational matrices. The solutions M
and N to the LCF G = M 1N will be given directly by minimal realizations of the type (8) or (9)
of order equal to their respective McMillan degree. Furthermore, once a partition (1) is fixed, we
assume that & is given by a separated realization with respect to (1), namely

Ay — AE, Ay, — AEy, | By

G(N) = 0 A, —AE, | B, (19)
Cs c, | D

where the ny % ny pencil Ay ~ AE, contains the n, poles of G(A) in I'y and
rank [ By, Epy | =m, (20)

that is, all infinite nondynamic modes are included in A, — AE,. Starting with an arbitrary min-
imal realization {6) it is always possible to arrive to a separated realization by determining first a
realization as in (15), and further making a spectral decomposition of the pencil Ay — AE; with
respect to the partition (1). Furthermore, if the realization to start with has real coefficients, and
T’y is symmetric, we can always determine a separated realization with real coefficients as well.

3 Basic Pole Displacement Result

In this section we solve the following general pole displacement problem (PDP).

PDP: Given a p x m rational matrix G and a disjoint partition € = I', UT, both arbitrary, de-
termine an invertible p x p rational matrix M with all poles in I'; which cancels by left multiplication
all poles of G located in I'y, i.e., such that N(A) := M(A)G(A) has all poles in ['y.

The following theorem gives an answer to the PDP in terms of descriptor realizations of & and
M. It is a rich extension of Theorem 3.1 and Lemma 4.1 in [17].

Theorem 3.1 Given a rational matriz G()) and a disjoint partition € = LguI, both arbitrary, let
ny be the number of poles of G in Ty Assume (19) is ¢ minimal descriptor realization of G separated
with respect to the given partition and satisfying the condition (20). Then the class of solutions to
the PDP is given by

M) = [ Ag E:\E,, %BI(%: BA) }

where the realization (21} is minimal and satisfies: A, — AE; has all eigenvalues in Ly, D is
invertible, 5 & A(As — AL), and

{ A (—;Ez BI(%:ﬁ/\) ] [ é‘; ] ~ [ b ] (Ap — AEy) (22)

holds for certain injective mairices X and Y.
The mintmal McMillan degree of a solution to the PDP is ny.

(21)

Proof. Before proceeding with the proof we make several preparations. Using conversion formulas
as for getting from (15) to (16), we can put (19) in the form

Ay =By Apy — AEy,
G(A) = 0 A, - AE,
Cy C,

B, — AF, (23)




where _ _
ank [ B, By, F|=m (24)

and - - .
AlAy — AE ) NA(A, — AE) = . (25)

This conversion is necessary as to enforce (25), and can be skipped if oo € Ty, Using (23) and (21)
we can write a realization of N{A) = M{A)G()) as

Az~ E: BiCyla—B\) B:Cola— BN | B.D(a - BA)

0 Ay — By Asy ~ AEy, By - A\Fy 0
= pu et ~ ~ 6
NV o O Ay — AE, B, — AFy (26)
C:c D:L-Ob Dng ' DxD
Asgsume X and Y are two matrices that satisfy the generalized Sylvester equation
(Ag — AE)X — Y (A — AE) + B Cola—8A) =0 (27)
and let X and ¥ be the unique solutions that satisfy the generalized Sylvester equation
(Ap — AE)X —Y (A, — AE,) + Ay, — AEg = 0. (28)
Note that X and Y always exist due to (25). Define
. r -vYy O I X 0
Q=0 1 -Y |, Z=|0 I X |. (29)
o 0 I o 0 I
By using the transformation matrices (29) we obtain an equivalent realization in the form
A:I: - )\E: O * *
0 Ay — AE, 0 By — \F,
N = 0 0 A, —AE, | B, —aF, | (30)
Co Doy +CoX « | DD
where from the minimality of G{A) and from (24) we have
rank | Ay~ AEy By —MF, | =m, VYAeC,
[ b b Db b ] b (31)

rank [ E, ﬁb ] = 725.

We show first that if A(A) is given by the minimal realization {21) satisfying the respective
conditions in the statement then it is a solution to the PDP. Notice first that M ()) is invertible.
Since A{Ay — AB;) C T'y we get that all poles of M(X) are in T'y. From (22) it will follow that
N(A) = M(A)G(X) has all its poles in T';. Indeed, (22) shows that (27) is satisfied and let X and ¥
be the unique solutions to (28). We perform an equivalence transformation with @ and Z defined
by (29) to get to (30). From (22) we also get that the entry D..C, +C. X in (30) is zero. Thus, after
removing the uncbservable part we get

Ap — AE; ® *
N(QA) = 0 A, — AE, | B, — AF, (32)
Ce + | DD

which clearly has all its poles in T'y. Thus M (A) has canceled by left multiplication all poles of G(A)
located in I’y and thus it is a solution to the PDP.

Conversely, let now M(A} be a solution to the PDP and let (21) be a minimal realization of it,
with D, invertible. From minimality it follows that A(A. — AE;) C Ty. Hence A(4. — AE;) N



A(A, — AEs) = B and thus there exist unique matrices X and Y to satisfy the generalized Sylvester
equation (27). For similar reasons, the equation (28) has unique solutions X and Y. Define ¢ and
Z as in (29} and perform an equivalence transformation to get (30). Since M{A) is a solution to the
PDP it follows that N(A) has no poles in I',. However, {30) shows that this is possible only if

(D.Cy + CoX)(As — AE) Y (B, — AFY) (33)

has no poles in T',. Since (31) holds, it follows by standard minimality arguments that (33) has no
poles in Iy only if
D.C,+C.X =0

Combining this with {27) we obtain

A, — ME, Bm(a—ﬁ,\)HX } :[Y

- 5 o 5 } (Ap - AE,). (34)

It only remains to show that X and Y are injective. Since M (X) is invertible, the left—most pencil
in (34) is regular. Thus, there exists A = Ay for which the right-most and left-mast pencils in (34)
are invertible from where it. follows that

ra,nk[é]:rank[g}. (35)

We show that X is injective and the injectiveness of ¥ follows then from (35). Let V = KerX. Since
D, is invertible, we get from (34) that
CyV = 0. (36)

From (34) we get further
[ Y } (Ay — AF)V =0

0
from where

AV + EpV C KerY. (37)
But (35) and (36) show that

dim V = dim Ker [ X ] = dim Ker [ ¥ } = dim KerY.
Cy, 8]
Thus
dim(A4,V + EV) < dim KerY = dim V (38)

where only equality can take place, since, in general, for a regular pencil Ay — AE, and an arbitrary
space V we have dim{( 4,V + E3V) > dim V. It follows that

dim(AsV + E,V) = dim V (39)

and thus V is a deflating subspace (see [16]) of the pencil Ay — AE, contained in Ker C;. However,
this is possible only if V = 0 [15] because (23) is a minimal realization of G(A) and thus

Ay — AL,

rank [ C,

] =7, YA€ L, rank [ £y J = my.
Cy

It follows that X and Y are both injective and thus any solution to the PDP satisfies the requirements
in the statement.

Finally, form the injectiveness of X it follows that §(M) > ny. | |



Remark 3.2 Tt is easy to see that by an appropriate equivalence transformation, each solution
M{X) of the PDP has a minimal realization (21) such that

Acnn —AE: 11 Apjgz — AE;12 | Boa{a — BA) I I
Agar —AEg 1 Agps — ABs 20 | Boala—3X) O | =1 0 | (4 — AE)., (40
Cz:,l C::,Q Da; Cb 0

where (40) follows directly from (22). Then it can be rapidly checked that M —}(A) has a realization
of the form

Ab —_ AEb * | *
M7= O # % |, {41)
Cy AR

that is, M~1(A) and G(}) have a “common” pair (C, Ay — AE}). This fact shows the connections
of our result with the “spectral triples” discussed in [§] for an invertible and proper G(A), aud will
be instrumental in obtaining solutions to the noncanonical problems in Sections 5 and 6.

4 Minimal Degree Coprime Factorization

For a given rational matrix G{A) and a domain I';, both arbitrary, we characterize now the class of
LCFs over I'; having minimal degree which we show to be n,. Recall that n; i1s the number of poles
of G{A) in I'y. For our proofs, we need the following result on the solution iu a particular form to
the generalized eigenvalue assignment problem.

Lemma 4.1 Let A — AE be a regular pencil, with A, E ¢ F™", Be F"*™ [t T C C be a set of
n elements (not necessartly distinct, and assumed to be symmetric if ¥ = R), and let a, 3 € F, not
both zero, such that 5 € AlA - AE) and 3 €T. Assume that

(i) rank | A—AE B ]=n, VAeC, (42)
(ii} rank { E B ]=n.
Then there exists a matric F € ™™ such that
A{A—AE+ BF(a—8A)=T. {43)

Proof. To reduce (43) to a standard eigenvalue assignment problem we use the conformal mapping
A= (az+ 8)/(Bz — a). Under this mapping I' changes to I',, which will contain only finite points.
Define A, — 2E, := aA+ 8E — 2(84 — aF} and B, := (¢ + 5%)B. With the transformed data we
have reduced (43} to

AA, + B, F—zE,)=T,, (44)

with E, invertible. From assumptions (i), for z # % and (ii), for z = 3, we get
rank[A, —zE, B,]=n, Vze C.

Thus (44) is a standard eigenvalue assignment problem for the controllable pair (E;'A,, E['B,)
and the set 1',, and has always a solution F which is the solution of the original problem (43) as
well. If I' = R, and I is symmetric, then T', will be symmetric as well, and F can be chosen with
elements in R. |

Theorem 4.2 Given a rational matriz G(A) and a disjoint partition € = Ty UTy, both arbitrary,
let ny be the number of poles of G inT,. Assume (19) is a minimal descriptor realization of G
separated with respect to the given partition and satisfying the condition (20). Then we have:

1. The minimal degree of a LOF of G over Ty is my,.
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2. The class of solutions to the minimal degree LCF problem G(A) = M~ A)N(A) is given by

Ay — AE, + KCy{a — A3) Asy — ABy; + KCy{o — A3) | By + KD{a — A)
N(AY= 0 Ay — AE, B, , {45)
W, W, | WD

Ay — AEy + KCy{a — AfB) ! Kla-Aj) ] (46)

MA) = { WG, W

where W is an arbitrary invertible matriz, K is any matriz that solves the generalized eigenvalue
assignment problem A(Ay — AEy + KCyp{a — A3)) C Ty, and o and 3 are chosen to satisfy the
requirements of Lemma 4.1.

If G has real coefficients and T'y is a symmetric set then the class of solutions with real coef-
ficients to the minimal degree LCF problem is also given by (45) and {46) where now all the
intervening elements can be chosen real.

Proof. We show first that N (A} and M(A) of the form (45)—46) solve the minimal LCF problem with
degree n,. To show that G(A) = M~1(A)N(A) is a matter of straightforward computations involving
realizations and equivalence transformations. Further, we see from (46) that §(M{}A)) < ny. But we
have also from Theorem 3.1 that 6(M(A)) > ne since M(A) solves in particular the corresponding
PDP formulated for G{A). Thus §(M(A)) = n, which proves part 1 of the Theorem. We show
further that M(A) and N(A) are left coprime. As both N(X) and M (A) have poles only in T'y, it is
enough to show that the compound rational matrix [ N(A) M(A)] has no zeros outside I'y (see [14]
and [24] for equivalent characterizations of left coprimeness). Indeed, using the descriptor realization
of G = (A — AE,B,C, D) separated as in (19), a realization of [ N(A} M{\)] is

[N M(V)] = { A-— AE+u}§g(a—Aﬁ) !}B+KuDr%_ AS) K(ap; A8) } , (47)
where K
r=[%].

Incidentally, it is easy to see that (47) is a minimal realization. From Theorem 2.1 we have that the
zeros of [ N(A) M())] are among the zeros (including infinity) of the system pencil associated with
the above realization and given by
A—AE+EKC(a—A3) B+ED(a-23) K(a—-A3) (48)
wC WD w ’

which is strictly equivalent to (see [6] for the definition of strict equivalence for matrix pencils)

A—-XE B K(a-A3
O e W '

Thus the zeros of [N(A) M(A)] are among those of [ A — AE B]. However, this last pencil has no
zeros since the representation of G{)) is minimal, and thus rank|A - AE B] = n ¥A € €, ) finite,
and rank[ £ B | = n. We conclude that [ N{A) M())] has no zeros as well and therefore A ()) and
N(A) result left coprime over 'y, Actually, M(A) and N(A) result left coprime {(over the whole T).

Conversely, we show now that if M(}) and N(A) solve the LCF over T'; with minimal degree
np then they are of the form (45)-(46). Since M(A) and N(A) have all poles in Ty, it follows from
Theorem 3.1 that there exists a minimal realization (21) of M(A) which satisfies (22). Since the
McMillan degree of M () is precisely ny, the injective matrices X and Y in (22} are actually square
and thus nonsingular. Therefore, using Remark 3.2, we can simply take X =Y = —1,,. Then, the
expression for M) follows immediately from (22), where B, := K solves the eigenvalue assignment
problem A(A4; — AE, + KCp(a — AB)) C I'y. Lemma 4.1 shows that this last problem always has a
solution since from the minimality of the realization (19) we get that the pair (A5 — ALY, Cy) satisfies
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(42) written for actual data, and o and 3 can always be a priori chosen to satisfy the respective
requirements. The expression (45) results immediately after a simple equivalence transformation
and removing the unobservable part from the descriptor representation of the product N(A) =
M(XG(A).

For the case of real coeflicients, we can start with a separated realization for G having real
elements. Then we choose a and 3 real, and since I'y is symmetric it follows form Lemma 4.1 that
the feedback matrix K can be chosen with real elements as well. |

Notice from the above theorem that the class of all solutions depends essentially only on the pair
{Cy, Ay — AF,) that is unique (up to an equivalence transformation) for a given G(A).

5 LCF with J all-pass denominator with respect to the imag-
inary axis

In this section we solve the minimal degree LCF with the additional requirement on the denominator
to have a certain symmetry, namely we consider here the case in which the denominator is .J all-pass
with respect to the imaginary axis. To reflect this symmetry accordingly, we take throughout this

section the disjoint partition € =T"; UI', defined by
Ty:=C (orTy:=C7) T,:=C\T}. (49)

However, due to the additional requirement on the denominator to be J all-pass it is not always
possible to solve the L.CF over I'y with minimal degree n,. When this is possible, we call the
factorization canonical, otherwise we call it noncanonical. Notice that for the both choices in (49), T’y
is an open set while Ty is a closed one. This will be instrumental for the solution in the noncanonical
case.

The following result that will prove useful later gives a characterization of proper J all-pass
rational matrices in terms of minimal realizations. It is a particular case {with o = 1,3 = 0) of the
general Theorem A.1 given in Appendix.

Corollary 5.1 Let M(s) be a proper square invertible rational matriz, having a minimal realization

Mi(s) = [ 4SBT } . (50)
Then M is J all-pass with respect to the imaginary azis if and only if
D*jh =17t {51)
and there exists an invertible Hermitic matriz X such that
A*XE+E*XA-C"JC =0, (52)
C-DJB"XE=0. (53)

5.1 The canonical case

The following theorem gives a complete solution to the LCF problem with J all-pass denominator
of McMillan degree n,.

Theorem 5.2 Given an arbitrary rational matriz G(s) and a disjoint partition € = Ty Ul defined
by (49), let ny be the number of poles of G inTy. Assume (19) is a minimal descriptor realization
of G separated with respect to the given partition and satisfying the condition (20). Then the LCF
with J all-pass denominator with respeet to the imaginary azis has a solution G(s) = M~1(s)N{s)
of minimal degree ny if and only if the equation

A;XE[,-FE;XA[,—C;JCE.:U (54)
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has an invertible Hermitic solution X. In this case, the class of all solutions is given by

Ay + KCy — sEy Abg-{-KCg—SEbg By, + KD
N{s) = 0 A, —sE, B, , (55)
WCy W, i WD
| AA+BC, —-sE, | K
M(s) = { Wy W ] ’ (56)
where

K=-X"1E*C}J, (57)

and W is any J unitery malriz satisfying
W*JIW = J. (38)

If G has real coefficients then the class of solutions with real coefficients s also given by (55) and
(56) where now all the intervening coefficients can be chosen real.

Proof. Notice first that E; in a minimal realization (19) is invertible due to the choice of Ty in (49).

We show first that any solution G = M !N to the LCF with J all-pass denominator of McMillan
degree ny, is given by (55) and {56). In particular, M and N solve the minimal degree LCF problem
{without any requirement on M) and must have minimal realizations of the form (45) and (46),
respectively, where we can take @ = 1 and # = 0. Thus NV and M are of the form (55} and (56),
respectively. Since the realization (56) is minimal, and M(s) is J all-pass, it follows from Corollary
5.1 that (54) has an invertible Hermitic solution and {57) and (58) are satisfied. Moreover, it follows
that K given by (57) is such that A(A, + KC, —sE,) C T,

Conversely, we have to show that N and M given by (55) and {56) are a solution to the LCF
with J all-pass denominator of McMillan degree n;. But this follows immediately from Theorem
4.2 and Corollary 5.1.

For the case of real coefficients, we can start with a separated realization for G having real
elements, and it will follow from (54) that X is real and symmetric. |

If in the statement of the above theorem we add the condition X > 0 or X < 0 we obtain the solution
to the LCF with J lossless or J expansive denominator, respectively (see [10]). Notice that for the
chosen partition (49) the equation (54) has always a unique solution, and thus the above theorem
is an effective tool for checking the existence of and computing the solutions to the LCF with J
all-pass denominator or, as a particular case, with J lossless denominator. We do not elaborate
further in this direction.

For J = I, the above theorem provides the solution of an important particular case: LCF with
all-pass denominator M(s), (i.e., M*(—~3)M(s) = I). In this case, the equation (54) has always a
sign definite (positive or negative) solution. If we take I'y = €7 then we obtain the well known
results for the LCF with inner denominator.

5.2 The noncanonical case

We study now LCFs with J all-pass denominator in the noncanonical case, i.e., when there is no
solution with a J all-pass denominator of minimal McMillan degree n;. This case is considerably
more intricate than the canonical case. The idea is to introduce additional poles and zeros in M (s)
such that it could simultaneously be J all-pass and solve the LCF problem for G(s). At the same
time, we want to keep the McMillan degree of M as small as possible. It turns out that the additional
poles/zeros can be taken only on the imaginary axis (including infinity) since the pole-zero symmetry
featured by a J all-pass factor implies with necessity that all additional poles will be reflected into
symmetric additional zeros that will be also zeros of the compound matrix [N(s) M(s)].

Before stating our main result we construct a particular separated realization of (7 which facil-
itates the subsequent developments. Let G{s) be an arbitrary rational matrix given by a minimal
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realization (19) separated with respect to 'y U T and satisfying (20}, and let ns be the number of
poles of G tn ['y. Then the generalized Lyapunov equation

A;XEb-i-E;XAb»C;JCb:D (59)

has a unique Hermitic solution X, and let r := rank (X'). Let
U XU = [ L, O }

o 0 (60)

be a spectral decomposition of X where I, is diagonal and nonsingular and U is unitary. Further,
let

E O
U BQr =] P } 61

xQ | E21 Ex (61)
be a RQ) decomposition of U*E,, where @ is unitary, F;, and Eae are lower triangular, square and
invertible, and the partition in (61) corresponds to the partition in (60). With (60) and (61) it is
easgy to see that

U*(As — AE)Q® Uy, — AEs,) | U*By
G(s) = 0 _Ag — AE, By (62)
Cr@* Cy | D

is another realization of G separated with respect to 'y U I'y which we call balanced with respect
to the Lyapunov equation (59). Thus we may assume from the beginning that for the separated
realization (19) we have E, lower triangular and the corresponding Lyapunov equation (59) has a
diagonal solution. We are now ready for our main result.

Theorem 5.3 Given an arbitrary rational matriz G(s) and a disjoint partition € = T,UT, defined
by (49), let ny, be the number of poles of G in Ty. Assume (19) is o minimal descriptor realization of
G, separated with respect to the given partition, and satisfying the condition (20). Let r := rank (X)
where X s the unigque Hermitic solution to the Lyapunov equation

A XEy+E; XAy —CpJC, = 0. (63)
Then the mintmal degree of the LCF with J ali-pass denominator is
2np — 1. (64)

Proof. Without restricting the generality, we may assume from the beginning that the realization
(19) is balanced with respect to the Lyapunov equation (63). Further, as F} is invertible we could, as
a first simplifying step in the whole proof, reduce the equation (63) to a standard Lyapunov equation
with B, = I. However, we prefer not to invert F as far as possible as this will bring benefits in
terms of the reliability of the associated numerical algorithms.

The proof is quite lengthy and we divide it in several steps: we show first that any solution
G = M~!N to the LCF with J all pass denominator satisfies

§(M) > 2ns — 1, (65)

and prove further that M ! has exactly ny poles in T, (which are the poles of G in T) and the rest
(additional) §(M) — ny poles are with necessity on T Finally, we construct a solution of minimal
degree 2ny, — 7 with the additional ns — r poles placed arbitrary on T

Proof of §(M) > 2ny — r. Let G(s) = M~ (s)N (s} be a solution to the LCF with J all pass
denominator. As M cancels in the product N = MG all poles of G in Ty and M~ is J all-pass, we

get with Remark 3.2 and Theorem A.1l in Appendix that there exists a minimal realization of M~!
of the form

Ab - SE[, A[m - .S'Ee,: Bml(oz - Sﬁ)
B Ay — sE - A
M(s) = [ u oo f BM(S ) } = 0 Ay = $E, | Bus(ar— s8) (66)
’ M o C, ) D
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and there exists a Hermitic invertible matrix X 5 such that

;JXMEM + By XprAng —C;dJCM =0. (67)

According to the partition of the right-hand side of (66), X can be written in the partitioned form
X X

X = , : 68

v | e (€8)

where it follows that X is the unigune solution to (63). Since Xy is invertible and the rank of X is
r, it follows from (68) that rank (X ) > 2Zny — r and thus (65) holds.
Location of the poles of M. Let G = M/ be a sclution to the LCF with J all pass
denominator. From (66) we see that the union of poles of M~1(s) contains
A(4p — sEy) C €1 (69)

which are also the poles of G in ['y. From the pole—zero symmetry of a J ali-pass rational matrix it
follows that the poles of M (s) are the conjugated of the poles of M ~'(s). Since M has all poles in

I'y we infer that the poles of M LareinTp: =T U EO from where we have
AAg - sE;) C T,. (70)

We show now that
A(A; —sE;)C Ty, (71)
from where we shall conclude with (70) that

A(A, —sE.)C T (72)

and thus M~} has exactly n, poles in T', and the additional §(M) — n, poles are on T We prove
in fact that the coprimeness of N and M over ['; implies (71). To this end we compute realizations
for M and N. Using (66) we write a realization of M in the form

M(s) = [ Ay — sEpy —vggKCM(a —33) —BMH;(? — 33) ]

Ay — sk, — BmlWC-'bp(S) Ape — 8Eys — Ba:lwczp(s) *BaJle('s) (73)
= — B WChyp(s) Ay —sE, — BpsWCop(s) | —B.aWopls) |,
Wy WC, ‘ W

where W := D,/ and p(s) := o — s3. With (73) and (19) we get successively a realization of
N(s) = M(3)G(s)

Ay — sEy — BﬂWCbp(s} Ap, — sEy, — lewczp(s) —BﬂWCE,p(s) ——B:]_WCgp(s) -—B:1WD}:J(3)

— B aWCip(s) Az — 8Bz — BeaWCrp(s) —BaWC,p(s) —BaWCsp(s) —Bz3W Dp(s)
= o O A — .SE[, Abg - SEE,g Bb
O @] O Ay — sE, By
W W, W, WC, ’ WD

Ay — 5By — Bo1WCyp(s) Ay —sEy, — B.1WC:p(s) Apg — Bz WC,p(s) — sEy, | By — By1W Dp(s)

_ —BaWC,p(s) Ar — 8Bz — BpaCup(s) —ByaWCyp(s) —B,2W Dp(s)
- (¥ o Ay — sEy, 0
W, W W, ] WD

(74)
where we have removed the unobservable part with the help of a state-space equivalence transfor-
mation. From (74) we see that the poles of N(s) are among A(Ay — sEp — BuWCx(a — s8)) L
A{A; - sE,) and thus they are indeed included in I'y. We nse now (73) and (74) to write the system
pencil associated with the compound matrix [N(s) M(s)] in the form

Ap = sEp = BaaWCyp(s) Apy — sEpy — Boa W Cap(s) Apg — BaWCyp(s) — sEy, By — Bo1WDp{s) —B.1Wp(s)

=Bz WChp(s) Az — sEz — BraCop(s) —Br2WCyp(s) —Bo2WDp(s) —BraWp(s)
0 o Ay - sE, . o
WwWC W, WCy WD w
(75}
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The zeros of [N(s) M(s)] are among the zeros of the above pencil which is strictly equivalent to

Ab — SEb Abg - SEbg Bb Aba: - '5Eb:1: *BEIIVP(S)

0 A,—sE;, B, o) o) (76)
O 0 0O A, -3sE, —-B,Wp(s)
9] 0] 8] 0] W

The realization (19) of G is minimal and thus controllable, for where it follows that the only zeros of
[V (s} M(s)] are given by A(A, — sE;) which should be included in T’y since N and M are coprime
over I'y. Thus we proved that the coprimeness of N and M over I'y implies that (71) holds,
Construction of a minimal solution. We show now that the LCF with J all-pass denominator
has a solution G = M~'N such that
(M) < 2mp—7r {(77)

from where it will follow with (65) that the minimal degree 2n; — » can be achieved. To this end,
we shall construct M(s), define N(s) = M(s)G(s), and prove that they both satisfy the required
properties. Of course, M should simultaneously be J all-pass, and M ! should have the form (66),
with the additional poles given by A(A, — sE,) C T.

For the sake of clarity we assume first that the additional poles/zeros A(A4, — sE,) are placed
in finite locations on €. The case with poles at infinity follows analogously although the formulas
become more intricate.

Placing additional poles/zeros in finite locations on €°. In this case we can take for M~!
a realization (66) with a =1, 3=0, i.e.,

O AI - SE:I;
Ob Cz

(78)

j{ [ Ay — sEy  Ape — 8Ep:

The key idea of the constructioun is to embed the Lyapunov equation (63) into a larger Lyapunov
equation (67) with an invertible solution X s as in (68) and where the matrices A,, E., Ase, Foz,
Bgi1, Bz, C; have to be determined. We can simply take

Fye =0, Ep=1In_» (79)
in case of placing additional poles/zeros at finite locations. We choose further

9
X12=[I }, Xy =0
np—7

pIR 8] O E,Z O 0]
Xu=| 0 0O I,..|, Ey=|Ey E»n O :
0

Iy—r O 0O 0 I,

and get

An A An (80)
Ay =| An An Ap |, Cu=[C C C. ],
0] 0 A,

where we have taken into account that the realization (19) is balanced with respect to (63) and we
have partitioned

[ An A _ [ Aa ]
Ab_[AZI AZZJ, Abw—l:szJ: Cﬁ:[cl CE],

conformably with (60). The matrices A.1, A2, Az, C, remain to be determined as to satisfy (67).
We use (80) to write (67) component-wise as

AT Ey + BLS. Ay — CHIC, =0, (81)
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BN S, A1a — C1JCy =0, (82)

C3JCy =0, (83)

Ay + BN oA + Ef A, — CHIC, = 0, (84)
Ay + B Ay — C3JC, =0, (85)
A%+ Agy — C2JC, =0, (86)

where the rest of equations are transpose conjugated versions of the ones above. Equations (81), (82)
and (83) are automatically fulfilled due to (63). Before showing how the remaining equations can be
satisfied, we prove that the pair (Ca, Az — 5E52) is observable. Indeed, since the pair (Cy, Ay — 5Es)
is observable, the standard PHB observability tests shows that

Ay —sFy E:lEl—linJCQ
] = rank ..421 — 8Fqq Aoy — 8FEo = Ny, Vse € (87)
Ch Cy

Ab — SEb

rank [ C,

where we have replaced A3 = X7 E"CTJC;, from (82). From (87) we get

Azo — sEy

rank [ Cy

] =1, —T, Vs e C.

Thus (Cz, Agz — sF32) is observable. It follows from (85) that we can take the matrix C; such that
the poles of 4. = E3"(— A%, + C5JC.) are on the imaginary axis by simply solving an eigenvalue
assignment problem for the controllable pair

(=B Ady, By C3 ). (88)

Alternatively, we may compute C; as to solve a generalized eigenvalue assignment problem for the
controllable pair (—A43, + sE35, —C3J) with the benefit of not inverting E3,. Finally, we choose A,
as the unique solution of (84) and 4., as any solution to (86). With all these choices it results that
(67) is satisfied.

We take Dy to be any J unitary matrix and define

Bz — —_ * *
By = [ Bm; ] = By X Cr D J. (89)

We get from Corollary 5.1 that M ! given in (78) is J all pass. It follows that M has all its poles
in Iy, is J all-pass, has McMillan degree less or equal to 2n, — 7, and a realization is given by

M(s) - AM—SEM—BMWC},L, —BMW
WCw 1w
Ab — SEb -— BﬂWCbp(s) Abz - B:l-,lWCmp —_ le (90)

= —BMWC,, AI —8f — BﬂWC‘I
WG, WC, W

where W = D3, We define N(s) := M(s)G(s) and get

Ab — SE{, - BMWCE, Ab:z: d BMWC,,; Abg - Bn;l WCg - SEbg B[, - le WwbD

_,:V(s} — —BZQWCQ, Az — 5] — B,,.QC,,; —BﬂWCg - szD
0 0 Ay — sk, B,
W, W, wC, | WD

(91)
We can check successively that N has all poles in I'y, and that N and M are coprime over Iy The
details are skipped since the argument is identical as in the first part of the proof for showing that

the additional poles of A~ should be placed on T, Thus N and M define a solution to the LCF
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with J all-pass denominator, having degree less or equal to 2r, — r. This together with (65) shows
that the minimal degree 2n, — r is attained and concludes the proof.

Placing additional poles/zeros arbitrary on C°. We show that this case can be reduced
to the case of finite poles/zeros. Indeed, we chose a realization for M (s) of the form (66}, where we
take @ € R and 3 € € such that % is neither an eigeuvalue of Ay — sEy nor a desired location of
additional poles/zeros. A characterization of .J all-pass rational matrices with a realization centered
at 7 is given in Theorem A.1 in Appendix. Thus we have again to embed a Lyapunov equation {(63)
into a larger Lyapunov equation (67) but where now Ejs will be singular if we would like to place
additional poles/zeros at infinity. To this end we transform the Lyapunov equation (67) into the
equivalent Lyapunov equation

Ay XyEy + By Xy Ay —CyJCy =0 (92)
where the coefficients to be determined are
Aps = adps + 0By, Ear = aBEy — Ay, Cu=+o?+ 50y, (93)

with Ej invertible. Thus we apply exacily the same procedure as for finite poles/zeros but now we
determine the coefficients of the equation (92) instead of (67). Finally, the coefficients of (67) follow
immediately from (93). The only precaution is with respect to the locations in which the additional
poles/zeros have to be placed which are mapped by a bilinear transformations moving oo into the
finite point % € €%, The rest of the argument is identical and is therefore not repeated. |
The proof of Theorem 5.3 gives as well a procedure to compute solutions of minimal McMillan
degree. Moreover, the result below shows that from (78) one can get the class of all solutions.

Theorem 5.4 Assume the same nototion and hypotheses as for Theorem 5.3. The class of all
solutions to the minimal degree LOF with J all-pass denominator G = M N, with M proper, is
given by (90) and {91), where Cp and A, follow by solving the eigenvalue assignment problem for
the pair (88) with Ay = oyt (—Ajy + C3 JC,) C €°, Ags s any solution to (86), Ay is the unique
solution to (84), W is any J unitary matriz, and By and Byy are given by (89).

Proof. Most of the proof is already contained in the proof of Theorem £.3. We have only to prove
that any solution may be obtained by the procedure given in the statement. Let G = M~'N be a
solution to the LCF with J all pass denominator M of minimal degree 2n, — 7, and proper. Let G
be given by a separated realization (19) balanced with respect to the Lyapunov equation (63). Then
M~ is given by a realization (78), and (67) is satisfied for an invertible Hermitic matrix X as in
(68), where X has the form in the right-hand side of (60}). We show that by equivalence state-space
transformations on (78) we obtain a realization for which the corresponding Lyapunov equation (67)
has all the intervening matrices of the form depicted in (80), and this will end the proof.
Writing X in partitioned form we get

2 0 X
Xu=| 0O 0 X (94)
X7 X3 X

X3

X; . . . . .
where we have denoted X2 = [ * ] Since the matrix X s is square and invertible, and has
dimension 2n, — 7 we get that X, is invertible, and thus we can write

. 0 0 I 0 -5 XXt
UyXulUnu=| O O Ly, |, Un:=|0 I —3iX7"(Xoo-X;Z7X0)X7' (. (95)
0 I,-, O 0 0 X5
Further, let
= - By, Epy
Ey =Uy'Ey = ob Eb
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where the block upper triangular structure in the right-hand side follows from the block upper
triangular structure of both Ejs and Uﬂ}l. With Epr =1, Ay = UE{IAMEQ, Chy = CMEE and
X o= Uz XarUys we get that (67) can be written equivalently as

A;,I)?ME,"M +E34XMXM - GKJJ@M =0

where the intervening matrices with “hat” have the same block structure as their counterparts in
{80). It follows that the corresponding equations (81)-(86) are satisfied from where the conclusion
is immediate. |

The class of all solutions, including the case of improper A, is obtained from {73) and {74) where
the unknown coefficients are obtained by using first the transformation (93) to reduce the problem
to the case of a proper M. We do not elaborate further in this direction.

Remark 5.5 From the proof of Theorem 5.3 we can give an answetr to the general problem of
existence of a LCF with J lossless denominator as follows. If the solution X to the equation (63) is
positive definite, then the problem is solvable, otherwise there is no solution of any degree. Indeed,
assume by contrary that X is not positive definite and there is a solution to the LCF with J lossless
denominator of a certain degree. Then the equation (67) should be satisfied with Xjs > 0 given in
(68), from where X > 0 which contradicts our assumption.

6 LCF with J all-pass denominators with respect to the unit
circle

in this section we give the discrete—time version of the results presented in Section 6. More precisely,
we solve the minimal degree LCF problem with the additional requirement on the denominator to
have another type of symmetry, namely to be J all-pass with respect to the unit circle. Throughout
this section we take the disjoint partition € = I'y UT, defined by

Ty:=D° (or Ty :=1D), Ty:=C\ D (96)

Similarly as for the symmetry discussed in the previous section, it is not always possible to solve
the LCF over 1", with minimal degree ny. Again, when this is possible, we call the factorization
canonical, otherwise we call it noneanonical.

Since our theory encompasses the cases in which M(z) has to cancel a pole of G at oo or at
0, it follows that A (z) or M ~1(z) could, in general, be improper. Therefore, to achieve the full
generality we have to use for M (z) a descriptor representation of type (9), with singular £. The
following result gives a characterization of J all-pass rational matrices (possible improper) without
poles at 1 in terms of associated realizations. It is a particular case for @ = 7 = 1 of the general
Theorem A.2 given in Appendix.

Corollary 6.1 Let M(z) be a square invertible rational matriz, without poles at 1, having a minimal
realization

M(z)::[A—CzE!(l—Dz)B} (o7)
Then M is J all-pass with respect to the unit circle if and only if
DrJiD =17 (98)
and there exists an invertible Hermitic matriz X such that
E*XE-A"XA-C"JC =0, (99)
C-DIB*X(E— A)=0. (100)
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6.1 The canonical case

The following theorem gives a complete solution to the L.CF with J all-pass denominator of McMillan
degree ny.

Theorem 6.2 Given an arbitrary rational matriz G(z) and a disjoint partition € = I, Ul defined
by (96), let my be the number of poles of G in Uy, Assume (18} is o mintmal descriptor realization
of G separated with respect to the given partition end satisfying the condition [20). Then the LUF
with J all-pass denominator with respect to the unit circle has a solution G(2) = M~ {2)N(2) of
minimel degree ny, if and only if the Stein equation

E;XE, — A} XA, —C,JC, =10 (101)
has an invertible Hermitic solution X . In this case the class of all solutions is given by

Ay — 2Ey + KCy(1— 2)  Apy — zEp; + KC,(1 —i{ B, +KD(1 - z)

N(z})= 0 Ay — zE, B, (102)
W, W, | WD
*M(z):"[Ab_ZEb;;éiCb(l_Z){K(;z) ] (103)

where
K= ~X‘1(Eb —A)TCy T

and W is any J unttery matriz satisfying
W*JW = J.

If G has real coefficients then the class of solutions with real coefficients is also given by (102)
and (103) where now all the intervening coefficients can be chosen real.

Proof. The proof is identical as for Theorem 5.2 where we replace Corollary 5.1 with Corollary 6.1.
||

If in the statement of the above theorem we add the condition X > 0 or X < 0 we obtain the
solution to the LCF with J lossless or J expansive denominator, respectively. Notice thai for the
chosen partition (96) the equation (101) has always a unique solution, and thus the above theorem
is an effective tool for checking the existence of and for computing solutions to the LCF with J
all-pass denominator or, as a particular case, with .J lossless denominator.

For J = I, the above theorem provides the solution of an important particnlar caze: LCF with
all-pass denominator M(z), (i.e.,, M*(1/Z)M(z) = I). In this case, the equation (101) has always a
sign definite (positive or negative) solution. If we take T, = ID® then we obtain the LCF with inner
denominator.

6.2 The noncanonical case
We give now solvability conditions in the noncanonical case.

Theorem 6.3 Given an arbitrary rational matriz G(z) and o disjoint partition € = T',UT} defined
by (96), let ny be the number of poles of G inTy. Assume (19) is a minimal descriptor realization of
G, separated with respect to the given partition, and satisfying the condition (20). Let r := rank (X)
where X is the unique Hermitic solution to the Stein equation (101). Then the minimal degree of
the LCF with J all-pass denominator is

2ny — T (104)
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Proof. The proof is almost identical to the proof of Theorem 5.3. The key is to transform first the
equation (101) into the equivalent equation

AXE, +Er XA - CIC, =0, (105)

where N R R
Ay =Ey+ 4y, By =FEy— Ay, C:= x/be.

Since E, is invertible and (105) is of the form (63) we may use further a similar technigue as in the
proof of Theorem 5.3. We note that the role of oo in placing additional poles/zeros in the proof of
Theorem 5.3 is taken in this case by the point 1. |

A remark similar to Remark 5.5 holds in this case as well.

7 Numerical Aspects and Examples

In this section we comment briefly on the numerical algorithms that are recommended for the meth-
ods proposed so far, and give several numerical examples. All the computations can be performed
by procedures available in a recently developed DESCRIPTOR SYSTEMS Toolbox [21] implemented
under MATLAR 5.1. This Toolbox uses extensively the object oriented approach for control systems
analysis and design introduced within the CONTROL Toolbox 4.0. For all critical computations, the
.mex files technology of MATLAB has been used, on basis of FORTRAN codes from LAPACK [1]
and SLICOT [4] libraries.

7.1 Numerical aspects

Separated realizations as used in this paper can always he obtained by starting with an arbitrary
realization (6) and performing unitary state-space equivalence transformations. If oo € ', then
the preliminary transformation depicted in (15) is needed as to enforce further condition (20).
The unitary matrices 2 and Z in (15) can he obtained by a row compression of E followed by
a column compression of 4. The row/column compressions can be achieved by using any rank
revealing procedure [5] based on unitary transformations. Further, we can arrive at (19) satisfying
{20) by performing a spectral decomposition of the regular pencil A; — AE; (or 4 — AE if the
preliminary step is skipped). The spectral decomposition of a regular pencil can be achieved by
unitary transformations using the QZ algorithm [11] followed by a reordering of the generalized
eigenvalues [16).

For solving the generalized eigenvalue assignment problem in Lemma 4.1 we can adapt almost
all existing algorithms for pole assignment but perhaps the most easy to customize is [18].

For solving generalized Lyapunov equations (63) or Stein equations (101) one can use the algo-
rithms proposed in [7]. Once the solution computed, the balanced form can be obtained by solving
a symmetric eigenvalue problem for X [9]. Again, we can rely solely on unitary transformations.

7.2 Numerical examples

Example 1. Minimal degree factorization with proper factors
Counsider the improper rational matrix
o A

G(A) = A=l
0

>
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having finite poles at A} = 1 and Az = 0 and two poles at infinity, and let I’y = €~. A minimal
order descriptor realization for G in the form {19) is given by

- 1 0 0]o0 0 0

0 1-X0 0|0 0 -1

Aﬁ_AEﬂAbﬂ‘@g}z 0 0 1 =x|o [Bf’}_ 0 0
0 | 4 -AE 0 0 o0 1]-2A By 0 0
o 0 0 0]1 1 0

lale =7 0 %ol 2={0 )

To compute a minimal degree LCF over I'y we use Theorem 4.2 and determine first a matrix A such
that

A(Ap — AEy + KCo(a — BN)) = {—1,—1,—~1, -1}, (106)

where we chose for convenience o = —2 and § = 1. By using the Lemma 4.1 for the dual pair
(AT — MAEF,CT) we can assign the eigenvalues for the modified pair

(A, — AE.,C,) = (0 Al — BET — A(BAT — oE]), (0 + 4)CT)

to I'; :={3,3,3,3}, where E. is nonsingular. By usiug a pole assignment algorithm for generalized
eigenvalues [18], we determined

-8 1

-8 0

6 0

3 0

which fulfills (106). Using {45) and (46), we get the following solution to the minimal degree LCF
over I'y:

K=

(A=1))% A A—1 0
Ny = | 3O+ 3AFD® | M) = 3(A+1)3
0 2(x+ 1} 0 2(A+1)

where the minimal degree of the LCF is clearly 4.

Example 2. Minimal degree coprime factorization with J all -pass denom-
inator with respect to the imaginary axis
Consider the TFM of a continuous—time system
1 1
G(s) = 54 2 8 1
s—2 s5-1

where 71,72 € R are two parameters, and let T'y, = €. It is easy to check that G has two unstable
finite poles at 51 = 1 and sy = 2. A minimal order realization for G in the form (19) is given by

. [1-s5 0 10 1 1 Jo o
S S (RS EE N ]

. 1 0 . . .
With J = [ 0 —1 ] , the solution to the Lyapunov equation {54) in Theorem 5.2 is

X= 2 3
-y 1-4

3 4 1

which for y1(y2 + 3) — 1 — 34 # 0 is nonsingular, for 7, (7, + 3) — 1 — 3y = 0 and ¥ # 1 has rank
equal to 1 and for v; = v = 1 has rank equal to 0.

1-9  1—m 1
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The canonical case

Consider v; = 2 and -2 = 1 for which the solution of {$4) is

31
2 73
x=| 7 ,
3

and the corresponding A in Theorem 5.2 is

3 -3
K=-X"cfr=| 21 15 {.

The resulting factors N(s) and M (s) are

2s+11 2 252 —9s5-5 9s—-3
o V] D (s+2) (s+1) iy 1] s+ +2) (s+1)(s+2)
A(S)_—i 1s+13 2 ’ Mr(é)_i ~-95+3 252 +95-5
(s+1)(s+2) (s+1) s+ (s+2) (s+1)(s+2)

The noncanonical case: rank (X) =1

Consider v, = 2 and ~y; = 5 for which the solution of (54) is

_3 3
X=] 2 ,

15
and has only a nonzero etgenvalue at 5 With

we obtain

UTXU =

15
-= 0

2

0 0}

and the known matrices in (80) result with @ = UT as

Toarr. | A A ]9 2 _ 1 3 -1
DAU“[A;,I A T2 6] CV=lGlGl=0n 1]

E o 1 0
Tprr — 11 _
UEU_[EH ED}_[O 1]_

The matrix

fulfilis the equation (67) for
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where we have chosen C, such that A, has a zero eigenvalue. The corresponding Bys results as

28

- 1 5 o
BM:XE{ clw.]:?g —6 0
-1 -1

With M~! defined by (78) we obtain finally

755% + 6352 — 3365 — 50 2(81s? — 168 s + 25)

M(s) 1 s(a+2)(s+1)  s(s+2)(s+1)
§) = —
75 2(81 s + 168 5 + 25) 7553 — 6357 — 3365 + 50
s{(s+2)(s+1) s(s+2){s+ 1)
2552 - 625 +50 2552 — 1995+ 50
1 s(s+2)(s+1) s(s+2)(s+1)
N(a) = M(3)G(s) = = ) )
25 | 2(2552+31s5—25) 12552 +1995— 50
s(s+2)(s+1) s{s+2)(s+1)

The noncanonical case: rank (X) =0

Consider 11 = v3 = 1 for which the solution of (54) is X = 0. With U = I, we further have A5, = A4
and Cs = C. The matrix X s has the form

0010
0001
Xv=11 90 0
01 0 0
and fulfills the equation (67) for
1 3
JToo [-3 5 | 2
A:c2l:0 0]7 A:D—l:_z 3:‘3 O.‘l:_ ) 5 3
2

where this time we have chosen C, such that A, has two eigenvalues on the imaginary axis at +j.
‘The corresponding By results as

-1 -1
r 5 5
Bu=X,Chi=| 32 2
1 -1
1 -1
With M ! defined by (78) we obtain eventually
26*—35"+5 -7s2+3
M(s) = (s +1)(s+2)(s+1) (2+1)(s+2)(s+1)
2l Te43 24 -3s%45
(FP+1(5+2)(s+1) (2+1)(s+2)(s+1)
s—2 s5-—1
2 2
N(s) = M(s)G(s) = | © T3 &+1
s-2 sl
s24+1 s241
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Example 3. Minimal degree coprime factorization with J all-pass denom-
inator with respect to the unit circle

Consider the TFM of a discrete—time system
P

[ 22 L
G(z)=|-”0 z—21|

having an unstable finite pole at z; = 2 and three poles at infinity, and let I'; := ID*. A minimal
order descriptor realization for & in the form {19) is given by

2—-z 0 0 0] 0O O 0 17
0 1 —2 0| 0 0 0 0
Ay—zEy | Ay —2E 1 | 0 0 1 0/-2z 0 By]_|0 0
O | Ag—zE, | 0 0 01| 0 -z | | B, 0 0
6 0 o0 o0 1 0 1o
0 0 00 0 1 0 1|

1 -1 0 o0]o 1 _Jo1

[Cf’lcg]:[o 00»1% 0}’ D‘[o 0]

The solution of (101) is
-1/3 1/2 1/4 0

/2 -1 0 0

and the corresponding K in Theorem 6.2 is

=12 0
-1 —T ~T =5 0
K=-X"YE, -A) "CiJ= _5 0
0 1
The factors N{z) and M(z) resulting from Theorem 6.2 are
_ z —’2 _ 1 ﬁ_.—z_z_;z_
N(z)={ 2:-1 2@2z-1) | Mmm=]| * (22-1)
0 1 i} 1
z

8 Conclusions

We have presented a comprehensive theory of minimal degree coprime factorization of rational
matrices over a given domain of the closed complex plane. To some extent, the theory supports
the already existing algorithms to compute coprime factors by recursive pole dislocation techniques
(17, 19, 20] and, moreover, provides a systematic theoretical framework for them. Nevertheless, in
view of the formulas given in this paper there is no need to stick on recursive methods unless specific
computational reasons justify this.

Recursive techniques work for coprime factorizations with proper, polynomial, or stable factors.
They are are also applicable in case of factorizations with inner or J lossless denominators. Generally,
the recursive techniques are applicable whenever the involved Lyapunov equations have sign definite
solutions {positive or negative), and then these equations are solved only implicitly. However, the
recursive techniques can not be employed in the more general cases discussed in this paper, not even
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in the canonical J all-pass case. Essentially, the recursive techniques fail since a J all-pass rational
matrix can not be written in general as a product of elementary J all-pass factors.

A particular feature of the results developed in this paper is that the methods are exactly tailored
to the dimension of the problem to be solved avoiding unnecessary redundancy. As an example, the
solution of a full order Riccati equation (order equal to the McMillan degree of the rational matrix to
be factored) that is usually employed in such factorizations (see for example [10], [26]) is completely
avoided. Instead, we solve a Lyapunov equation of lower dimension with the benefits of increased
numerical accuracy and computational efficiency.

The approach taken in this paper puts ground also for extensions to LCF with denominators
satisfying other symmetries, as for example with respect to the real line, or with respect to a certain
contour in the complex plane. The theory presented here hias been already applied as a preliminary
step to the computation of the most general inner—outer, spectral, and J lossless factorizations {12],
[13), and it is a promising step towards computing the more general J spectral factorizations, either
canonical or noncanonical.

References

{11 E. Anderson, Z. Bai, J. Bishop, J. Demmel, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S, Ostrouchov, and D. Sorensen. LAPACK User’s Guide, Second Edition. STAM,
Philadelphia, 1995.

[2] J.A. Ball, J. Kim, L. Rodman, M. Verma, Minimal degree coprime factorization of rational
matrix functions, Linear Algebra and Its Applications, 186:117-164, 1993.

3] H. Bart, I. Gohberg, M.A. Kaashoek. Constructive Methods of Wiener—-Hopf Factorization.
Birkhauser, Basel, OT 21, 1986.

[4] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. SLICOT - a snbrouiine
library in systems and control theory. In B. N. Datta, editor, Applied and Computational
Control, Signals and Circuits, volume 1. Birkhidser, 1997,

[5] T. Chan. Rank revealing QR factorizations. Lin. Alg. & Appl., 88/89:67-82, 1987.
[6] F. R. Gantmacher. The Theory of Matrices. Chelsea, New York, 1960.

[7] J. D. Gardiper, A. J. Laub, J. J. Amato, and C. B. Moler. Solution of the Sylvester matrix
equation AXBT + CXD7T = E. ACM Trans. Math. Software, 18:223-231, 1992.

[8] 1. Gohberg, M.A. Kaashoek, A.C.M. Ran. Partial pole and zero displacement by cascade
connection. STAM J. Matriz Anal. Appl., 10(3):316--325, 1989.

[9] G.H. Golub, Ch.F. van Loan. Matriz Computations. John Hopkins University Press, Baltimore,
1939,

[10] H. Kimnra. Chain-Scattering Approach to H.,-Control. Birkhiuser, Boston, 1996.

[11] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue problem. STAM
J. Numer. Anal., 10:241-256, 1973.

[12] C. Oard and A. Varga. Inner-outer factorization of rational matrices: the general case. In
Proceedings of the MTNS’98, Padova, 1998,

[13] C. Oax& and A. Varga. J-lossless factorization of descriptor systems In Proceedings of the
Symphosium on Descriptor Systems, Paderborn, 1998.

[14] H. H. Rosenbrock, State-Space and Multivariable Theory. Wiley, New York, 1970.

[15] P. Van Dooren. The generalized eigenstructure problem in linear systems theory. IEEE Trans.
Autom. Control, 26:111-129, 1981.

[16] P. Van Dooren. A generalized eigenvalue approach for solving Riccati equations. STAM J. Sci.
Stat. Comput., 2:121-135, 1981.

[17] P. Van Dooren. Rational and polynomial matrix factorizations via recursive pole-zero cancel-
lation. Lin. Alg. & Appl., 137/138:663-697, 1990.

26



[18] A. Varga. On stabilization of descriptor systems. Systems & Control Letters, 24:133-138, 1995.

[19] A. Varga. Computation of coprime factorizations of rational matrices. Lin. Alg. & Appl.,
271:83-115, 1998.

[20] A. Varga and T. Katayama. Computation of J-inner-outer factorizations of rational matrices.
Int. J. Robust and Nonlinear Control, 1997. {to appear).

[21] A. Varga, C. Oard. A descriptor system toolbox for MATLAB. In Proceedings of the Sympho-
sium on Descriptor Systems, Paderborn, 1998.

[22] G. Verghese, B. Lévy, and T. Kailath. A generalized state-space for singular systems. [EEE
Trans. Autom. Control, AC-26:811-831, 1981.

[23] G. Verghese, P. Van Dooren, and T. Kailath. Properties of the system matrix of a generalized
state-space system. Int. J. Control, 30:235-243, 1979.

[24] M. Vidyasagar. Control System Synthesis: A Factorizetion Approach. The MIT Press, Cam-
bridge, MA, 1985.

(28] X. Xin and H. Kimura. (J, J') lossless factorization for descriptor systems. Lin. Alg. & Appl.,
2053-206:1289-1318, 1994,

[26] X. Xin and H. Kimura. Singular (J, J') lossless factorization for strictly proper functions. Int.
J. Control, 59:1383-1400, 1994.

[27] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, New Jersey,
1996.

A  Appendix

In this Appendix we give a characterization in termns of associated realizations for an arbitrary J
all-pass rational matrix, with respect to either the imaginary axis or the unit circle. In this context
we see the importance of centered realizations of the type (9) for which a suitable choice of & and
g provides very handy formulas. A suitable choice means that a and 2 are such that % is on the
contour with respect to which the symmetry is defined (either the imaginary axis or the unit circle).
This choice guarautees, for a given rational matrix M with a minimal realization centered at %,
that its adjoint M~ has a minimal realization centered at % which can be simply expressed in terms
of the realization of M. This is especially linportant when working with TFMs of discrete-time
systems as it avolds the intricacies related to the feature that oo is the symmetrized value of 0.
We start with the case in which the symmetry is with respect to the imaginary axis.

Theorem A.1 Let M(s) be a square and invertible rational matriz. Let o € R and 8 € € such
that % 15 not & pole of M and assume

M) i [ A - sE B(a; 3s) ] '

is o minimaol realization. Then M is J all-pass with respect to the imaginary axis if and only if

(107)

Dip=1J (108)

und there ezists an invertible Hermitic matrizv X such that
A XE+E*XA-C*JC =0, {109)
C—-DJB*X(aE — 4)=0. {110)

Proof. Notice first that M(s) having no poles at 5 implies that in a minimal realization (107)
alf — 3A is invertible.

Only if. Since M (s) is J all-pass, we have
M*-3)JIM(s)=J (111)
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for all s = jw which are not poles of M{s). In particular, for s = 5 we get (108). Hence D is
invertible. Further, (111) may be rewritten as

M*(=38)J = JM~(s)
or, equivalently, in terms of realizations

A sE* | (o= fs) | _ [ A=aBD'C—s(E-pBD7'C) | BD(a=sB) | gy
B D*J = ~JDI¢ D~ '

Since both realizations in (112} are minimal and they realize the same rational matrix, there exist
unique invertible matrices @ and Z such that

Q(A-aBD71CYZ = - A", (113)
Q(E - BBD'CYZ = E*, (114)
QBD ' =C"1J, (115)
JD~iCcZ = B*. (116)

It is easy to see that equations (113){116) hold also with @ and Z replaced by £ * and Q@ ™,
regpectively. Due to the uniqueness of @ and Z we get that

Q=2"" (117)

Thus substituting (117) in (113) and (114) we get

(A-aBD'CVYZ =-2"A", (118)
(E-pBBDICYZ = Z*E*. (119)

Rewriting (116) we get
C-DJB*Z'=0. (120)

Comparing (120) with (110) we define
X = Z Y aE - 84)™! (121)

that is clearly invertible. To show that X is Hermitic, we subtract (118) multiplied by 3 from (119)
multiplied by « and get

X' =(aE -BA)Z = Z*(aE* + BA") = X~ (122)

It only remains to show (109). We rewrite the lefi-hand side of (109) successively as

1 .
m[(~ﬁE“ + aA*) X(aF — A) + (0E” + BAY)X (A + BE)| — C*JC
@ aﬁlr—@[(—ﬂE* +aA*)Z7 4+ Z7"(aA + 8E)] - C*JC
(118

29 z—pp-te - crgc " g
which ends the first part of the proof.

If. We show that if (108)-(110) hold for an invertible Hermitic matrix X then M (s) is J all-pass.
Starting with (107) we get a realization of

~A*—sE* C*JC | C*JD{a — f8s)
M™{(8)JM(s) = 0 A—-sE B{a — 8s) . (123)
-B* DrJC D*JD
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Let
I —(BA* +aEN)X I X(aE-j3A)
Q._[O T . 2= T (124)
and performing an equivalence state—space transformation with @ to the left and Z to the right we

get

M*(—=3)JM(s)
—A*—sE* C*JC-EB*XA—-A*XE |[C*JD - (BA* + aE*)X B](a — 8s)
= 0 A-sE B(a — Bs) (125)
-B* ~B*X(aE — BA)+ D*JC | D*JD

Now using (108)-(110) we get that the (1,2), (1,3) and {3, 2) entries of (125} are identically zero.
Thus removing the uncontrollable and unobservable part of {125) we get finally

M~(s)JM(s) = D*JD

from where the conclusion that 3 {s) is J all-pass. n

Here follows the case of a J all-pass rational matrix with respect to the unit circle.

Theorem A.2 Let M(z) be a square and invertible rational matriz. Let o € €, with ||o| =1 and
such that o? is not a pole of M, and assume

A—zE | (a—@z)B

JM(z) = C ﬁ 2] (126)

is a minimal realization. Then M is J all-pass with respect to the unit circle if and only if
D*Ib=J (127)
and there exists an invertible Hermitic matriz X such that
E'XE-A*XA-C*JC =0, (128)
C—-DIJB*X(aE —@A) = (. (129)

Proof. Notice first that since M(2) has no pole at o and (126) is a minimal realization it
follows that @A — oF is invertible.
Only if. Since M (z) is J all-pass, we have

M™(Z)IM(z) = J (130)

for all z = e7® which are not poles of M{z). In particular, for z = o we get {127) and it follows that
D is invertible. Further, (130) may be rewriften as

M*(%)J = TM(z) (131)

or, equivalently, in terms of realizations

E*—2A* |{a—@2)C*J | [ (A—aBD'C) - 2(E—aBD~1C) | (a —az)BD!
bB* h D~y - —Jbic D~ } . (132)

Since both realizations in (132) are minimal and they tealize the same rational matrix, there exists
w0 unique invertible matrices @ and Z such that

Q(A - aBD™0)Z = E*, (133)
Q(E —aBD™C)Z = A7, (134)
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QBD™ ! =C*J, (135}
- JD™cZ = B~ (136)

It is easy to see that equations {133)}-(136) hold if we replace @ and Z with —Z~* and —Q7*,
respectively. Due to the uniqueness of ¢ and Z we get

Q=-2"* (137)

Thus substituting (137} in (133)}-(136) results in

(A-aBD"'CYZ = -Z"E", (138)
(E-aBD1C)Z = -2*A*. (139)

Rewriting (136) we get
C+DJB*Z'=0. (140)

Comparing (129} with (140} we define
X:=-Z YaE-aA)! (141)

that is cleazly invertible. To show that X is Hermitic we subtract (139) multiplied by « from {138)
multiplied by & and get

X' =(@A~aF)Z = Z'(aA* —GE") = X*. (142)

It only remains to show (128). We rewrite the left-hand side of (128} successively as
%[(QA* L BE)X (aF — GA) + (GE* — aA")X (aE + @A) — C*JC

U L lad® +GEYZT + 2 @B+ TA)| - C*IC

(135];(139) _Z—*BD—lc _ CHJC (1__4:0) 0

which ends this part of the proof.
If. We show that if (127)—(129} hold for an invertible Hermitic matrix X then M ()} is J all-pass.
Starting with (126) we get a realization of

1 EY —zA* {a—az)C*JC | (o —@z)C*JD
M*(Z)IM(z) = 0 A—zE (« —a@z)B (143)
g B D*JC | D*JD

Let
Q= [é (acA? _IEE*)X ] 7= L‘; X(EAI‘O‘E) } (144)

Performing an equivalence state-space transformation with @ to the left and Z to the right we
obtain :

1 B — zA* O O
M* (=} M(z) = ) A-zE | (o« —@z)B (145)
z B* 0 D*JID

where we have used (128} and (129} to get that the (1,2}, (1,3) and (3,2) entries are zero. Thus,
removing the uncontrollable and unobservable part of (145} we finally get

M™(2)JM(z)=D*JD

from where with (127} we conclude that M(z) is J all-pass. |
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