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Abstract. What is the tightest packing of N equal nonoverlapping spheres, in the 

sense of having minimal energy, i.e., smallest second moment about the centroid? 

The putatively optimal arrangements are described for N < 32. A number of new 

and interesting polyhedra arise. 

1. Introduct ion 

hardball. 2. Informal. The use of any means, 

however ruthless, to attain an objective. 

American Heritage Dictionary, 

Third Edition, Houghton-Mifflin, 

New York, 1992 

A number of papers have appeared in recent years in the mathematical literature 

dealing with questions of finding the best packings of N points (or equivalently 

congruent circles or spheres) in two and three dimensions from various points of 

view: see the surveys in [CFG] and [GW]. For example, [MP], [PWM], and [Me] study 

the problems of finding the densest packings of N equal circles in a square or 

equilateral triangle. 

Statement of Problem 

However, the problem considered in this paper, which is to find minimal-energy 

clusters of N equal and nonoverlapping spheres, seems to our surprise not to have 
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been considered. Stated formally, we wish to determine points P1 . . . . .  PN in R 3 so 

as to minimize the second moment 

N 

M =  ~ rPi - CI 2, 
i=1 

(1) 

where C = N-aEN=IPi is the centroid, subject to the constraints IPi - Pjl > 2 for 

i 4= j. Placing spheres of radius 1 at the Pi then gives a packing or cluster of hard 

spheres. Apart from a factor of N, M is the sum of the squared distances between 

all pair of points. 

Such clusters are also of interest in the investigation of Kepler's problem of 

determining the densest sphere-packing in three dimensions, since the attacks on 

this problem involve (among other things) detailed analysis of small clusters of 

spheres [B], [Mu], [Hs], [Ha]. Although there is a standard way to define the density 

of a packing of infinitely many spheres, there is no single definition of the density of 

a finite cluster that is totally satisfactory. Our minimal-moment criterion offers 

another way to evaluate the "tightness" of a cluster. 

The interpretation of I P i - C I  2 as the energy in Pi is a standard one in 

communications, where P1 . . . . .  PN would represent a constellation of N signals with 

total energy M [CG], [FGW]. 

The analogous two-dimensional question of minimal-energy penny packings was 

studied in [GS] and [C]. 

Lennard-Jones Clusters 

In the physics literature there have been a large number of papers that deal with the 

problem of finding arrangements of N points that minimize the Lennard-Jones 

potential 

(1 2) 
d 6 , 

l<i  j < N  

(2) 

where dij  = I e  i - e j l - - s e e  [CSWl], [CSW2], [FFR], [HM1], [HM2], [HP1], [HP2], 

[MF], [N], [RFF], [S], and [Wi]. Reasonable candidates for minimal-potential ar- 

rangements have been found for up to several hundred points, although optimality 

has been rigorously established in only a few cases. However, in such arrangements 

the distances between pairs of neighboring points is not constant (for example, in the 

case N = 5 it varies between 0.996 and 1.002), so such clusters are packings of soft 

rather than hard spheres. Furthermore, even if we ignore this variation in minimal 

distance, the putatively optimal Lennard-Jones clusters are in general completely 

different from those found in this paper, so this is a strictly different problem. The 

Lennard-Jones problem also seems considerably easier than the minimal moment 

problem, essentially because (2) is differentiable but (1) is not. Using our techniques 

we were able to reproduce all the published optima for Leonard-Jones dusters of 
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Table 1. Conjectured minimal second moment M for any cluster of N unit spheres 

239 

N M N M N M 

1 0. 12 42.8163 23 131.7681 
2 2. 13 47.7012 24 141.2778 
3 4. 14 54.8783 25 151.6267 
4 6. 15 62.1071 26 161.3333 
5 9.3333 16 69.7926 27 172.8889 
6 12. 17 78.1282 28 183.7619 
7 16.6833 18 86.3012 29 193.4559 
8 21.1567 19 95.1284 30 205.7136 
9 25.8990 20 105.0434 31 217.3094 

10 31.8279 21 114.2222 32 229.3750 
11 37.8346 22 122.4848 

up to 75 spheres. To use a sporting metaphor  which is also technically correct, their 

problem is softball, ours hardball.  1 

Other  criteria for minimal clusters of spheres, also different from ours, and with 

different solutions, have been used in [We], [B], and [GW]. 

Summary 

The main results of this paper  are summarized in Table 1, which gives what we 

conjecture are the minimal second moments  of arrangements of N spheres for 

N < 32. The arrangements themselves are illustrated in Fig. 1 and described in more 

detail in Section 2. We have in fact searched for optimal packings with up to 99 

spheres, although since we are less confident of the optimality of the configurations 

with more than 32 spheres they will not be described here. Numerical coordinates 

for all these packings have been placed in the Netlib archive, and can be accessed 

via electronic mail, ftp, or Mosaic. The packings are in the directory a t - t /ma th /  

s l oane / c lu s t e r .  Instructions for obtaining them can be obtained by sending the 

message s end  getting.stuff from a r t / m a t h  to net t ib@research.a t t .com.  

Discussion of Results 

The character  of the putatively optimal arrangements changes in an interesting way 

as N increases. For  4 < N < 10 these arrangements (see Section 2) consist of the 

vertices of reasonably well-known polyhedra,  the so-called deltahedra, whose faces 

are equilateral  triangles [J]. 

For  N = 11-13 the best  arrangements consist of a central point together with 

N - 1 points at distance 2 from it. The 13-point answer is at first glance surprising, 

since it consists nei ther  of the center and vertices of a regular icosahedron (which is 

1As one reader of this paper has pointed out, softball is intrinsically underhanded. 
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the 12-vertex del tahedron),  nor the center  and vertices of a cuboctahedron (the 

arrangement  found in the face-centered cubic lattice). Instead, the answer is the 

center and vertices of the "weary icosahedron,"  obtained from a regular  icosahedron 

by allowing the vertices to roll down the circumsphere toward the south pole until 

the contact graph of distance-2 neighbors is as shown in Fig. 3. This is unders tand-  

able, however, when we recall that in a regular  icosahedron the edge length is 

slightly greater  than the circumradius, and therefore  the second moment  can be 

reduced by displacing the centroid away from the center,  at the same time rolling 

the vertices in the direction of the centroid until their separat ion is equal to the 

circumradius. The equilibrium position is reached at the "weary icosahedron."  

Fig. 1. Putatively optimal clusters of N spheres, for N 4 10 (a) (g) and 13-20 ((h)-(o)). For 

greater clarity the spheres have been reduced in size, contacts betwecn adjacent spheres have been 
replaced by bonds, and for N >_ 3 the central sphere has been omitted. 



Fig. 1. Continued 



Fig. 1. Continued 
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The best arrangements for N = 11 and 12 are obtained by omitting points from 

the N = 13 solution. 

For  N = 14 20 the best arrangements we have found consist of a (roughly) 

central point together with the vertices of a convex polyhedron containing the 

central point. The central sphere often touches only a few of the other spheres (only 

seven when N = 18, for example). The polyhedra for N = 14, 15 . . . .  ,20 are all quite 

different from each other. We believe that these polyhedra have not appeared in the 

literature before. 

Our understanding of these polyhedra was greatly enhanced by making cardboard 

models of them, and the figures in Section 2 can be used as a guide for making such 

models. 

For  N = 21-32 the best arrangements can be built in a uniform manner (to be 

described in Section 2) from parallel one-dimensional strings (or "skewers") of 

spheres. All  of N = 21-32 can be obtained as subsets or supersets of the clusters for 

N =  26 and 29. 

Before beginning this investigation, we anticipated that many of the optimal 

arrangements for small N would consist of regular te trahedra glued together. For 

N _> 6, nothing could be further from the truth. The numbers of regular te trahedra 

in the best arrangements for N = 4-20  are respectively 1, 2, 0, 0, 0, 3, 0, 8, 8, 8, 0, 8, 

1 , 0 , 0 , 0 , 3 .  

The results are also in complete contrast to those obtained in [GS] for the 

analogous two-dimensional problem, in that 

(a) the best arrangements are not those found in the densest lattice packing, and 

(b) whereas in the two-dimensional case the greedy algorithm produces the best 

arrangements for N _< 21, in three dimensions the greedy algorithm gives the 

best arrangements only for N <_ 5 and N = 11, 12, 13 (and, we conjecture, 

never again). 

Finally, we give a brief comparison with the putatively optimal Lennard - Jones  

clusters given by Hoare  and Pal [HP1]. For  N _< 7 these clusters are essentially the 

same as ours, except for having spheres of slightly different sizes. For  N > 8 the 

clusters are quite different. For  N = 8 , . . . ,  12 the optimal Lennard - Jones  clusters 

are essentially the vertices of a pentagonal  bipyramid with N - 7 te t rahedra erected 

on consecutive faces of one of the two pentagonal  pyramids, and for N = 13 the 

answer consists of the center and vertices of a regular icosahedron [HP1, p. 176]. 

How the Results" were Obtained 

Bearing in mind the epigraph to this paper,  we tried a number of different 

techniques: 

(i) The greedy algorithm, at each step adding a sphere in the optimal way. (The 

results from this method have already been mentioned.)  

(ii) Extracting clusters of spheres from the face-centered cubic lattice, hexago- 

nal close packing, etc., as in [GS] and [ST]. (This was successful-- i .e . ,  
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produced what we believe are the optimal configurations--only for N < 5 

and N = 26.) 

(iii) Simulated annealing applied to clusters from (i) and (ii). (Successful for 

N = 21, 23-25, 27, 28.) 

(iv) Quadratic programming, to minimize (1) subject to the constraints 

I P i  - Pjl 2 > 4 (i 4: j). (Successful for N < 20, not for larger N.) The pro- 

gramming language AMPL [FGK] made it particularly easy to apply 

quadratic programming to this problem. For each value of N we took 

several thousand random starting configurations and then optimized them 

(via AMPL) using both the MINOS [MS] and CONOPT [D] optimization 

programs. 

(v) A modification of the "pattern search" used in [HS1], [HS2], and [HS3]. 

(Successful for all N < 32 except 29 and 30.) In this algorithm we approxi- 

mated the minimal moment criterion of (1) by a sequence of potential 

functions 

N /3k 
~k= Eleil 2+ ~ 

i=  1 i < j  I e i  - e j l  - ot k 

(3) 

for k = O, 1 . . . . .  where a k and flk (respectively specifying the hardness and 

repulsion of the spheres) are given by a o = O, /3 o = 1, and 

i < j  

/3k 1 = 2"/3k-1, k > 1. (4) 

A given starting configuration is minimized under qb0, the result then 

minimized under qb 1, and so on, until no further improvement is obtained to 

the tolerance of the machine. At each stage the spheres get harder and less 

repellent. 

This procedure has the drawback that since initially the spheres are soft 

and can squish by each other, only a small number of different final 

configurations were reached. To obtain further possibilities, even if only to 

reject them, we therefore removed a random sphere from the final cluster, 

placed it outside the cluster, softened the spheres slightly (by setting 

a 0 = 0.9 min i < j IPi - Pjl, and choosing a random/30), and again minimizing 

under the sequence of potential functions. (The value 0.9 was determined 

by experimentation to produce good results.) After termination the cluster 

must be rescaled to have minimal separation 2. 

The computer output from these algorithms was then "beautified" to produce the 

arrangements shown in Section 2. This process consisted in finding the contact 
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graph, the full symmetry group, and coordinates for the points that reveal as much of 

�9 the symmetry as possible. Some of the symmetry groups were found using MAGMA 

[CP]. 

(vi) Study of the beautified results from (v) for N = 21-26 revealed that 

these had a common construction, the "skewer" construction described in 

Section 2. A special search was therefore made for clusters of this type, 

which produced new records for N = 29 and 30. 

(vii) After applying our pattern-search algorithm to the Lennard-Jones problem, 

we used the putatively optimal configurations for that problem as input t o  

the program described in (v). This was successful only for N _< 9. 

(viii) Various iterative constructions, such as adding a random sphere to a good 

packing of N - 1 spheres and optimizing the result. 

We are reasonably confident that the results in Table 1 are optimal, or at least 

very close to optimal. On the other hand we have no proofs of optimality for any N 

greatei than 4. It would be possible, although laborious, to construct such proofs 

using the methods of [PWM], by considering all possible contact graphs with N 

nodes, and for each graph, using MAPLE or MACSYMA to determine the optimal 

arrangement of points with that contact graph. 

We would be interested in hearing of any improvements to Table 1, or of 

optimality proofs. They should be sent to N. J. A. SIoane at the address at the 

beginning of the paper, or by electronic mail to njas@research.att.com. 

Existence Questions 

Once the contact graph is specified, the coordinates of the points are determined by 

the solution to a system of quadratic equations, and so are algebraic numbers. The 

computer output gives only an approximate solution to these equations, correct to 

about 10-12. Formally, therefore, it is necessary to verify that there/s a true solution 

to this system of equations in the neighborhood of the computer's approximate 

solution. For N < 14 we carried out this verification using MACSYMA, and in 

Section 2 give exact coordinates for the points. However, for 15 < N < 20 we did 

not do this, since already at N = 15 the algebraic numbers involved are of quite 

large degree. Our experience (both in this problem and in related problems dis- 

cussed in [HS1] and [HS3]) strongly suggests that for N < 20 the computer solutions 

are sufficiently precise and the equations are sufficiently well-behaved that there 

always is a true solution nearby. For 21 < N < 32 the skewer construction directly 

leads to explicit coordinates. 

If it were felt necessary to establish the formal existence of these arrangements 

for 15 < N < 20, this could most easily be carried out by the interval arithmetic 

package INTBIS [KN]. 

Note that there is no question about the validity of the numbers in Table 1, only 

about the existence of the contact graphs. Even if some of the distances in the 

cluster are 2 + e rather than 2, the values in Table 1 will not change. 
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One of the referees has kindly pointed out that it is easy to give existence proofs 

for the cases N = 15, 16, 17, and 19. With the editors' permission, we quote from 

the report. "Here  is the argument for N = 15. If we delete the two edges (12, 13) 

and (11, 14) from the contact graph in Figure 5, so that these spheres overlap if 

necessary, a solution may be constructed by inserting one sphere after another. In 

fact, a continuous one-dimensional family of (symmetric) solutions exists and is 

parametrized by the distance t between the spheres 5 and 6. The distance d(t) 

between spheres 12 and 13 is continuous in t. We find d(2.76)= 1.99428 and 

d(2.77) = 2.0224. Some intermediate value t o then gives d(t o) = 2. By symmetry, the 

distance between spheres 11 and 14 must also be 2. The arguments for N = 16, 17, 

and 19 are similar. For N = 18, the existence argument involves a two-dimensional 

family of clusters." 

Asymptotic Results 

As the radius R of the clusters increases, N will grow like R 3, M like R 5, and the 

normalized second m o m e n t  M / N  5/3 should approach 

3 1 

5 h 2/3 '  

where A is the density of the packing. (This limiting expression is valid if the spheres 

form a roughly spherical subset of a lattice, as follows from Theorem 4 of [CS], and 

it is plausible that the same limit holds for arbitrary clusters.) Therefore, if Kepler's 

conjecture that no sphere packing can be denser than the face-centered cubic lattice 

is correct (see [Ha] and [Hs]), M / N  5/3 should approach 

2 "3 5 11/3 . . .  

( 5 3 . 7 r  2 ] = 0.7331 

as N ~ oo. Our results neither confirm nor contradict this: at N = 99, M / N  5/3 has 

very slowly risen to around 0.72. It certainly is true, as we have already discussed, 

that for N < 99 (with the exceptions N _< 5, N = 26), extracting clusters of spheres 

from the face-centered cubic lattice of hexagonal close-packing does not yield 

minimal energy arrangements. 

Notation 

In Section 2 the N points are labeled 0, 1 . . . . .  N - 1, decimal expansions have been 

rounded to four places, the coordinates are labeled x, y, z, and G denotes the group 

order. 
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2. The Putatively Minimal-Energy Clusters 

N = 1-7. The vertices of the following figures, in which all edges have length 2. 

1: point 

2: line segment 

3: triangle 

4: tetrahedron 

5: triangular bipyramid 

6: octahedron ( =  square bipyramid) 

7: pentagonal bipyramid 

N = 8. Vertices of dodecadeltahedron (a polyhedron with 12 triangular faces). 

Other names are Siamese dodecadeltahedron or snub disphenoid [FW], [J], [Wa, Fig. 

2-A16 #5]. It is also the "3-into-2" mutated icosahedron, because it can be obtained 

from a regular icosahedron by converting a triad axis into a dyad one. Coordinates: 

( + f ,  e, 0), ( + l ,  - g , 0 ) ,  (0, - e ,  +_f) , (O,g ,  +_ 1), 

where e = 0.4111 is the unique positive real root of 2 X  6 + l l X  4 + 4X 2 - 1, 

g =  ~ -  1 ) / 2 =  1.5679, f = 2 e g =  1.2892. C = ( 0 , 0 , 0 ) ,  M = ( 2 +  lOe z -  

4ea ) / e  2 = 21.1567. G = 8: negate x; negate z; swap x, z and negate y. 

N = 9. Vertices of tetrakis triangular prism. This is the deltahedron with 14 

triangular faces (the tetrakaidecadeltahedron). Coordinates: 

(2 }{ 1 ) (  1)( 
0, -~- ,_+  1 , 4=1 , - -~ - , _+  1 , O , - v ~ - -  - ~ - , 0  , _ + - -  

C = (0, 0, 0), M = 21 + 2v/6 = 25.8990, G = 12. 

l + V ~ -  l + v / 6  - ) 

2 ' 2V~- , 0 .  

N = 10. Vertices of tetrakis square antiprism. This is the deltahedron with 16 

triangular faces (the hexakaidecadeltahedron).  Coordinates:  ( + 1 ,  + 1, e), 

(+_ f } - , 0 , - e ) ,  (0, _+ v/2 -, - e ) ,  ( 0 , 0 , -  f ) , w h e r e  e = 2-1/4, f = e + ~/2. C = (0,0, 0), 

M = 20 + 5v~- + 4.21/4 = 31.8279, G = 16. 

N = 11-13. The 13-point cluster consists of the center (labeled 0) and 12 vertices 

(labeled 1-12) of a "weary icosahedron," defined as follows. Take a regular icosahe- 

dron whose circumsphere has radius 2, and so the edge lengths are 4 /~ / (z  + 2) = 

2.1029, where ~- = (1 + v~-)/2. Imagine the vertices are replaced by heavy particles, 

which then roll down the circumsphere toward the south pole (labeled 1) until the 

graph that shows adjacencies between points at distance ~ -  is as shown in Fig. 2. 

Coordinates: 0: (0,0,0), 1: (0,0, - 2 ) ,  2: (vCJ', 0, - 1 ) ,  3,4:(1/vC3 -, + ~ 3  s- , - 1 ) ,  5,6: 

( - 7 / 2 ~ ,  + ~ 7  z , - 1 ) ,  7,8: ( - 8 v ~ - / 2 7 ,  + 20v/6/27, ~), 9,10: (8/2V~-, _% ~ 7 ,  ~), 

11: ( - 2 1 7 ~ / 1 9 , 0 , ~ ) ,  12: (5V~/19 ,0 ,~ ) .  C=(233V~/6669 ,0 ,103 /741) ,  M =  

54398420/1140399 = 47.7012, G = 2 (negate y). 
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Fig. 2. 

10! 

11 

12 

5 

3 

N = 13. Contact graph for points 1-12. Point 0 (not shown) is joined to all twelve. 

The convex hull of points 1-12 (which still lie on the circumscribing sphere) has 

the 1-skeleton shown in Fig. 3, so this is also an icosahedron. There are 30 edges, 21 

of which (those shown in Fig. 2) now have length 2, the others being longer. 

For N = 12, omit point 12; for N = 11, omit 11 and 12. 

Incidentally the 13-sphere cluster described by Wefelmeier [We] as the "energe- 

tisch giinstigsten Packung" appears to be simply the center and vertices of a regular 

icosahedron, rather than our arrangement. 

N = 14. Construct the figure shown in Fig. 4 from cardboard, with all edges having 

length 2, and fold it so the points marked 1 all coincide, the points marked 2 

coincide, and the points marked 13 coincide. Then adjoin a center point (0). Figure 4 

11 

7 

12 

Fig. 3. N = 13. 1-skeleton of convex hull (the "weary icosahedron"). 
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1 1 1 1 

11 7 3 5 9 

13 13 

VL/VV 
2 2 2 2 

Fig. 4. Cardboard model for N = 14. 

is also the contact graph of 1-13, the full contact graph being obtained by joining 0 

to 1-12 (but not to 13). 

Coordinates: 0: (0,0,0), 1,2: (0,0, __+ 2), 3,4: (Vr3-,0, + 1), 5-8: (1/~-3, + 1/---38- , 

+1), 9-12: (-7/2V~-,  -+ ~ 7 ,  _+ 1), 13: (-14/2V~-,0,0).  C = ( -  2 /7v~,  0, 0), M 

= 10372/189 = 54.8783, G = 4 (negate y; negate z). 

The convex polyhedron formed by 1-13 is a pentakis prism, in which one of the 

square faces (9-10-12-11) has been opened slightly and point 13 placed above that 

face. The final polyhedron has ten equilateral triangular faces, four squares faces, 

and two faces (1-11-13-9 and 2-12-13-10) that are planar rhombi. 

This 14-sphere cluster was discovered by Boerdijk [B], and appears as Figure 

45/2 in [F]. 

N = 15. Whereas N = 14 was obtained by distorting a square face of a pentakis 

pentagonal prism, N = 15 is obtained by distorting two adjacent square faces of the 

same polyhedron. Point 0 is at the center, 1 and 2 are the apex vertices of the 

pentagonal pyramids, 3-12 are the vertices of the distorted pentagonal prism, and 

13, 14 lie above the two adjacent faces. In the final figure, however, these two faces 

(7-11-10-12 and 8-12-11-9) have become nonplanar quadrilaterals. Also 1 and 2 are 

no longer antipodal, and it is best to take the north pole above the center (marked P 

in Fig. 5) of the rhombus 3-5-4-6. The contact graph for points 1-14 is shown in Fig. 

5, and the full contact graph is obtained by joining 0 to 1-12. Coordinates: 

O: (0.0000, 0.0000, 0.0000) 

1, 2: (0.0022, + 1.4459, + 1.3818) 

3, 4: (1.3825, 0.0000, + 1.4452) 

5, 6: (1.4466, -+ 1.3810, -+ 0.0000) 

7,8: (-0.5235, q:0.4171, • 

9, 10: (-0.4166, _+1.8846, :t:0.5240) 

11, 12: ( -  1.7301, _+0.6859, :t:0.7324) 

13,14: (-2.1985, ~1.2156, _+1.1384) 
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13 10 

1 4 ~  11 

9 14 

Fig. 5. N = 15. Contact graph for points 1-14. (Note that 13, 14 appear twice.) Point 0 (not shown) 
is joined to 1-12. 

C = (-0.2716,0,0),  M = 62.1071, G = 2 (negate y, z). The north pole, P in Fig. 5, 

not one of the 15 points, is (2, 0, 0). 

This configuration exists in two enantiomorphic versions (the other being ob- 

tained by negation of the y coordinate). 

N = 16. This cluster has a group of order 3, corresponding to cyclic shifts of the 

three coordinates. Point 0 is central, with points 1-15 arranged in rings of three 

about the north-south axis through 0 (the line P - Q  in Fig. 6). A cardboard model 

for the polyhedron defined by 1-15 is shown in Fig. 6. As usual the edges have 

length 2, while the dotted edges have length 2.0572. All contacts among 1-15 are 

shown in the figure, while 0 (not shown) is jointed to 1-3, 7-12. Coordinates: 

0: (0.0000 

1, 2,3: ( -  1.4142 

4, 5, 6: (0.2739 

7 , 8 , 9 : ( - 1 . 1 0 7 6  

1 0 , 1 1 , 1 2 : ( - 0 . 9 9 6 7  

13, 14,15: (2.0207 

0.0000, 0.0000) 

- 1.4142, 0.0000) 

0.2739, - 2.4512) 

-0.3067, 1.6368) 

1.5547, 0.7678) 

0.4263, 0.9180) 

(The coordinates are shown for point 1, while 2, 3 are obtained by cycling the 

coordinates to the left, etc.). C = (0.0114,0.0114,0.0114), M = 69.7926, G = 3. 

Again there are two enantiomorphic versions, the other being obtained by exchang- 

ing x and y. 

N = 17. Point 0 is central, with 1-16 forming a polyhedron described in Fig. 7. 

Figure 7 shows all contacts among 1-16, while 0 (not shown) is joined to 5-8, 11-14. 

The convex hull of 1-16 is a polyhedron with 22 faces that are equilateral triangles 

(shown in Fig. 7), one square face (11-12-14-13), and four faces that are obtuse 
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1 1  . . . . . . .  

I~~iii iIII 
3 

12 

Fig. 6. 

8 

1 lq 7 

9 

Cardboard model for N = 16. Solid lines have length 2 and dashed lines have length 2.0572. 

isosceles triangles (1-5-15, 1-7-15, 2-6-16, 2-8-16). Coordinates: 

0: (0.0000, 0.0000, 0.0000) 

1, 2: (2.0248, + 1.0000, 0.0000) 

3, 4: (1.6958, 0.0000, + 1.7005) 

5, 6, 7, 8: (0.5062, 4-1.5249, + 1.1910) 

9, 10: ( -0 .2247,  0.0000, +2.2590) 

11, 12,13,14: ( -  1.4142, 4-1.0000, 4-1.0000) 

15,16: ( -0 .7052,  +2.5803, 0.0000) 

C = (0.1147,0,0), M = 78.1282, G = 4 (negate y; negate z). 

N --- 18. Point 0 is roughly central, and 1, 2, 3, 4, 5 form a square pyramid (with 1 at 

the apex) which we use to define the coordinate axes. All contacts among 1-17 are 
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I1 

14 

Fig. 7. Cardboard model for N = 17. 

shown in Fig. 8, while 0 (not shown) should be joined to 2, 3, 10-13, 16. The convex 

hull of 1-17 is a polyhedron with 30 triangular faces. Twenty-six of the faces are 

equilateral and are shown in Fig. 8, the other four being the obtuse isosceles 

triangles 6-10-16, 6-11-16, 7-12-17, 7-13-17. Figure 8 thus serves as a cardboard 

model for this polyhedron. All the triangles should be made equilateral of side 2; in 

3 I 5 1 

3 5 

6 7 6 7 

16 17 16 17 

(a) (b) 

Fig. 8. Cardboard model (d is tor ted)for  N =  18. 
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Fig. 8(a), 8 should be pushed up out of  the page and 3, 5, 16, 17 pushed down into 

the page; in Fig. 8(b), 9 should be pushed down and 16, 17 up; and corresponding 

nodes in Fig. 8(a), (b) should be identified. Joining 0 to 2, 3, 10-13, 16 then 

establishes the positions of all the points. Coordinates: 

0: (0.1188, 0.1188, -1 .5191)  

1: (0.0000, 0.0000, 1.4142) 

2, 3: (0.0000, 1.4142, 0.0000) 

4, 5: ( -  1.4142, 0.0000, 0.0000) 

6: (1.8215, 1.8215, -0 .7186)  

7: ( -  1.8178, - 1.8178, -0 .7300)  

8,9: ( -1 .6040,  1.6040, -1 .1794)  

10,11: (0.2093, 2.0852, -1 .8724)  

12,13: ( -  1.8030, - 0.2316, - 1.9481) 

14,15: ( -1 .1445,  1.2676, -3 .0966)  

16: (0.7885, 0.7885, - 3.2806) 

17: ( - 0 . 6 1 6 3 , - 0 . 6 1 6 3 , - 3 . 5 1 1 3 )  

(The second point of each pair is obtained by interchanging the x and y coordinates.) 

C = (0.0376, 0.0376, -1.3633),  M = 86.3012, G = 2 (interchange x and y). 

N =  19. The contact graph is shown in Fig. 9. Coordinates: 

O: (0.0000, 0.0000, 0.0000) 

1: (0.0000, - 2.1976, 0.7759) 

2: (0.0000, - 1.3253, - 2.4305) 

3: (0.0000, 1.9804, - 1.6102) 

4: (0.0000, 1.9617, 0.3897) 

5: (0.0000, 1.4605, 2.3259) 

6: (0.0000, - 0.5011, 1.9362) 

7, 8: (_+ 1.0806, - 1.5030, - 0.7570) 

9,10: (___1.6920,-1.1887, 1.1211) 

11,12: (_+1.0000, 0.2514,-1.7137) 

13, 14: (_+ 2.4433, - 0.0906, - 0.3721) 

15,16: (_+1.7189, 1.7581,-0.6123) 

17,18: (_+1.4519, 0.7968, 1.1211) 

C = (0,0.0751, -0.0547), M = 95.1284, G = 2 (negate x). 

N = 20. There is a central sphere that touches 11 others, but the cluster has no 

symmetry, and we do not give it here. In spite of its lack of symmetry, this cluster 

was found repeatedly by several different methods, and we believe that it (and 

indeed all the clusters described in this section) is (probably) optimal. 

N = 21-32.  For N = 26 the putatively optimal arrangement  consists of a cluster of 

points from the hexagonal close packing, the center of the cluster being taken at the 

midpoint of  a triangle lying between adjacent t e t rahedra - - see  Fig. 10. (The theta 
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6 

Fig. 9. N = 19. Contact graph for 1-18. Point 0 (not shown) is joined to 4, 6-8, 11, 12, 17, 18. 

26 ' 
�9 ~ �9 

�9 �9 �9 �9 

25 ',  22 
�9 �9 �9 �9 

% 

�9 �9 �9 x ,, �9 �9 �9 

�9 �9 
' t  

�9 �9 "~, �9 �9 

�9 �9 

23 

Ca) Co) Ce) 

Fig. 10. Twenty-six-sphere cluster found inside hexagonal close packing. Points occur in three 

layers, and may be partitioned into ten parallel "skewers," one of which is indicated by the dashed 

line. The center of the cluster is indicated by x .  
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series with respect to this point  is given in Table  19 of [ST]) C is at the center  of the 

layer shown in Fig. 10(b), M = 484 /3 ,  G = 12. 

For  N = 25-21,  successively omit  points 26-22  from Fig. 10. 

There  is an al ternative way to describe this cluster, which leads to an interest ing 

generalization.  We may regard the spheres in Fig. 10 as arranged on ten parallel  

"skewers," one  of which is indicated by the dashed line. Formally,  we say that a 

cluster is a skewer packing if there is a coordinate  system with the property that the 

z coordinates  of all centers  with the same x , y  coordinates  form a sequence of 

consecutive integers with the same parity. In this case we call the set of points  with 

the same x, y coordinates  a skewer. (The cluster could then be physically con- 

structed using oranges impaled on skewers.) 

Af ter  noticing that the best clusters we had found in the range N > 21 were 

skewer packings, we under took  a systematic search for such clusters. This produced 

new records for N = 29, 30, with the final result  that in the range 4 < N < 32 the 

best clusters are skewer packings for N = 5 and  21 < N < 32. 

In  order  to specify these clusters we use the nota t ion [l, m, n] (resp. [l, m, n ' ])  to 

indicate a skewer with n spheres centered at points  with 

m 

x = l  , 

and whose z coordinates  are consecutive integers of the same parity centered at 0 

(resp. at 1). The  26- and  29-sphere clusters are then described in Table  2. For  

N = 27, adjoin [12, 12, 1] to N = 26; for N = 28, adjoin [12, 12, 2] to N = 26; for 

N = 30, adjoin [0, 0, 1'] to N = 29; for N = 31, adjoin [0, 0, 2] to N = 29; for N = 32, 

adjoin [12, 12, 1'] to N = 31. 2 

Table 2. Values of l, m, n for skewer clusters at N = 26 

and 29 

N = 26 N = 29 

0 0 2 0 9 3 
0 9 3 0 18 4 

0 18 4 0 32 2 

0 27 3 • 4 25 3 
+6 6 2 +6 6 2 

+6 15 3 +6 15 3 

+6 24 2 +10 22 2 

The  26- and  29-sphere clusters are also shown in Figs. 11 and  12, in which the 

skewers are indicated by circles (the skewers are perpendicular  to the page), and 

skewer [l, m, n] is indicated by a circle of radius 1 cen te red  at x = l 2/X/~ff, y = 

m/x /~  with n writ ten at the center. Because in some cases the spheres on  adjacent  

2 To find these skewer packings, we established certain obvious rules that specify which combina- 
tions of skewers [l,m,n] and [l,m,n'] are permissible, and then searched through all legal 

combinations and picked the best. 
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3+ 

2+ 2+ 

4+ 

3+ 3+ 

3+ 

2+ 2+ 

2+ 

Fig. 11. Twenty-six spheres (again). 

skewers are interlaced, some of the circles overlap each other (although in fact these 

spheres just touch). 

The almost regular pentagonal arrangements of skewers in Fig. 12 is especially 

intriguing. This cluster has the following structure. A polyhedron which is the same 

topologically may be obtained by taking a double pentagonal prism (with three rings 

A, B, C of five vertices each), constructing pyramids (with vertices N, S) on the end 

faces and (with two rings D, E of five vertices) on the ten rectangular faces, and 

finally adjoining the centers O, O' of the two prisms, for a total of 29 points. 

In the regular version of this polyhedron the contacts are as shown in Fig. 13, 

yielding a 29-sphere duster with M = 157~- + 160 = 193.5410, G = 20. This is also 

a skewer packing, the skewers being seen from the side in Fig. 13. 

A smaller second moment (of 193.4559) is obtained, however, if the skewers 

droop to one side, producing the "weary" version found by our computer program 

and shown in Table 2 and Figure 12. The four points on the central skewer of Fig. 12 

are the points S, O, O', N of Fig. 13. The group order has dropped to 4. Once again 

a less symmetrical configuration has a smaller second moment. 
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2+ 

2+ 

3+ 

3+ 

4+ 

3+ 
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2+ 

2+ 

3+ 

2+ 

Fig. 12. Twenty-nine spheres. 

D(5) 

s(t) o(t) 

E(5) 

~ c(5) 

o ' o )  N(t) 

Fig. 13. Contact graph for a regular version of a capped double pentagonal prism, a slightly 
suboptimal 29-sphere cluster. 
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