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The fundamental lower bounds on the thermodynamic energy cost of measurement and information

erasure are determined. The lower bound on the erasure validates Landauer’s principle for a symmetric

memory; for other cases, the bound indicates the breakdown of the principle. Our results constitute the

second law of ‘‘information thermodynamics,’’ in which information content and thermodynamic

variables are treated on an equal footing.
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The fundamental lower bound on the thermodynamic
energy cost of information processing has been a topic of
active research [1–10]. According to Landauer’s principle
[4], on average, at least kBT ln2 of work is required to erase
1 bit of information from a memory. Recent developments
in nanoscience have enabled the direct measurement of
such minuscule amounts of work for small nonequilibrium
thermodynamic systems [11]. Moreover, advances in mo-
lecular devices [12] and nanomachines [13] have ne-
cessitated a deeper understanding of thermodynamic infor-
mation processing. In view of these developments, it is
essential to identify the fundamental lower bound on the
thermodynamic energy cost of information processing. In
this Letter, we derive the minimum work that must be
performed on a memory for measurement and information
erasure. Our results are proved rigorously for classical
information processing and proved for quantum informa-
tion processing after making an additional assumption. Our
results are independent of the detailed characteristics of the
system and memory, and therefore, they can potentially be
applied in many areas of information processing.

We consider a memoryM that stores information on the
outcome of a measurement. While we formulate M as a
quantum system, our formulation is also valid in the clas-
sical limit. Let HM be the Hilbert space of M. We decom-
pose HM into mutually orthogonal subspaces HM

k

(k ¼ 1; 2; � � � ; N), where the k’s describe the measurement
outcomes:HM ¼ L

kH
M
k . We assume that outcome ‘‘k’’ is

stored in M if the support of the density operator of the
memory belongs to HM

k . Without loss of generality, we

assume that k ¼ 0 corresponds to the standard state of M.
The Hamiltonian of M corresponding to outcome k is

denoted by ĤM
k � P

i"kij"kiih"kij, where fj"kiigi is an or-
thonormal basis set of HM

k .

Suppose we perform a measurement on a thermody-
namic system S by an isothermal process at temperature
T and find outcome k with probability pk. The information
on this outcome is stored in memory M. We note that pk

depends on the state of the measured system S but is

independent of the structure of memory M. We assume
that M is in contact with a heat bath B at temperature T.

The total Hamiltonian is given by ĤMBðtÞ ¼ ĤMðtÞ þ
ĤintðtÞ þ ĤB, where ĤM � L

kĤ
M
k , and ĤintðtÞ is the in-

teraction Hamiltonian between M and B [9]. We consider
the measurement process from t ¼ 0 to t ¼ � and assume

that ĤMð0Þ ¼ ĤMð�Þ ¼ ĤM and Ĥintð0Þ ¼ Ĥintð�Þ ¼ 0.
The initial state of M is assumed to obey the canonical

distribution at temperature T subject to the constraint
k ¼ 0. System S is initially separated from M and B. The
total density operator is given by �̂SMB

i ¼ �̂S
i � �̂M

0;can �
�̂B
can, where �̂M

0;can � expð��ĤM
0 Þ=ZM

0 with ZM
0 �

tr½expð��ĤM
0 Þ� and �̂B

can � expð��ĤBÞ=ZB with ZB �
tr½expð��ĤBÞ�. We do not assume that the initial state of
S is in thermodynamic equilibrium.
Next we perform a measurement on S. First,M unitarily

interacts with system S according to the unitary operator

Ûint. By this interaction,M becomes entangled with system
S. The state of M is then measured and projected onto the
subspace corresponding to the measurement outcome k.
The latter process is described by the projection operator

P̂M
k � P

ij"kiih"kij. Immediately after the measurement,

the total density operator is given by �̂0SMB ¼P
kP̂

M
k Ûint�̂

SMB
i Ûy

intP̂
M
k . We assume that

�̂ 0SMB ¼ X
k;i

M̂ki�̂
S
i M̂

y
ki � �̂MB

ki ; (1)

where M̂ki’s are the measurement operators that give the

positive operator-valued measure (POVM) Êk �P
iM̂

y
kiM̂ki [14], and �̂MB

ki ’s are the density operators of M
and B that are mutually orthogonal. The assumption in
Eq. (1) can be justified for a classical case, as shown later.
Our results are also applicable to quantum systems that

satisfy Eq. (1). We note that pk ¼ trðÊk�̂
S
i Þ ¼

P
ipki with

pki � trðM̂y
kiM̂ki�̂

S
i Þ. Finally, S is detached from M and B,

and then,Mþ B unitarily evolves according to the unitary
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operator Ûf. The final state is given by �̂SMB
f ¼P

k;iM̂ki�̂
S
i M̂

y
ki � Ûf�̂

MB
ki Ûy

f .

Let FM
k � �kBT lnZM

k with ZM
k � tr½expð��ĤM

k Þ� be

the Helmholtz free energy of M with measurement out-
come k, and let �̂MB

k � P
iðpki=pkÞ�̂MB

ki be the post-

measurement state of M with outcome k. We define the
average change in the free energy due to the measure-
ment as�FM � P

kpkF
M
k � FM

0 and the ensemble average

of work performed on M during the measurement as

WM
meas�

P
kpk½trð�̂MB

k ĤM
k Þþ trð�̂MB

k ĤBÞ��½trð�̂M
0;canĤ

M
0 Þþ

trð�̂B
canĤ

BÞ�, where we assume that the state of S changes
adiabatically during the measurement, that is, S does not
directly exchange heat with M or B during the measure-
ment. In other words, we regard the direct energy flows
betweenM and S as work. We have also assumed that there
is no direct energy flow between S and B.

To relate the information gain from the measurement to
its thermodynamic energy cost, we introduce the Shannon
information H � �P

kpk lnpk of the measurement out-
comes and the QC-mutual information between S and M,

I � Sð�̂S
i Þ þH þP

k tr½
ffiffiffiffî
E

p
k�̂

S
i

ffiffiffiffiffiffi
Êk

q
ln

ffiffiffiffiffiffi
Êk

q
�̂S
i

ffiffiffiffiffiffi
Êk

q
� [9],

where Sð�̂Þ � �trð�̂ ln�̂Þ is the von Neumann entropy.
The QC-mutual information I characterizes an effective
information that is obtained by quantum measurement and
satisfies 0 � I � H, where I ¼ H if the measurement is
error free and classical and I ¼ 0 if no information is
obtained from the measurement. The QC-mutual informa-
tion reduces to the classical mutual information [15] in the
classical limit.

The first main result of this study is the lower bound on
the work WM

meas required for the measurement:

WM
meas � �kBTðH � IÞ þ �FM: (2)

The proof of this inequality is given later. We note that
H � I satisfies 0 � H � I � H; the lower bound on the
work required increases as the amount of information gain
I by the measurement increases. The fundamental thermo-
dynamic energy cost of measurement can be determined
from inequality (2), regardless of the state of the measured
system S. For the special case where I ¼ H and �FM ¼ 0,
the right-hand side of (2) vanishes; this is in agreement
with the fact that there is no fundamental energy cost for
measurement and communication [4,5]. The lower bound
of the work for given information contents (H and I) and
thermodynamic constraint (�FM) is established by in-
equality (2).

We now discuss the thermodynamic energy cost of the
erasure of information obtained by the measurement. We
treat Mþ B as an isolated quantum system. Suppose the
initial state ofM obeys the canonical distribution such that
the probability of measurement outcome k is pk. The initial
state ofM and B is described as �̂MB

i ¼ P
kpk�̂

M
k;can � �̂B

can,

where �̂M
k;can � expð��ĤM

k Þ=ZM
k . The total system evolves

unitarily, and the support of the final density operator,
from the definition of information erasure, belongs to the

subspace corresponding to the standard state k ¼ 0
with unit probability. Let �̂BM be the density operator of
the final state of B and M. The work required for the

erasure is defined asWM
eras � ½trð�̂MBĤM

0 Þ þ trð�̂MBĤBÞ� �P
kpk½trð�̂M

k;canĤ
M
k Þ þ trð�̂B

canĤ
BÞ�. The lower bound on

WM
eras is given by

WM
eras � kBTH � �FM; (3)

which is the second main result of this study. The proof of
this inequality is given later. For the special case in which
FM
0 ¼ FM

k for all k, and hence �FM ¼ 0, we obtain

Weras � kBTH; this is in agreement with Landauer’s prin-
ciple [4,6]. However, when �FM � 0, information erasure
with WM

eras < kBTH, in particular, with WM
eras ¼ 0 is pos-

sible. Thus, there is no fundamental energy cost of infor-
mation erasure as in the case of measurement. An
inequality similar but not equivalent to (3) has recently
been derived in Ref. [8].
Combining (2) and (3), we obtain

WM
meas þWM

eras � kBTI: (4)

This inequality shows that the lower bound on the total
thermodynamic energy cost of measurement and informa-
tion erasure depends neither on the Shannon information
content nor on the free-energy difference; rather the bound
depends only on the mutual information content between
the measured system and the memory. Inequality (4) ex-
presses the trade off between the work required for erasure
and that required for measurement. If the work required for
erasure is negative, the work required for measurement
must be positive, and vice versa. Although there is no
fundamental lower bound on the work required only for
measurement or only for erasure, there exists a fundamen-
tal lower bound on their sum. This trade-off can be con-
firmed by considering the special model discussed below.
Note that in the case of reversible measurement with
WM

meas ¼ 0, inequality (4) reduces to WM
eras � kBTI. While

we have adopted the commonly used definitions for mea-
surement and erasure [1], WM

meas and WM
eras can, of course,

change if we choose different definitions. However, the
crucial fact here is that for given definitions of WM

meas and
WM

eras, we can still change their ratio by changing the
physical structure of the memory.
Inequalities (2)–(4) constitute the second law of ‘‘infor-

mation thermodynamics,’’ in which information content
and thermodynamic variables are treated on an equal
footing. In the limit ofH ! 0 and I ! 0, these inequalities
are equivalent to the conventional second law of
thermodynamics.
We now discuss the consistency of our results with the

second law of thermodynamics. Recently, we have identi-
fied the upper bound of work that can be extracted from a
heat bath at temperature T with the assistance of feedback
control by ‘‘Maxwell’s demon’’ [9]: WS

ext � ��FS þ
kBTI, where WS

ext � �WS is the work extracted by the
demon and �FS is the free-energy difference of the con-
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trolled system. This upper bound is larger than that of the
conventional second law of thermodynamics by kBTI.
Adding this inequality to (4), we obtain

WSM
ext � WS

ext �WM
meas �WM

er � ��FS; (5)

which implies that the conventional second law of thermo-
dynamics is applicable for the entire system of the mea-
sured system and the demon.

As an illustration, we construct a model of memory in
which information can be erased without work. The model
includes a Brownian particle moving in a double-well
potential [upper row in Figs. 1(a)–1(c)] [4,5]. The particle
is in the left (right) well when the memory registers ‘‘0’’
(‘‘1’’). We assume that the height of the potential barrier
far exceeds both quantum and thermal fluctuations, so that
the barrier is impenetrable, and that the potential can be
modeled by two boxes [lower row in Figs. 1(a)–1(c)] with
the volume ratio being t: 1� t (0< t < 1). We also assume
that the double-well potential can deform into a single-well
potential during the measurement and erasure. We note that
the model illustrated in Fig. 1 is not a measured system
such as the Szilard engine [2]; it is meant to be the memory
that stores the measurement outcome using the representa-
tion of a single-molecule gas.

Let the initial probabilities of obtaining outcomes 0 and
1 both be equal to 1=2. We consider a quasistatic informa-
tion erasure at temperature T as shown in Figs. 1(d)–1(g).
First, the memory stores the information concerning the
outcome of the measurement [Fig. 1(d)]. The partition is
then moved to the center at an average work cost of
ðkBT=2Þ½ln2tþ ln2ð1� tÞ� [Fig. 1(e)]. The partition is
then removed [Fig. 1(f)]. This removal can be regarded

as the free expansion of the gas, and therefore no work is
required for the removal. The box is finally compressed at a
work cost of �kBT lnt, and the memory returns to the
standard state 0 [Fig. 1(g)]. The total work required for
information erasure is WM

eras ¼ kBT ln2� ðkBT=2Þ�
lnðt=ð1� tÞÞ. For the special case where t ¼ 1=2 (sym-
metric potential), WM

eras ¼ kBT ln2, as in the case of
Bennett’s model [5]. In contrast, for t ¼ 4=5, WM

eras ¼ 0
and no work is required for information erasure. In general,
WM

eras < kBT ln2 holds for t > 1=2. Landauer’s principle for
information erasure is valid for a symmetric double-well
potential, but not for an asymmetric one. The proof of
WM

eras � kBT ln2 using statistical mechanics in Ref. [6] is
valid only for the symmetric case. We note that an asym-
metric memory has also been discussed in Ref. [7]. We also
note that for the case of quasistatic information processing
for a given outcome (0 or 1), the ensemble average of the
work always equals the work performed on an individual
sample. In any case, we must average the work over all
measurement outcomes.
We next consider a quasistatic measurement process at

temperature T. At the initial stage, the memory is in the
standard state 0. If the measurement outcome is 0, the state
of the memory does not change. If the measurement out-
come is 1, the memory interacts with the measured system,
and the left box of the memory expands to the right; this
requires �kBT lnð1=tÞ of work [Fig. 1(i)]. The box then
compresses from the left at a work cost of kBT lnð1=ð1�
tÞÞ until the volume of the right box returns to the initial
volume [Fig. 1(j)]. The total work required in this case is
given by kBT lnðt=ð1� tÞÞ. Averaging the work over the
measurement outcomes, we find that WM

meas ¼ ðkBT=2Þ�
lnðt=ð1� tÞÞ is required for the measurement. Adding this
to WM

eras ¼ kBT ln2� ðkBT=2Þ lnðt=ð1� tÞÞ, we find that
the total work required for measurement and erasure is
WM

meas þWM
eras ¼ kBT ln2; the equality in (4) can be at-

tained by using this model.
More generally, let us consider the entropy balance of

information erasure. If the density operators of the mem-
ory, which we denote by �̂k’s, are mutually orthogonal,
then the total entropy of �̂ � P

kpk�̂k satisfies Sð�̂Þ ¼
HþP

kpkSð�̂kÞ, where H is the Shannon information
and the Sð�̂kÞ’s describe the physical entropy of the mem-
ory. If the Sð�̂kÞ’s are equal, then

P
kpkSð�̂kÞ is indepen-

dent of fpkg, and therefore, a decrease in H must be
compensated for by an increase in the entropy of an
external heat bath due to the unitarity of the entire system.
If the Sð�̂kÞ’s are not equal, a decrease in H can be
compensated for by a change in the physical entropy of
the memory,

P
kpkSð�̂kÞ. We illustrate this fact by using

our model. Let V be the volume of the box. The physical
entropy of the initial and final states are ½lnðtVÞ þ lnðð1�
tÞVÞ�=2 and lnðtVÞ, respectively. The Shannon information
that the memory stores in the initial state is ln2, which
reduces to 0 during the erasure process. For the case where
t ¼ 1=2, the difference between the total entropy in the
initial and final states is � ln2, which must eventually be

FIG. 1 (color online). (a)–(c) Memory model that includes a
Brownian particle moving in a double-well potential (upper row)
as well as two boxes (lower row), where (a), (b), and (c) illustrate
symmetric, asymmetric, and single potentials, respectively; (d)–
(g) information erasure from an asymmetric memory; (h)–(j) the
state evolution of the memory for the case of outcome 1.
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dissipated into the heat bath. On the other hand, for the case
where t ¼ 4=5, the total entropy does not change during
the erasure process. In this case, a decrease in the Shannon
information can be compensated for by an increase in the
physical entropy of the memory itself.

We now prove inequality (2). We first prove Eq. (1) for a
classical case, that is, the case where all density operators
are diagonal at all times with respect to an eigenbasis set
corresponding to the classical degrees of freedom. Let
fjkiigk;i be the eigenbasis set of Mþ B. For a classical

case, we can write �̂0SMB ¼ P
k;i�̂

S
ki � jkiihkij, where �̂S

ki’s

are not normalized. Our task is to show that there exists

some M̂k such that �̂S
ki ¼ M̂ki�̂

S
i M̂

y
ki. Let �̂

S
i �

P
sqsjsihsj

and �̂M
0;can � �̂B

can �
P

k;irkijkiihkij. Then, hsj�S
kijs00i ¼

�s;s00
P

s0;l;jrkihskijUintjs0ljiqs0 hs0ljjUy
intjs00kii, where �s;s00

is the Kronecker delta. Since without loss of generality,

the unitary matrix of Ûint in the classical eigenbasis can
be represented by a permutation matrix for a classical

case, for a given (s, k, i), hs0ljjUy
intjskii is unity for one

and only one (s0, l, j) and is zero otherwise. We then have

hsj�S
kijsi ¼

P
s0ljl0j0rkihskijUintjs0ljiqs0 hs0l0j0jUy

intjskii. By

defining M̂ki � P
l;j

ffiffiffiffiffiffi
rki

p hkijUintjlji, we obtain Eq. (1).

Since the time evolution from �̂SMB
i to �̂SMB

f is

composed of the unitary evolution and the projection,
we have Sð�̂SMB

i Þ � Sð�̂SMB
f Þ. On the other hand,

we can show that Sð�̂SMB
f Þ ¼ H þP

kpkSðPiM̂ki�̂
S
i M̂

y
ki �

�̂MB
i =pkÞ and that SðPiM̂ki�̂

S
i M̂

y
ki � �̂MB

ki =pkÞ ¼P
iðpki=pkÞSðM̂ki�̂

S
i M̂

y
ki=pkiÞ þ Sð�̂MB

k Þ. Noting that

SðM̂ki�̂
S
i M̂

y
kiÞ ¼ Sð

ffiffiffiffiffiffi
�̂S
i

q
M̂y

kiM̂ki

ffiffiffiffiffiffi
�̂S
i

q
Þ holds and that the

von Neumann entropy is concave, we can show that
P

iðpki=pkÞSðM̂ki�̂
S
i M̂

y
ki=pkiÞ � Sð

ffiffiffiffiffiffi
Êk

q
�̂S
i

ffiffiffiffiffiffi
Êk

q
=pkÞ. From

the definition of the QC-mutual information con-
tent I, we obtain

P
kpkSð�̂MB

k Þ � Sð�̂M
0;canÞ � Sð�̂B

canÞ �
I �H. It follows from Klein’s inequality that
�P

kpk tr½�̂MB
k ln�̂M

k;can � �̂B
can� � Sð�̂M

0;canÞ � Sð�̂B
canÞ �

I � H. From the definition of the work, we finally ob-
tain ��FM þWM

meas � kBTðI �HÞ, which proves in-
equality (2).

We next prove inequality (3). Noting that the evolution
of �̂BM is unitary, we have Sð�̂MBÞ �P

kpkSð�̂M
k;canÞ �

Sð�̂B
canÞ ¼ H. From Klein’s inequality, we have

�trð�̂MB ln�̂M
0;can � �̂B

canÞ �
P

kpkSð�̂M
k;canÞ � Sð�̂B

canÞ � H,

which leads to inequality (3).
Eighty years ago Szilard discovered the close relation-

ship between information and thermodynamics and sug-
gested that ‘‘it will be possible to find a more general
entropy law, which applies universally to all measure-
ments’’ [2]. Since Szilard’s discovery, this crucial insight
has been expanded and deepened. In 1951, on the basis of a
specific model, Brillouin argued that the work is needed for
the measurement, which compensates for the excess work
extracted by Maxwell’s demon [3]. Later, Bennett pro-
posed a model of the demon that can performmeasurement

without any work and on the basis of a specific model and
Landauer’s principle argued that the key to resolving the
paradox of the demon lies in erasing the information stored
in the demon’s memory [5]. Since then, it has been widely
believed that the work required for information erasure
compensates for the excess work [1]. In this Letter, we
have derived inequalities (4) and (5) that unify the ap-
proach adopted by Szilard, Brillouin, and Bennett, and
we have shown that what reconciles Maxwell’s demon
with the second law of thermodynamics is the total work
of the measurement and erasure, which compensates for
the excess work of kBTI that can be extracted by the
demon.
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