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Abstract: We consider a route planning problem in which two unmanned vehicles are required to
complete a set of tasks present at distinct locations, referred to as targets, with minimum energy
consumption. The mission environment is hazardous, and to ensure a safe operation, the UVs
are required to communicate with each other at every target they visit. The problem objective is
to determine the allocation of the tasks to the UVs and plan tours for the UVs to visit the targets
such that the weighted sum of the distances traveled by the UVs and the distances traveled by
the communicating signals between them is minimized. We formulate this problem as an Integer
program and show that naively solving the problem using commercially available off-the-shelf solvers
is insufficient in determining scalable solutions efficiently. To address this computational challenge,
we develop an approximation and a heuristic algorithm, and employ them to compute high-quality
solutions to a special case of the problem where equal weights are assigned to the distances traveled
by the vehicles and the communicating signals. For this special case, we show that the approximation
algorithm has a fixed approximation ratio of 3.75. We also develop lower bounds to the optimal
cost of the problem to evaluate the performance of these algorithms on large-scale instances. We
demonstrate the performance of these algorithms on 500 randomly generated instances with the
number of targets ranging from 6 to 100, and show that the algorithms provide high-quality solutions
to the problem swiftly; the average computation time of the algorithmic solutions is within a fraction
of a second for instances with at most 100 targets. Finally, we show that the approximation ratio has a
variable ratio for the weighted case of the problem. Specifically, if ρ denotes the ratio of the weights
assigned to the distances representing the communication and travel costs, the algorithm has an a
posteriori ratio of 3 + 3ρ

4 when ρ ≥ 1, and 3
ρ + 3

4 when ρ ≤ 1.

Keywords: multi-agent path planning; minimum energy; cooperative coverage

1. Introduction

We consider a class of missions in which a set of mandatory tasks must be completed
by a pair of Unmanned Vehicles (UVs) with the minimum energy consumption. The
nature of the tasks is mission-specific and can range from capturing images and video
streams to extinguishing fires and neutralizing mines [1–4]. Each task is situated at a
geographically distinct (and stationary) location, referred to as a target, in a potentially
hazardous environment. UVs are chosen for this mission due to their high mobility,
ability to perform diverse sets of tasks and navigate in hazardous environments, and low
costs [5–7]. Due to the nature of the environment, at every target, the UV performing
the task, referred to as the leader, is required to communicate with another UV, referred
to as the wingmate, which is expected to be in close proximity. This helps the UVs to
protect each other from threats associated with the environment or the task, establish
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stealth communication with a low probability of detection or jamming [8–10], exchange
large volumes of data at a low cost, and complete tasks in the event of a failure of the
original task performer. Such missions have applications in the fields of surveillance and
reconnaissance, wildfire fighting, and exploration of unknown environments.

In this paper, we consider the problem of determining the task allocations to the UVs
and the sequences for the UVs to visit the targets such that the energy consumed by the
vehicles is minimized. We assume that the sequence of task completion does not influence
the energy consumed for performing tasks and onboard computations. Then, the problem
objective reduces to minimizing the energy consumed for travel and communication. The
actual amount of energy consumed for travel depends on several external factors such
as wind conditions and ambient temperature, in addition to the distance traveled by the
UVs. However, owing to the complexity involved in developing such high-fidelity models
and the computational challenges involved in employing them in planning problems, we
adopt a widely used simplification from the literature of route planning. Specifically, we
use the distance traveled by the UVs as a proxy for the energy consumed during travel.
Similarly, we use the distance between the UVs while communicating as a proxy for the
energy consumed for communication tasks.

With these simplifications, the planning objective reduces to that of minimizing a
weighted sum of the travel and communication distances, where the weights account for
mission-specific priorities and the differences in the characteristics of travel and commu-
nication costs. Nevertheless, the planning problem with the weighted objective remains
computationally challenging, as will be discussed in Section 4.2. Furthermore, the literature
on algorithms to solve this problem is sparse, as will be discussed in Section 2. Therefore,
as a first step toward filling this void, in this paper, we focus on developing algorithms to
solve the problem with equal weights assigned to the travel and communication distances.
Later, we show that these algorithms can be extended to the weighted case and discuss one
such extension.

In the context of mission planning, the problem considered here is important because
there is a trade-off between minimizing travel costs and communication costs. Focusing
solely on minimizing travel costs may result in routes with large distances between commu-
nicating vehicles. This poses challenges as it can lead to increased energy consumption for
communication tasks and the potential depletion of UVs’ fuel or charge before completing
all tasks and returning safely. Particularly in missions involving the exchange of large
volumes of data, longer distances between vehicles hinder efficiency. Additionally, in
surveillance applications where stealth is crucial, greater distances between communicating
vehicles increase the risk of detection or interference. On the other hand, prioritizing
communication cost minimization can lead to routes requiring UVs to travel longer dis-
tances, which increases the risk of energy depletion. This can be further exacerbated by
unfavorable wind conditions. Therefore, there is a need for jointly minimizing travel and
communication costs.

1.1. Operational Setup

To formalize the problem statement in accordance with the above discussion on the
requirements of tasks and UV communications, we consider the following operational
setting for the vehicles. We assume that there are an even number of tasks and that all
the tasks are mandatory. Each UV is assigned an equal number of tasks. While a task
can be assigned to either UV, each task must be assigned to exactly one vehicle. Along
with a set of tasks, each UV is provided a sequence in which the tasks must be performed.
These sequences translate to tours over all the targets corresponding to the assigned tasks.
Given a task allocation and tours for visiting the targets, each UV starts at the first target in
the tour. At every target, the UVs are required to communicate with their partner before
traveling to the next target in their assigned tour. For example, the first UV can leave the
i-th target in its tour only after the second UV has reached the i-th target of its own tour
and both the vehicles have communicated. To satisfy this communication requirement
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in the real world, the UVs can either hover at their current targets and gather additional
information until their partner reaches its respective target or change speeds such that they
reach their respective targets at the same time. The former coordination scheme might be
easier to implement in practice. This coordination continues until the end of the mission,
which is marked by both UVs returning to their starting targets.

1.2. Problem Statement

Given a pair of UVs and an even number of tasks for them to complete, the aim of the
problem is to (1) determine an allocation of these tasks to the UVs, and (2) plan tours for
the UVs to visit targets at which the tasks are located, such that the operational constraints
mentioned in Section 1.1 are satisfied, and the weighted sum of the combined distances
traveled by the UVs and the distances between the UVs while communicating at the targets
is minimized.

1.3. Contributions

To facilitate the computation of high-quality solutions to this problem, we make the
following contributions in this paper with a focus on the case with equal weights assigned
to the travel and communication distances.

• In Section 3, we formulate the problem of determining task allocations and routes for
the UVs that minimize the weighted sum of the travel and communication distances
as an Integer Program.

• In Section 4.2, we demonstrate the computational challenges involved in naively
solving the formulation using commercial off-the-shelf solvers.

• In Section 5, we develop an approximation algorithm to solve the problem and show
that the algorithm has an approximation ratio of 3.75 for the case with equal weights
assigned to the travel and communication distances.

• In Section 5.3, we develop a heuristic algorithm with distinct advantages to complement
the approximation algorithm in computing solutions for the equally-weighted case.

• In Section 5.2, we develop a lower bound to the optimal cost of the equally-weighted
problem to help in evaluating the quality of available feasible solutions.

• In Section 6, we present the results of extensive numerical experiments performed on
the equally weighted case of the problem using 500 instances. Using these results, we
evaluate the performance of the proposed algorithms and highlight their advantages
and use cases.

• In Appendix A, we show that the approximation algorithm proposed in Section 5 has
a variable approximation ratio for the general weighted case. Specifically, by defining
ρ as the ratio of the weights assigned to the communication and travel distances, the
algorithm has a ratio of 3 + 3ρ

4 when ρ ≥ 1, and 3
ρ + 3

4 when ρ ≤ 1.

2. Literature Review

In multi-vehicle missions, communication between the vehicles plays a crucial role
in enhancing coordination, safety, and situational awareness. However, surprisingly, a
majority of the literature on multi-vehicle route planning has neglected the communication
requirements of the vehicles and focused solely on minimizing their travel costs [11–13].
Communication-aware route planning has been considered in articles [14–18], where the
vehicles are allowed varying levels of flexibility in communication. In articles [14,15], the
authors plan routes for multiple vehicles that minimize the travel costs of the vehicles while
ensuring that each vehicle is connected with every other vehicle performing the mission
at all times, either directly by being within the communication range or in a multi-hop
manner by relaying messages through other vehicles. In [16], the authors consider a similar
connectivity requirement but consider the problem of minimizing the number of vehicles
required for task completion. In [17], the authors allow a flexible operation, where the
UVs are not required to stay connected with each other at all times. Instead, the UVs are
allowed to spread out to perform certain tasks and intermittently reconnect with each other
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to exchange information. In this article, the authors consider the problem of minimizing
the travel cost of the paths taken by the UVs to reconnect with each other. In [18], the
UVs are allowed to break connectivity after initially starting the mission in a connected
configuration. However, they are required to regain the initial connected configuration at
periodical time intervals. With these communication requirements, the authors consider the
problem of path planning for multiple vehicles such that the information gained by visiting
a set of targets is maximized. In [19], the authors consider a communication framework
in which data are exchanged between UVs traveling on distinct tours to ensure that the
collected data are eventually transferred to a base station. To facilitate such an exchange,
the UVs wait at pre-determined locations in their tours until their partner arrives. In this
article, the authors consider the problem of minimizing the travel cost of the largest tour.

The problem considered in the current paper has similarities to [18,19] in the commu-
nication framework considered. Specifically, similar to [18], the UVs in the current article
are not required to be connected at all times. Instead, the UVs are required to communi-
cate with each other only when they reach a target. Likewise, similar to [19], the UVs in
the current article wait for their partner to arrive at the scheduled locations to exchange
information. However, unlike [19], the UVs in the current paper need to coordinate their
visits and exchange information at every target. Furthermore, the problem considered
in the current article differs fundamentally from all the aforementioned articles, includ-
ing [18,19], due to its objective. Here, it is not sufficient to ensure that the vehicles are either
connected or within a communication range. Instead, the objective here is to minimize
the energy consumed by the vehicles for communication along with that consumed for
travel. This objective has the advantage of providing routes that lower the mission costs
and improve communication quality. Additionally, articles [20,21] show that traveling is
not necessarily the major consumer of a UV’s energy and including the energy consumed
for communication tasks in the planning phase can result in higher energy savings and
increased flight time.

Minimal energy route planning has been considered in the context of planning paths
for a single UV in [21–23], where the vehicle is required to communicate with one or more
remote base stations to transmit the collected data. Specifically, in [22], the authors consider
a point-to-point path planning problem for a single UV that utilizes a cellular network to
communicate video streams to a base station. In this problem, given a cellular coverage
map and a budget on energy consumption, the objective is to determine paths for the
UV between a specified source and a destination such that the communication quality is
maximized. In [21], the authors consider a similar setup in which a single UV is required to
communicate with one or more base stations while traveling from a source to a destination
through a set of other specified waypoints. Here, the objective is to determine paths that
minimize the total energy consumption. In this article, the authors show that paths that
include the energy consumed for communication result in overall energy savings and
extend the flight time of the UV when compared to paths that neglect communication costs.
In [23], the authors consider a path planning problem in which a single UV is required
to visit a set of targets and then find an optimal location in the environment to wirelessly
communicate the data collected from the targets to a base station. The objective of the
problem is to determine paths for the UVs to the targets and the data transfer location such
that the sum of the travel and communication costs is minimized.

The current article differs from those mentioned in the previous paragraph in the
following ways: (1) this article considers multiple UVs, (2) the routes considered in this
paper are tours as opposed to paths, which makes the planning problem challenging,
(3) there is no base station close to the mission environment, and the UVs are required
to exchange information with each other as opposed to transmitting the collected data
to a base station. While [24] considers the problem of planning minimal energy tours
for multiple UVs, the UVs therein do not communicate with each other. Instead, similar
to [21–23], the UVs in [24] are required to transfer the collected data to a remote base station
either immediately or in an aggregated manner by selecting a location along the UVs’
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trajectory to transfer the data collected from all the targets. To the best of our knowledge,
there are no algorithms in the literature that address the problem of minimizing travel and
communication costs with the communication framework considered in this paper.

3. Mathematical Formulation

We formulate the route planning problem as a network optimization problem, which
takes the form of an Integer Program (IP), on a complete graph, G = (V, E, c). The
vertex set, V, represents the targets to be visited by the UVs, the edge set, E, represents
the travel/communication paths between every target pair, which is assumed to be a
straight line connecting the targets, and the edge weights, c(.), represent the Euclidean
distances between the targets (lengths of travel/communication paths). We assume that
the communication path between every target pair is the same as the travel path between
the pair and therefore, they are represented by the same edge in the graph. Furthermore,
the edge weights obey the triangle inequality.

In this representation, the desired solution is a connected graph with every vertex
having a degree of 3; two incident edges represent the travel paths of the UVs through
the target and one incident edge represents the communication link formed by a UV
while present at the target. The set of edges in the solution describes the sequence in
which the UVs must visit the targets and the communication links formed between the
vehicles while they are present at the targets. The mathematical description of the IP that
is used to compute such a solution with the minimum travel and communication costs is
presented below.

3.1. Data

2m Number of targets in the environment
c(i, j) Euclidean distance between targets i and j, where (i, j) ∈ E
ρt Weight assigned to the travel distances in the objective function
ρc Weight assigned to the communication distances in the objective function

3.2. Variables

We use six sets of binary variables to capture the vehicle’s target assignment, and
travel and communication paths. First, the set of binary variables vi, ∀i ∈ V, is used to
indicate if a target is assigned to the first UV, i.e., UV-1, or the second UV, i.e., UV-2. Note
that the numbering of the UVs can be arbitrarily chosen.

vi =

{
1, if target i is assigned to UV-1;
0, otherwise.

Then, we use the set of variables xi,j to indicate whether UV-1 is required to traverse a
path (i, j) between targets i and j, where i, j ∈ V.

xi,j =

{
1, if edge (i, j) ∈ E is traversed by UV-1;
0, otherwise.

Similarly, we use the set of variables yi,j to indicate whether UV-2 is required to tra-
verse a path (i, j) between targets i and j, where i, j ∈ V.

yi,j =

{
1, if edge (i, j) ∈ E is traversed by UV-2;
0, otherwise.

Next, the set of variables zi,j is used to indicate whether an edge (i, j), where (i, j) ∈ E,
is utilized by the UVs for communication at any point in time in the mission.
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zi,j =

{
1, if edge (i, j) is used for communication;
0, otherwise.

Finally, we utilize the sets of variables ξi,j,l and ηi,k,l , ∀i, j ∈ V, and l, k ∈ V \ {i, j},
to define pairs of travel and communication edges, which will be helpful in enforcing
communication links such that they obey the sequence in which the UVs visit the targets.
Specifically, ξi,j,l models the presence of a travel edge for UV-1 between targets i and j and
a communication link between targets j and l. That is,

ξi,j,l =

{
1, if xi,j = 1 and zj,l = 1;
0, otherwise.

Similarly, ηi,k,l models the presence of a communication edge between targets i and k,
and a travel edge for UV-2 between targets k and l. That is,

ηi,k,l =

{
1, if zi,k = 1 and yk,l = 1;
0, otherwise.

More on utilizing these variables to model the proper enforcement of communication
links will be discussed in the following subsection.

3.3. Constraints

Using these binary variables, the problem requirements can be represented as mathe-
matical constraints as follows.

3.3.1. Target Assignment

Each UV must be assigned exactly m targets. This is represented by Equation (1).

∑
i∈V

vi = m (1)

3.3.2. Feasible Tours/Sequences

A UV can traverse between two targets (along an edge with the targets as the end-
points) only if both the targets are assigned to the UV. Constraints (2) and (3) ensure that an
edge, (i, j) ∈ E, is assigned to UV-1’s tour only if targets i and j are both assigned to UV-1,
and constraints (4) and (5) ensure that an edge (i, j) is assigned to UV-2’s tour only if both i
and j are assigned to UV-2.

xi,j ≤ vi, ∀(i, j) ∈ E (2)

xi,j ≤ vj, ∀(i, j) ∈ E (3)

yi,j ≤ 1− vi, ∀(i, j) ∈ E (4)

yi,j ≤ 1− vj, ∀(i, j) ∈ E. (5)

The purpose of constraints (6) and (7) is to ensure that a UV visits a target exactly once
if the target is assigned to it and never if the target is not assigned to it.
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∑
i∈V\{j}

xi,j = vj, ∀j ∈ V (6)

∑
i∈V\{j}

yi,j = 1− vj, ∀j ∈ V. (7)

Constraints (8) and (9) ensure that a UV arriving at a target must also depart from
the target.

∑
i∈V\{j}

xi,j = ∑
l∈V\{j}

xj,l , ∀j ∈ V (8)

∑
i∈V\{j}

yi,j = ∑
l∈V\{j}

yj,l , ∀j ∈ V. (9)

In addition to the aforementioned degree/flow requirements, a UV’s path is required
to be connected and must not contain sub-tours. This can be enforced by constraints (10)
and (11), which are referred to as sub-tour elimination constraints [25,26].

∑
i∈S,j/∈S

xi,j ≥ vs, ∀s ∈ S, S ⊂ V, |S| ≤ m− 1, (10)

∑
i∈S,j/∈S

yi,j ≥ 1− vs, ∀s ∈ S, S ⊂ V, |S| ≤ m− 1. (11)

Even though these constraints are exponential in number, we prefer this representation
of the sub-tour elimination constraints due to the tighter relaxation it offers compared to its
alternatives [27]. Nonetheless, we discuss an efficient implementation of this exponential
number of constraints in Section 4.1.

3.3.3. Communication Links

Once the UVs’ travel paths are determined, the communication links can be described
using the set of constraints (12)–(22). Firstly, the UVs communicate only once at every
target. This is expressed by the set of inequalities (12).

∑
j∈V\{i}

zi,j ≤ 1, ∀i ∈ V. (12)

Because every UV visits exactly m distinct targets, there are a total of m communication
links; this is captured by Equation (13).

∑
(i,j)∈E

zi,j = m. (13)

Then, as communication occurs between two distinct vehicles, there are no commu-
nication links between targets assigned to the same UV. This is captured by the sets of
inequalities described by (14) and (15).

zi,j ≤ vi + vj, ∀(i, j) ∈ E (14)

zi,j ≤ 2− (vi + vj), ∀(i, j) ∈ E. (15)

Next, the communication links must be constrained such that they are consistent
with the sequence in which the targets are visited by the UVs. We explain the modeling
of such constraints using Figure 1. This figure illustrates two tours for the UVs and the
communication links between them; the outer tour (in blue) is assigned to UV-1, the
inner tour (shown in red) is assigned to UV-2, and the green dotted lines depict the
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communication links. For ease of exposition, we will refer to a pair of targets that share a
travel edge as neighbors and a pair of targets that share a communication edge as partners.
Then, it can be observed from the figure that the communication links obey the travel
sequence of the UVs if and only if the neighbor’s partner of every target is also its partner’s
neighbor. To elaborate, consider target i in Figure 1. Observe that target j is a neighbor of i
and target l is a partner of j. That is, l is the partner of a neighbor of i. Note that l can also
be considered as the neighbor of target k, which is in turn the partner of i. That is, l is also a
neighbor of the partner of i. The same argument can be applied to every target in the vertex
set. In other words, the communication links are consistent with the travel sequence if and
only if the following statement holds true: for two arbitrarily chosen distinct targets, say i
and l( 6= i) in the vertex set, the latter is the neighbor’s partner of the former if and only if
the latter is also the partner’s neighbor of the former.

i

j

l

k

Travel edge of UV-1

Travel edge of UV-2

Communication link

ξi,j,l = 1

ηi,k,l = 1

yk,l = 1

xi,j = 1

zi,k = 1

zj,l = 1

neighbors
partners

Figure 1. Figure explaining the enforcement of communication links that obey the travel sequence.
Target l is the neighbor’s partner of target i if and only if l is also the partner’s neighbor of i. That is,
for every pair of distinct targets, say, i, l( 6= i) ∈ V, there exists a target j ∈ V \ {i, l} such that ξi,j,l = 1
if and only if there exists a target k ∈ V \ {i, j, l} such that ηi,k,l = 1.

To model the neighbor’s partner and partner’s neighbor of targets, we utilize the
variable sets ξ and η, respectively. Specifically, ξi,j,l takes the value 1 if i is assigned to UV-1,
j is a neighbor of i (i.e., xi,j = 1), and l is the partner of j (i.e., zj,l = 1); it takes the value 0
otherwise. The same is modeled using constraints (16).

ξi,j,l ≤ xi,j, ∀i, j( 6= i), l( 6= j) ∈ V (16)

ξi,j,l ≤ zj,l , ∀i, j( 6= i), l( 6= j) ∈ V (17)

ξi,j,l ≥ xi,j + zj,l − 1, ∀i, j( 6= i), l( 6= j) ∈ V. (18)

Similarly, ηi,k,l takes the value 1 if i is assigned to UV-1, k is the partner of i (i.e.,
zk,i = 1), and l is a neighbor of k (i.e., yk,l = 1); it takes the value 0 otherwise. This is
modeled using constraints (19).

ηi,k,l ≤ zi,k, ∀i, k( 6= i), l( 6= k) ∈ V (19)

ηi,k,l ≤ yk,l , ∀i, k( 6= i), l( 6= k) ∈ V (20)

ηi,k,l ≥ zi,k + yk,l − 1, ∀i, k( 6= i), l( 6= k) ∈ V. (21)

Then, the condition of a target (say l) being the neighbor’s partner of the other (say i)
if and only if it is also the partner’s neighbor (of i) can be represented by Equation (22).

∑
j∈V\{i,l}

ξi,j,l = ∑
k∈V\{i,l}

ηi,k,l , ∀i, l( 6= i) ∈ V. (22)
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3.4. Objective

From the tours and communication links that satisfy the aforementioned constraints,
the objective of the problem is to find the ones that minimize the total energy consumed by
the UV for travel and communication. This translates to minimizing the weighted sum of
the lengths of all the selected edges and can be mathematically represented by (23).

min ∑
(i,j)∈E

ci,j(ρt(xi,j + yi,j) + ρc(ρzi,j) (23)

The objective function (23), together with constraints (1)–(22), defines the integer
program of interest.

When the weights assigned to the travel and communication distances are equal,
we have that ρt = ρc. Then, the problem can be equivalently solved by minimizing the
unweighted objective given by (24).

min ∑
(i,j)∈E

ci,j(xi,j + yi,j + zi,j) (24)

4. Computing Optimal Solutions
4.1. Implementation

We implemented this integer program in Julia, using JuMP, a package for mathematical
optimization. Then, given an instance of the problem with target locations specified, we
first evaluate the function c(i, j), ∀(i, j) ∈ E, by computing the Euclidean distances between
the targets. Then, we solve the integer program for the instance using the branch and
bound method in Gurobi, a commercial off-the-shelf optimization solver that is known to
be one of the best in handling integer programs.

It is to be noted that the number of constraints specified by the inequalities (10) and (11)
is an exponential function of m, and directly adding such a large set of constraints to the
problem makes solving it difficult. Therefore, we adopt a lazy callback approach [28], where
we first solve the problem without the sub-tour elimination constraints, and then iteratively
add only the violated sub-tour elimination constraints and re-solve the problem until a
solution that satisfies all the constraints is obtained; this solution is optimal to the problem.

4.2. Computation Time

We used this procedure to solve the equally weighted case of the problem for
300 randomly generated instances, with the number of targets in these instances rang-
ing from 6 to 16; there are 50 instances each with 2m = 6, 8, 10, 12, 14, and 16. The
simulations suggest that the average computation time required to solve the problem
increases rapidly with the number of targets in the instance; the average computation time
(taken over 50 instances) against the number of targets in the instance is shown in Figure 2.
The solver was unsuccessful in providing optimal solutions for instances with 2m ≥ 16
within a 3 h cut-off time.

This suggests that generic methods to solve the integer program are insufficient to
compute optimal solutions for large-scale instances of this problem, even when the weights
assigned to the travel and communication distances are equal. Therefore, there is a need
for developing algorithms that are tailor-made to solve this problem. For this reason,
in this work, we first focus on the equally weighted case and develop approximate and
heuristic algorithms to compute good-quality solutions to the problem swiftly. Then, we
present a discussion on the applicability of these algorithms to the general weighted case in
Appendix A. Unless otherwise mentioned, the rest of the discussion presented in the paper
is focused on the equally weighted case.
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Figure 2. Figure depicts the rapid increase in the average computation time required to solve the
problem with the number of targets in the instance; the average is taken over 50 instances each, for a
given number of targets.

5. Approximation Algorithm

An approximation algorithm provides solutions with a worst-case guarantee on their
quality. The quality of the solution is determined by the approximation ratio, which is
the ratio of the worst-case cost of the solution provided by the algorithm to the cost of
the optimal solution to the problem. Furthermore, the computation time required for
implementing an approximation algorithm must be a polynomial function of the input
size, i.e., m. Here, we develop such an algorithm for the equally weighted case with a
fixed approximation ratio of 3.75. It will be shown in Appendix A that this algorithm has a
variable approximation ratio for the general weighted case.

5.1. Algorithm

We illustrate the steps of the algorithm on a 10-target instance shown in Figure 3. The
first step of the algorithm involves computing a single UV tour over all the targets in the
environment, i.e., a tour that allows a single UV to start at a target, visit all the targets
once, and return to the starting point. Such a tour of the minimum travel cost is an optimal
solution to the classic Traveling Salesman Problem (TSP). Here, we utilize the well-known
Christofides algorithm [29], an approximation algorithm to the TSP with an approximation
ratio of 1.5, to compute the desired single UV tour. This step has a time complexity of
O(m3) [30]. Let this tour be denoted by T; Figure 3a illustrates a single UV tour spanning
all the 10 targets. We tailor this tour to construct the desired feasible tours for both the UVs
and the communication links between them.

The next step of the algorithm provides feasible tours for both the UVs in the mission.
To obtain the tour for the first UV, pick any vertex, say a1, from T. Then, starting at a1,
construct a graph by joining only the alternate vertices of T, as shown by the blue edges
in Figure 3b; denote the constructed graph by T1. In other words, T1 is a tour obtained
by skipping visits to alternate vertices from T. T1 is the desired tour for the first UV in
the mission, covering half of the targets in the environment. Now, consider the vertex b1,
adjacent to a1, in T. Then, similar to the construction of T1, construct a graph starting at b1
and skipping alternate vertices of T, as shown in Figure 3c; denote the obtained graph by
T2. T2 represents the desired tour for the second UV in the mission, covering the rest of the
targets. This step of the algorithm has a time complexity of O(m).
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The final step of the algorithm involves identifying the communication links between
the vehicles when they visit their respective targets. Thus far, we have feasible tours for
both UVs, but the starting points of the UVs in their tours are not yet determined. This
leaves us with a number of options from which the communication links can be chosen. In
this algorithm, we restrict the communication links to the set of edges of T. In that case,
the two sets of alternating edges of T are candidate communication links—either the set
containing the edge a1 − b1, shown in green in Figure 3d, or the set that does not contain
this edge, shown in orange in Figure 3d. From these two sets, we choose the set that has the
minimum sum of the costs of all its edges. Let this set of edges be C. This step has a time
complexity of O(m). Then, T1, T2, and C together constitute the solution of the algorithm
and it is a feasible solution to the problem; the solution of the algorithm for the illustrative
instance is shown in Figure 3e. Overall, the algorithm has a time complexity of O(m3).

a1

T

b1

a1

T1

T

b1

a1

T

b1

T2

(a) (b) (c)
a1

T

b1

a1

b1

T1T2

C

(d) (e)

Figure 3. Figure illustrates the steps of the approximation algorithm using a 10-target instance.
(a) Single UV tour, T, is shown in black. (b) The first UV’s tour, T1, is shown in blue. (c) The second
UV’s tour, T2, is shown in red. (d) Potential sets of communication links are shown in orange and
green. (e) The final solution combines T1, T2, and C (communication links in green).

It is to be noted that all the steps of the algorithm can be performed in a polynomial
time. Next, to obtain worst-case guarantees, we need to analyze the cost of the solution
obtained from this algorithm.

Cost of Solutions

The cost of the solution of this algorithm is the sum of the costs of the edges of T1,
T2, and C, i.e., Cost(Solution) = Cost(T1) + Cost(T2) + Cost(C). Let us analyze the edge
costs of these graphs individually. Firstly, recall that the sum of the cost of edges of T is at
most 3

2 TSP∗, where TSP∗ is the cost of an optimal TSP tour over the targets. This follows
from the approximation ratio of the Christofide’s tour T [29]. Then, recall that T1 and T2
are obtained by skipping or shortcutting visits from T. Then, due to the triangle inequality
of edge costs, it follows that the sum of the costs of edges of T1 is at most that of T. That
is, Cost(T1) ≤ Cost(T). Since the construction of T2 is similar to that of T, we have that
Cost(T2) ≤ Cost(T).

Now, recall that C is the set of alternating edges of T that has the minimum cost. Let
the costs of alternating edges of T aggregate to c1 and c2. Then, c1 + c2 = Cost(T). WLOG,
suppose that c1 ≤ c2. Then, we have that Cost(C) = c1. Combining these, it follows that

Cost(T) = c1 + c2 ≥ c1 + c1 = 2 ∗ Cost(C).
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Therefore, Cost(C) ≤ 1
2 CostT. Consequently, the cost of the solution provided by the

algorithm can be upper-bounded as follows:

Cost(Solution) = Cost(T1) + Cost(T2) + Cost(C) ≤ 5
2

Cost(T) ≤ 5
2
∗ 3

2
TSP∗ =

15
4

TSP∗. (25)

The quality of a feasible solution to the problem is usually evaluated by the gap
between the solution cost and the optimal cost. A lower gap indicates that the solution is
near-optimal and a higher gap indicates that the solution is sub-optimal. However, in cases
where the optimal cost is unavailable, a lower bound to the optimal cost that is relatively
easier to compute is useful in estimating the solution quality. A lower gap between the
solution cost and the lower bound indicates that the solution is near-optimal (optimal if
the gap is zero). Nevertheless, a higher gap does not necessarily mean that the solution
is far from optimality. It can indicate that the lower bound is not binding and can be
improved. Here, we develop a lower bound to the optimal cost that helps in establishing
the worst-case cost of the algorithmic solution, also known as the approximation ratio. The
lower bound can also be used to evaluate the quality of any other feasible solutions to
the problem.

5.2. Lower Bound to the Optimal Cost

Let O∗ = T∗1 ∪ T∗2 ∪ C∗ be an optimal solution, where T∗1 and T∗2 are the tours ob-
tained by traversing the targets in the orders specified by the following tuples, respectively:
(a1, a2, . . . , am, a1), (b1, b2, . . . , bm, b1), and C∗ = {(a1, b1), . . . , (am, bm)} denotes the set of
communication links, as shown in Figure 4a. Now, from O∗, consider only the edges obtained
by traversing across all the vertices in the specified order: (a1, a2, . . . , am, bm, bm−1, . . . , b1, a1).
These edges form a single UV tour over all the targets, as shown in Figure 4b. Therefore,
the cost of these edges is at least TSP∗. Next, observe that the rest of the edges in O∗,
i.e., {(a2, b2), (a3, b3), . . . , (am−1, bm−1), (a1, am), (b1, bm)}, form a perfect bi-partite matching,
as shown in Figure 4c. Therefore, the cost of these edges is at least equal to Matching∗,
which is the cost of the minimum weighted perfect bi-partite matching of G. As a result,
TSP∗ + Matching∗ is a valid lower bound for the cost of the optimal solution. We will use
this lower bound in Section 6 to evaluate the quality of the algorithmic solutions developed in
this paper.

a1

T ∗
2

b1

b2

b3
b4

b5

a5

a4
a3

a2

T ∗
1

C∗
a1

b1

b2

b3
b4

b5

a5

a4
a3

a2

a1

b1

b2

b3
b4

b5

a5

a4
a3

a2

(a) (b) (c)

Figure 4. Figures illustrating the development of the lower bound to the problem. (a) Optimal
solution, O∗, used to illustrate the development of the lower bound. (b) Single UV tour over all the
targets obtained by removing a few edges from O∗. (c) Perfect bipartite matching formed by the
remaining edges of O∗.

From the lower bound, it follows that

Cost(Optimal Solution) ≥ TSP∗ + Matching∗ ≥ TSP∗. (26)

Then, combining inequalities (25) and (26), we have that 3.75 (= 15
4 ) is an approxima-

tion ratio of the algorithm. This ratio is also referred to as the a priori ratio.
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5.3. Heuristics

If the solve time being a polynomial function of the input size is not a requirement, in
the first step of the algorithm, one can use an alternative single UV tour with a lower cost.
For example, one can use a tour T obtained from the Lin–Kernighan heuristic [31], which is
known to provide near-optimal solutions to the TSP for many instances quickly. This helps
in improving the quality of the solutions.

6. Results

In this section, we evaluate the performance of the proposed heuristic and approx-
imation algorithms by presenting the results of numerical experiments performed on
500 instances of the problem. The instances were created by randomly generating target
coordinates over a 500 × 500 grid (using the rand function in Julia). The number of targets
in these instances ranges from 6 to 100, with exactly 50 instances each with 2m = 6, 8, 10,
12, 14, 20, 30, 40, 50, and 100. All computations presented in this paper were performed on
a MacBook Pro with 16 GB RAM and Dual-Core Intel Core i7 processor @ 2.8 GHz. Besides
the computation of the LKH tours, for which the software package [32] was used, all the
algorithms were implemented in Julia. Optimal solutions were computed by implement-
ing the formulation presented in Section 3 using JuMP, a Julia package for mathematical
programming, and solving the formulation using Gurobi [33], a commercially available
optimization solver. Depending on the computation time required to determine optimal
solutions, the 500 instances were divided into two sets: (1) the set of small instances com-
prising instances with a computation time of at most 3 h, and (2) the set of large instances
comprising instances for which optimal solutions were not computable within the 3 h cutoff
time. The former set consists of 250 instances with 6 ≤ 2m ≤ 14, whereas the latter set
consists of the remaining instances with 2m ≥ 16.

To evaluate the performance of the algorithms, we consider two criteria: (1) the
quality (cost) of the solutions provided by the algorithm, and (2) the time taken to compute
these solutions. A desirable algorithm provides good-quality solutions quickly. We use
two indicators to evaluate the quality of the solutions. The first indicator is the a posteriori
ratio, which is the ratio of the cost of the algorithmic solutions to the cost of the optimal
solution. Note that this is different from the a priori ratio (also known as the approximation
ratio), which is the worst-case bound on the a posteriori ratio. Even though the a posteriori
ratio is an accurate metric to evaluate the solution quality, it cannot be computed when
the optimal cost is not available and therefore cannot be applied to large instances. To
overcome this issue, we use a second indicator, which estimates the solution quality using
the lower bound to the optimal cost developed in Section 5.2. Specifically, we use the ratio
of the algorithmic cost to the best available lower bound to the optimal cost to estimate the
solution quality when the optimal cost is unavailable.

6.1. Small Instances

For every instance in this set, we first compute the optimal, heuristic, and approximate
solutions, and a lower bound to the optimal value using the procedures discussed above.
Then, we note the cost of the computed solutions and the time required to compute these
solutions. Finally, for the heuristic and approximate solutions, we compute the a posteriori
ratios and the ratios of the algorithmic costs to the lower bound. We present sample
results for 25 out of the 250 small instances in Table 1. From the table, it can be observed
that neither the heuristic nor the approximation algorithm outperforms the other in all
the performance indices on all the instances. For example, the a posteriori ratios of the
approximate solutions are better than that of the heuristic solutions in instances 3, 4, 5, and
20. However, this trend is reversed in instances 8, 12, 14, 17, 19, 22, 23, 24, and 25. For
the remaining 17 instances, the ratios of both algorithms are equal. A similar trend can be
observed for the computation times of the algorithms. As will be seen later in this section,
these algorithms offer distinct advantages and complement each other. For example, the
approximation algorithm provides theoretical guarantees on the worst-case solution quality
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and computation time, unlike its counterpart. On the other hand, the heuristic algorithm
provides solutions with a different structure, which sometimes possesses better cost in
some instances. A practitioner can choose to implement one or both algorithms depending
on the requirements of the problem application.

Table 1. This table presents the results of numerical simulations performed over 25 of the
250 small instances. Here, the words a posteriori and lower bound are abbreviated as Apos. and L.B.,
respectively, in the interest of space. Note that the presented values are not the average values, unlike
the results presented in other tables.

Instance # # Targets
Optimal Approximation Algorithm Heuristic Algorithm

L.B.
Value Runtime Value Apos. Ratio Runtime Ratio w.r.t. L.B. Value Apos. Ratio Runtime Ratio w.r.t. L.B.

1 6 2019.58 0.58 2136.34 1.06 0.06 1.58 2140.62 1.06 0.05 1.59 1349.28
2 6 2320.60 0.60 2631.67 1.13 0.06 1.39 2631.67 1.13 0.06 1.39 1891.15
3 6 2340.35 0.59 2659.39 1.14 0.05 1.60 2994.48 1.28 0.06 1.8 1662.7
4 6 1834.62 0.68 2081.49 1.13 0.06 1.37 2162.55 1.18 0.06 1.43 1515.15
5 6 2375.09 0.69 2460.01 1.04 0.05 1.24 2507.83 1.06 0.06 1.26 1988.36

6 8 2138.56 2.31 2289.06 1.07 0.06 1.60 2284.58 1.07 0.05 1.60 1427.70
7 8 2934.60 2.27 3061.62 1.04 0.06 1.52 3061.62 1.04 0.06 1.52 2010.33
8 8 2394.92 1.86 2626.79 1.10 0.05 1.32 2508.0 1.05 0.06 1.26 1986.35
9 8 2768.99 2.08 2955.76 1.07 0.05 1.46 2955.76 1.07 0.06 1.46 2018.16
10 8 2535.43 2.33 2584.59 1.02 0.06 1.48 2584.59 1.02 0.06 1.48 1746.54

11 10 2543.27 11.43 2598.69 1.02 0.06 1.51 2598.69 1.02 0.06 1.51 1724.94
12 10 2935.21 8.50 3357.22 1.14 0.06 1.61 3038.09 1.04 0.06 1.46 2084.44
13 10 2535.19 7.61 2641.20 1.04 0.06 1.48 2641.2 1.04 0.06 1.48 1782.02
14 10 3094.96 13.24 3236.95 1.05 0.06 1.45 3182.03 1.03 0.13 1.42 2233.05
15 10 3073.28 8.23 3149.87 1.02 0.06 1.54 3149.87 1.02 0.05 1.54 2041.04

16 12 3358.94 63.02 3404.75 1.01 0.06 1.59 3404.75 1.01 0.06 1.59 2143.79
17 12 3209.36 25.09 3492.69 1.09 0.06 1.44 3422.02 1.07 0.06 1.41 2430.32
18 12 3019.62 40.89 3168.65 1.05 0.06 1.44 3168.65 1.05 0.06 1.44 2198.50
19 12 3048.37 82.02 3387.42 1.11 0.06 1.55 3197.42 1.05 0.06 1.46 2190.26
20 12 2632.85 35.60 2850.74 1.08 0.06 1.45 2867.6 1.09 0.06 1.46 1962.80

21 14 3162.88 227.96 3238.05 1.02 0.06 1.51 3238.05 1.02 0.06 1.51 2142.37
22 14 3261.45 410.44 4058.65 1.24 0.06 1.82 3419.32 1.05 0.06 1.54 2225.74
23 14 3550.04 152.61 4112.20 1.16 0.06 1.45 3742.91 1.05 0.06 1.32 2828.44
24 14 3210.55 171.60 3522.19 1.10 0.06 1.45 3402.58 1.06 0.06 1.4 2428.94
25 14 3136.03 120.96 3774.31 1.20 0.06 1.60 3245.69 1.03 0.06 1.38 2356.58

To obtain further insights into the performance of the algorithms, we discuss the
average solution costs and their average computation time in the next two paragraphs.

First, we present the average costs of the algorithmic solutions (in terms of the afore-
mentioned ratios) in Table 2, where the average presented in each row is computed over
50 instances with an identical number of targets. From the table, the following observations
can be made.

1. In practice, the approximation algorithm performs much better than the proposed
worst-case bound. This can be observed from the average a posteriori ratios, which
are significantly lower than the a priori ratio of 3.75; the average a posteriori ratios for
the approximate solutions range only from 1.05 to 1.12. That is, the solution cost is
around 5 to 12 % away from the optimal cost.

2. The average a posteriori ratio of the approximation algorithm is lower than that of the
heuristic algorithm for instances with six targets. However, for the remaining small
instances, this trend is reversed.

3. The average a posteriori ratios of both algorithms for eight-target instances are less
than that for six-target instances. However, from there onwards, these ratios were
observed to increase with the number of targets in the instances. Nevertheless, the
rate of this increase is slightly lower for the heuristic algorithm.

4. The average ratios of the algorithmic costs with respect to the lower bounds are higher
than the a posteriori ratios. This can be attributed to the slack in the proposed lower
bounds. For small instances, these ratios range from 1.39 to 1.55 for the approximation
algorithm and from 1.40 to 1.44 for the heuristic algorithm. Despite being weaker



Drones 2023, 7, 388 15 of 21

measures of performance, these ratios are useful for comparison against large instances
where the optimal costs and a posteriori ratios are unavailable.

Next, we discuss the average computation time of the presented algorithms. In
Figure 5, we plot the average computation times of the approximate and optimal solutions
against the number of targets in the instance. For a given number of targets, the average
is computed over 50 instances that share the same number of targets. From the figure,
it can be observed that the average computation time for the approximate solutions is
significantly lower than that for the optimal solutions. Additionally, while the average
time for the latter increases rapidly with the number of targets in the instances, the average
time for the former remains consistent across all small instances, at 0.06 s, indicating better
scalability of the approximation algorithm. The average computation time for the heuristic
solutions follows a similar trend as the approximate solutions. However, on average, the
heuristic solutions can be computed 0.01 s faster than the approximate solutions.

The quality of the solutions provided by the approximation and heuristic algorithms
and the significant savings in the computation time offered by these algorithms suggest
that they can be used as an alternative to computing optimal solutions, especially in large
instances where either the optimal solutions are unavailable or good-quality solutions need
to be computed quickly.

Table 2. The table summarizes the quality of the solutions obtained using the approximation and
heuristic algorithms for small instances of the problem. The six columns presented in the table
indicate the number of targets in the instances, the a priori ratio of the approximation algorithm,
the average a posteriori ratios of the approximation and the heuristic algorithms, and the average
ratios of the algorithmic costs with the lower bound for the approximation and heuristic algorithms,
respectively. All the averages are taken over (50) instances with the same number of targets.

# Targets A Priori Ratio Avg. A Posteriori Ratio Avg. Ratio w.r.t. L.B.

(Approx. Algo.) Approx. Algo. Heur. Algo. Approx. Algo. Heur. Algo.

6 3.75 1.12 1.13 1.39 1.40
8 3.75 1.05 1.05 1.44 1.43

10 3.75 1.07 1.05 1.47 1.44
12 3.75 1.08 1.05 1.49 1.45
14 3.75 1.11 1.06 1.55 1.44

Figure 5. The figure depicts the average computation time required to solve the optimization and
approximation, and algorithms in blue and red colors, respectively. The averages are computed over
50 instances each for a given number of targets.
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6.2. Large Instances

The number of targets in these instances ranges from 20 to 100. Due to the size of
these instances, optimal solutions were not computable within the 3-h cut-off time. For
every large instance, we compute the approximate and heuristic solutions and determine
the ratios of the costs of these solutions to the lower bounds. The average ratios and the
average computation times for both the algorithms are presented in Table 3.

Table 3. This table summarizes the results of the simulations performed over the 250 large instances
of the problem. The five columns of the table indicate the number of targets in the instances, the
average ratio of the cost of the algorithmic solution to the lower bound and the average computation
time (runtime) for the approximation algorithm, followed by the corresponding values of the heuristic
algorithm. The averages are taken over (50) instances with identical number of targets.

# Targets
Approximation Algorithm Heuristic Algorithm

Avg. Ratio w.r.t. L.B. Avg. Runtime (s) Avg. Ratio w.r.t. L.B. Avg. Runtime (s)

20 1.54 0.06 1.48 0.06
30 1.57 0.07 1.48 0.08
40 1.59 0.08 1.49 0.15
50 1.59 0.09 1.49 0.21

100 1.61 0.27 1.50 0.89

The results suggest that the average ratios for both the algorithms increase with
the number of targets in the instance. Nonetheless, similar to the trend observed in
small instances, the rate of increase is smaller for the heuristic algorithm compared to its
counterpart. While the ratios range from 1.54 to 1.61 for the approximation algorithm, they
range from 1.48 to 1.50 for the heuristic algorithm. It is to be noted that these ratios are not
significantly higher than those observed in the case of small instances. Therefore, it is likely
that the quality of the solutions provided by these algorithms is as good as that observed in
small instances. However, this claim cannot be justified without improved lower bounds in
the future.

In comparison, the average quality of the solutions provided by the heuristic algorithm
was observed to be slightly better than those provided by the approximation algorithm.
This can be attributed to the difference in the type of single UV tours provided by these
algorithms. Figure 6a,b depict feasible solutions for an illustrative 20-target instance
computed using the heuristic and the approximation algorithms, respectively. As can be
seen from the figure, the vehicle tours provided by the latter contain criss-cross paths as
opposed to those provided by the former. The presence of criss-crossing is an undesirable
feature in TSP tours and contributes to higher costs.

(a) Heuristic solution (b) Approximate solution

Figure 6. A feasible solution for a 20-target instance of the problem computed using the proposed
heuristic and approximation algorithms. The black dots represent the target locations, the blue
and red lines correspond to the 1st and 2nd vehicle tours, and the green dotted lines depict the
communication links between the vehicles.
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However, the average computation time of the approximation algorithm was observed
to be slightly better than that of the heuristic algorithm for large instances. Additionally,
the approximation algorithm offers guarantees on the worst-case solution quality and
computation time. Therefore, there is a trade-off involved in selecting the desired algorithm.
Nevertheless, the computation times for both algorithms are within a fraction of a second
for instances with up to 100 targets and the algorithms provide good-quality solutions
based on the ratios observed in the case of small instances. Therefore, both algorithms are
useful in practice, especially when optimal solutions are not computable within the desired
time. Figure 7a,b show feasible solutions computed in 0.20 and 0.08 s using the heuristic
and approximation algorithms, respectively, for a 50-target instance, for which optimal
solutions were not computable within 3 h.

(a) Heuristic solution (b) Approximate solution

Figure 7. A feasible solution for a 50-target instance of the problem computed using the proposed
heuristic and approximation algorithms. The black dots represent the target locations, the blue
and red lines correspond to the 1st and 2nd vehicle tours, and the green dotted lines depict the
communication links between the vehicles.

7. Summary

In this article, we considered a problem in which a pair of unmanned vehicles are
required to visit a set of targets to perform tasks therein. The vehicles are required to
visit disjoint sets of targets and coordinate their visits such that they can communicate
with each other after visiting every target in their sequence. The objective is to determine
tours and target assignments for the UVs such that the energy consumed for traveling and
communicating is minimized. We formulated this problem as an integer program and
highlighted the difficulty in computing optimal solutions to large instances of the problem.

For the ease of algorithmic development, we first considered a special case of the
problem in which equal weights are assigned in the objective function to the distances
traveled by the vehicles and the distances between them while communicating. For this
problem, we developed two algorithms, an approximation algorithm and a heuristic
algorithm, to compute high-quality solutions swiftly. The approximation algorithm has a
fixed a priori ratio of 3.75. To evaluate the performance of these algorithms, we performed
extensive numerical experiments on 500 instances of the problem. The results of the
experiments indicate that the quality of the algorithmic solutions is better in practice than
its theoretical worst-case bound. The heuristic algorithm provided solutions with different
structures than that of the approximate solutions. Though the heuristic solutions were
observed to have a slightly better cost than the algorithmic solutions on average, neither
algorithm outperformed the other on all problem instances and all performance metrics.
Furthermore, both algorithms provided feasible solutions to the problem within a fraction
of a second for instances with at most 100 targets on a MacBook Pro with 16 GB RAM,
Quad-Core Intel Core i7 processor @ 2.8 GHz. Later, we showed that the approximation
algorithm provides feasible solutions to the general weighted case, and has a variable a
priori ratio of 3 + 3ρ

4 when ρ ≥ 1 and 3
ρ + 3

4 when ρ ≤ 1.
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In addition to contributing the aforementioned algorithms, in this paper, we developed
lower bounds that help in evaluating the quality of feasible solutions to the problem. The
gaps between the cost of the algorithmic solutions and the lower bound are similar for
small- and large-scale instances. This suggests that the solution performance may not
deteriorate significantly with the problem size. However, this claim cannot be justified
without improving the lower bounds in the future.

In Figure 8, we summarize the workflow of the paper to improve the ease of under-
standing the role of the developed algorithms and lower bounds in determining feasible
solutions to the problem and evaluating their quality.

Despite these contributions, the work done in this paper has a few limitations. A
majority of the algorithmic development has been focused on the equally weighted case.
While an approximation algorithm is available to solve the general weighted problem,
its solutions have a worst-case performance that varies with the ratio of the weights.
Therefore, there is a need for developing algorithms that are tailor-made to solve the
weighted problem. One way to develop such tailor-made algorithms for the weighted
case is to iteratively increase the weights assigned to either travel or communication
costs and observe the changes in the solution structures. Additionally, the developed
lower bounds for the optimal cost are not binding and there is a scope for improving
these bounds. A few potential future directions to improve the lower bounds include (1)
developing alternate formulations to the problem, (2) solving linear relaxations of different
formulations of the problem, and (3) generating strong valid inequalities to improve the
problem representation.

Given target locations
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Euclidean
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target pairs

Start branch-
and-bound
algorithm

Does the
algorithm
converge
timely?

The solution is optimal

Compute
approximate
solution

Compute
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Figure 8. Flowchart describing the role of the algorithms and the lower bounds developed in
this paper.
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Appendix A. Approximation Ratio for the General Weighted Case

When the weights assigned to the travel and communication distances are not equal,
i.e., ρt 6= ρc, the approximation algorithm presented in Section 5 still presents feasible
solutions. This is because the constraints for the weighted and the unweighted case remain
the same. However, we will show in this section that the approximation ratio of the
algorithm for the weighted case has a variable ratio. Towards this end, let the ratio of the
weights assigned to the communication and travel distances be defined as ρ := ρc

ρt
. Then,

let us consider two cases: ρ ≥ 1 and ρ ≤ 1.
When ρ ≥ 1, the objective function can be equivalently scaled by assigning weights

ρt = 1 and ρc = ρ, without changing the solutions and the approximation ratio. Then, from
the construction of the algorithm, it follows that

Cost(Solution) = Cost(T1) + Cost(T2) + ρCost(C) (A1)

≤ (2 +
ρ

2
)Cost(T) (A2)

≤ (2 +
ρ

2
) ∗ 3

2
TSP∗ (A3)

= (3 +
3ρ

4
)TSP∗. (A4)

This provides an upper bound on the optimal cost of the solution. Next, observe
that the optimal value of the solutions to the weighted case is at least equal to that of the
weighted case. That is, ∑(i,j)∈E ci,j(xi,j + yi,j + ρzi,j) ≥ ci,j(xi,j + yi,j + zi,j). Then, it follows
from inequality (26) that the cost of the optimal solution for the weighted case is at least
equal to TSP∗. As a result, when ρ ≥ 1, the algorithm has an approximation ratio of 3 + 3ρ

4 .
When ρ ≤ 1, the objective function can be equivalently scaled by assigning weights

ρt =
1
ρ and ρc = 1. Then, it follows from the construction of the algorithm that

Cost(Solution) =
1
ρ
(Cost(T1) + Cost(T2)) + Cost(C) (A5)

≤ (
2
ρ
+

1
2
)Cost(T) (A6)

≤ (
2
ρ
+

1
2
) ∗ 3

2
TSP∗ (A7)

= (
3
ρ
+

3
4
)TSP∗. (A8)

Similar to the case with ρ ≥ 1, here, the optimal value is lower-bounded by TSP∗.
Therefore, when ρ ≤ 1, the algorithm has an approximation ratio of 3

ρ + 3
4 .
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