
J Algebr Comb (2007) 25:7–23

DOI 10.1007/s10801-006-0013-8

Minimal full polarized embeddings of dual polar spaces

Ilaria Cardinali · Bart De Bruyn · Antonio Pasini

Received: 26 June 2005 / Accepted: 20 April 2006 /

Published online: 11 July 2006

C© Springer Science + Business Media, LLC 2007

Abstract Let � be a thick dual polar space of rank n ≥ 2 admitting a full polarized

embedding e in a finite-dimensional projective space �, i.e., for every point x of

�, e maps the set of points of � at non-maximal distance from x into a hyperplane

e∗(x) of �. Using a result of Kasikova and Shult [11], we are able the show that

there exists up to isomorphisms a unique full polarized embedding of � of minimal

dimension. We also show that e∗ realizes a full polarized embedding of � into a

subspace of the dual of �, and that e∗ is isomorphic to the minimal full polarized

embedding of �. In the final section, we will determine the minimal full polarized

embeddings of the finite dual polar spaces DQ(2n, q), DQ−(2n + 1, q), DH(2n −
1, q2) and DW (2n − 1, q) (q odd), but the latter only for n ≤ 5. We shall prove that

the minimal full polarized embeddings of DQ(2n, q), DQ−(2n + 1, q) and DH(2n −
1, q2) are the ‘natural’ ones, whereas this is not always the case for DW (2n − 1,

q).
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1. Introduction

1.1. Basic terminology and notation

Let � be a thick polar space of rank n ≥ 2 and let � be its associated dual polar

space, i.e., � is the point-line geometry with points, respectively lines, the maximal,

respectively next-to-maximal, singular subspaces of � (natural incidence). If x and

y are two points of �, then d(x, y) denotes the distance between x and y in the

collinearity graph of �. If x is a point of � and if k ∈ N, then �k(x) denotes the set of

points at distance k from x and x⊥ denotes the set of points equal to or collinear with

x . If X and Y are nonempty sets of points, then d(X, Y ) denotes the minimal distance

between a point of X and a point of Y . A nonempty set X of points of � is called a

subspace if every line containing two points of X has all its points in X . A subspace

X is called convex if every point on a shortest path (in the collinearity graph) between

two points of X is also contained in X .

For every point x of �, let Hx denote the set of points of � at non-maximal distance

from x . Since � is a near polygon [15], Hx is a hyperplane of �, i.e. a proper subspace

of � meeting each line. It is well-known that Hx is a maximal subspace of �, see e.g.

[2, p. 156].

The convex subspaces of � of diameter 0 and 1 are precisely the points and lines

of �. Convex subspaces of diameter 2, 3, respectively n − 1, are called quads, hexes,

respectively maxes. If x is a point and S is a convex subspace of �, then πS(x) denotes

the unique point of S nearest to x . The point πS(x) is called the projection of x onto

S.

We will denote a dual polar space by putting a “D” in front of the name of the corre-

sponding polar space. So, DQ(2n, q), DQ−(2n + 1, q), DH(2n − 1, q2), respectively

DW (2n − 1, q), denotes the dual polar space associated with a nonsingular quadric

in PG(2n, q), a nonsingular elliptic quadric in PG(2n + 1, q), a nonsingular hermitian

variety in PG(2n − 1, q2), respectively a symplectic polarity of PG(2n − 1, q).

1.2. Embeddings

In this paper, we will only consider embeddings in a finite-dimensional projective

space. Let � be a thick dual polar space of rank at least 2 and let V denote a finite-

dimensional vector space.

A projective embedding of � in � = PG(V ) is an injective mapping e from the

point-set P of � to the point-set of � such that:

(E1) the image e(P) of e spans �;

(E2) every line of � is mapped by e into a line of �;

(E3) no two lines of � are mapped by e into the same line of �.

We will say that e is an F-embedding if F is the underlying division ring of the vector

space V . The dimensions dim(V ) and dim(�) = dim(V ) − 1 are called the vector
and projective dimension of e, respectively. Note that (E2) only says that the image

e(L) of a line L of � is contained in a line of �. If e(L) is a line of � for every

line L of �, then the embedding e is said to be full. (Notice that in the literature,
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projective embeddings are often presupposed to be full.) For every point p of �, the

hyperplane Hp is a maximal subspace of �. Hence, e(Hp) spans either a hyperplane

of � or the whole of �. Following Thas and Van Maldeghem [16], we say that e is

polarized if 〈e(Hp)〉 is a hyperplane of � for every point p of �. If this is the case,

then 〈e(Hp)〉 ∩ e(P) = e(Hp) (recall that Hp is a maximal subspace). As noticed in

[8, Remarks 2 and 3], if n = rank(�) is sufficiently large (in any case, n > 2), then �

admits non-polarized full embeddings.

Given a projective embedding e : � → �, suppose that α is a subspace of �

satisfying the following properties:

(P1) α ∩ e(P) = ∅;

(P2) 〈α, e(x)〉 = 〈α, e(y)〉 for every two distinct points x and y of �.

For every point x of �, we define eα(x) := 〈α, e(x)〉. Then eα is an embedding of �

in �/α. We call eα a projection of e. Both claims of the next lemma are obvious:

Lemma 1.1. If e is full, then also eα is full. If eα is polarized, then e is polarized.

Two embeddings e1 : � → �1 and e2 : � → �2 are called isomorphic (e1
∼= e2) if

there exists an isomorphism φ from �1 to �2 such that e2(x) = φ ◦ e1(x) for every

point x of �.

Suppose Ṽ is a vector space over the division ring F. Following Cooperstein and

Shult [7] we say that a full F-embedding ẽ : � → �̃ = PG(Ṽ ) is absolutely universal
(absolute for short) if for every full F-embedding e of �, there exists a subspace α in

�̃ such that

(i) α satisfies properties (P1) and (P2) with respect to ẽ and ẽα
∼= e.

The absolute embedding ẽ, if it exists, is uniquely determined up to isomorphisms and

satisfies the following, where α is as in (i):

(ii) for every full F-embedding e′ having a projection isomorphic to e, there exists a

subspace α′ of α such that ẽα′ ∼= e′.

According to the terminology of Cooperstein and Shult [7] (see also Ronan [13]), (ii)

just says that ẽ is universal relative to every full F-embedding of �. In other words, ẽ
is the linear hull of every full F-embedding of � (Pasini [12]). Sufficient conditions

for a point-line geometry to admit the absolute full F-embedding have been obtained

by Kasikova and Shult [11].

If e′ : Q → �′ is a full embedding of a thick generalized quadrangle, then by Tits

[17, 8.6], the underlying division ring of �′ is completely determined by Q. Hence,

if e : � → � is a full embedding of a thick dual polar space of rank n ≥ 2, then the

underlying division ring of � is completely determined by � (since e induces a full

embedding of each of its quads). This allows us to talk about full embeddings and

absolutely universal embeddings of thick dual polar spaces, without mentioning the

underlying division rings.
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The next proposition follows from Buekenhout and Lefèvre [4], Dienst [9] in the

case of generalized quadrangles and from Kasikova and Shult [11, Section 4.6] in the

case of thick dual polar spaces of rank at least 3.

Proposition 1.2. Every thick dual polar space of rank n ≥ 2 admits the absolutely
universal embedding, provided that it admits at least one full embedding.

The next proposition immediately follows from the second claim of Lemma 1.1:

Proposition 1.3. If a thick dual polar space admits a full polarized embedding, then
its absolutely universal embedding is polarized.

1.3. The main results of this paper

Let � be a thick dual polar space of rank n ≥ 2 admitting a full polarized embedding

and let P denote the point-set of �. We will show the following in Section 2.

Theorem 1.4. Up to isomorphisms, there exists a unique full polarized embedding ē
such that every full polarized embedding e of � has a projection isomorphic to ē.

Let ẽ denote the absolutely universal full embedding of � (which exists by Proposition

1.2). With every full polarized embedding of �, there are associated two projections:

ẽ → e → ē,

The embedding ē is called the minimal full polarized embedding of �.

Definition
(1) For every full embedding e : � → � of � and for every convex subspace F of �,

put �F := 〈e(F)〉 and let eF : F → �F denote the full embedding of F induced

by e.

(2) For every full polarized embedding e : � → � of � and for every point x of �,

let e∗(x) denote the unique hyperplane of � containing e(Hx ).

In Section 2, we will also prove the following theorems.

Theorem 1.5. If e is a full polarized embedding of �, then the embedding eF is
polarized for every convex subspace F of �.

Theorem 1.6. Let e : � → � be a full polarized embedding of � isomorphic to the
minimal embedding of �. Then for every convex subspace F of �, eF is isomorphic
to the minimal full polarized embedding of F.

Now, suppose e : � → � is a full polarized embedding of �. For every point x of �,

the unique hyperplane e∗(x) of � containing e(Hx ) is a point of �∗, the dual projective

space of �. Let �(∗) denote the subspace of �∗ generated by all points e∗(x), x ∈ P .

We will show the following in Section 3:
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Theorem 1.7. e∗ : � → �(∗) is a full polarized embedding of �.

We will call e∗ the dual embedding of e. In Section 3, we also show the following:

Theorem 1.8. The embedding e∗ is isomorphic to the minimal full polarized embed-
ding of �.

In the last section (Section 4), we will determine the dimension of the minimal full

polarized embeddings for the following classes of dual polar spaces: DW (2n − 1, q)

(for n ≤ 5), DQ(2n, q), DQ−(2n + 1, q) and DH(2n − 1, q2).

2. Minimal embeddings

Let � be a thick dual polar space of rank n ≥ 2 admitting a full polarized embedding

and let P denote the point-set of �.

Definition If e : � → � is a full polarized embedding of �, then we define

Re :=
⋂
p∈P

〈e(Hp)〉.

Lemma 2.1. If e : � → � is a full polarized embedding of � and if α ⊆ Re, then α

satisfies the properties (P1) and (P2) of Section 1.2 and the embedding eα : � → �/α

is polarized. In particular, this holds if α = Re.

Proof: We check property (P1). We have Re ∩ e(P) = ⋂
p∈P (〈e(Hp)〉 ∩ e(P)) =⋂

p∈P e(Hp) = e(
⋂

p∈P Hp) = e(∅) = ∅. Hence, also α ∩ e(P) = ∅.

We check property (P2). Suppose that there exist distinct points x and y such

that 〈α, e(x)〉 = 〈α, e(y)〉. Take a point z opposite x such that y lies on a shortest

path between x and z. (Such a point z exists, see e.g. [2] where this property has

been shown for a more general class of near polygons.) Since y ∈ Hz , the hyperplane

〈e(Hz)〉 of � contains the point e(y) and hence also the subspace 〈α, e(y)〉 = 〈α, e(x)〉.
So, e(x) ∈ 〈e(Hz)〉 ∩ e(P) = e(Hz), contradicting x ∈ Hz .

We will show that eα is polarized. Let p be any point of �. Since e is polarized,

there exists a hyperplane �p in � through α ⊆ Re containing all points of e(Hp). It

follows that the hyperplane �p/α of �/α contains all points of eα(Hp). �

Also the converse of Lemma 2.1 holds.

Lemma 2.2. Let e : � → � be a full polarized embedding of � and let α be a sub-
space of � satisfying properties (P1) and (P2) of Section 1.2. If eα is polarized, then
α ⊆ Re.

Proof: Suppose that α is not contained in Re. Then there exists a point x in � such

that α ⊆ 〈e(Hx )〉. But then 〈eα(Hx )〉 = �/α, contradicting the fact that eα is polarized.

�
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Now, let ẽ : � → �̃ denote the absolutely universal embedding of �. Then ẽ is po-

larized by Lemma 1.1. We define

ē := ẽRẽ .

We will now prove Theorem 1.4. Let e be an arbitrary full polarized embedding of

� and let α denote a subspace of �̃ such that ẽα
∼= e. By Lemma 2.2, α ⊆ Rẽ. Since

α ⊆ Rẽ, e ∼= ẽα must have a projection isomorphic to ē = ẽRẽ . The uniqueness of ē is

easy to see. If ē1 and ē2 are two embeddings satisfying the conditions of Theorem 1.4,

then ē1 is isomorphic to a projection of ē2 and ē2 is isomorphic to a projection of ē1.

This is only possible when ē1
∼= ē2.

Remark 1. If e : � → � is a full polarized embedding, then from Lemma 2.2 and

Theorem 1.4, it readily follows that eRe is isomorphic to the minimal full polarized

embedding of �.

We now prove Theorems 1.5 and 1.6.

Proof of Theorem 1.5. Let δ denote the diameter of F . Let x denote an arbitrary point of

F and let y denote a point of � at distance n − δ from F such that �n−δ(y) ∩ F = {x}.
So, for every point z of F , d(y, z) = d(y, x) + d(x, z) = n − δ + d(x, z). The points of

F contained in Hy are precisely the points of F contained in �∗
δ−1(x), where �∗

δ−1(x)

stands for the set of points of � at distance at most δ − 1 from x . This implies that

(i) 〈e(Hy)〉 ∩ �F is a hyperplane of �F , and (ii) eF (�∗
δ−1(x) ∩ F) ⊆ 〈e(Hy)〉 ∩ �F . It

follows that 〈eF (�∗
δ−1(x) ∩ F)〉 coincides with the hyperplane 〈e(Hy)〉 ∩ �F of �F .

Hence, eF is polarized. �

Proof of Theorem 1.6: By Theorem 1.5, eF is polarized. We must still show that

ReF = ∅:

ReF =
⋂
x∈F

e∗
F (x) =

⋂
x∈�n−δ (F)

(e∗(x) ∩ �F ) =
⋂
x∈P

(e∗(x) ∩ �F )

=
( ⋂

x∈P

e∗(x)

)
∩ �F = ∅ ∩ �F = ∅.

3. Dual embeddings

Again, let � be a thick dual polar space of rank n ≥ 2. Notice that two lines L and M
of � are at maximal distance from each other if and only if d(L , M) = n − 1.

Lemma 3.1. Let a and b be distinct points of a line L of �, and let H be a hyperplane
of � containing Ha ∩ Hb. Then either H = Hc for a (unique) point c ∈ L or H
contains a line L ′ with d(L , L ′) = n − 1.
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Proof: Notice first that, since � is a near polygon, Ha ∩ Hb consists of those points

of � that have distance at most n − 2 from L . If H contains a line L ′ with d(L , L ′) =
n − 1, then we are done. So, suppose that |M ∩ H | = 1 for every line M of � with

d(M, L) = n − 1. For every such line M , we denote by c(M) the unique point of L at

distance n − 1 from the point M ∩ H .

Claim 1. Suppose L1 and L2 are two lines of � satisfying

(i) L1 and L2 are contained in a quad Q,
(ii) d(L1, L) = d(L2, L) = n − 1.

Then c(L1) = c(L2).

Since d(L1, L) = n − 1, every point of L has distance at least n − 2 (and hence

precisely n − 2) from Q. Put L ′ := πQ(L). Then L ′ is a line. (If πQ(L) is a point, then

not every point of L would have the same distance from Q.) All points of L ′ have dis-

tance n − 2 from L . So, H contains L ′, p1 and p2, where pi , i ∈ {1, 2}, is the unique

point of Li contained in H . Let qi denote the unique point of L ′ collinear with pi .

Then, qi is the unique point of Q at distance n − 2 from ci := c(Li ). Conversely, ci is

the unique point of L at distance n − 2 from qi . So, if q1 = q2 then c1 = c2 and we are

done. By way of contradiction, assume that q1 = q2. Then Q ∩ H is a nondegenerate

subquadrangle of Q, since Q ∩ H contains the two disjoint lines p1q1 and p2q2. In that

subquadrangle we can find a line M with M ∩ L ′ = ∅. Clearly, d(M, L ′) = 1, whence

d(M, L) = n − 1. However, M ⊂ H , contrary to the assumption that |M ∩ H | = 1

for every line M with d(M, L) = n − 1. Therefore q1 = q2, as we wanted to

prove.

Claim 2. The point c = c(M) does not depend on the choice of the line M at distance
n − 1 from L.
Indeed, the lines at distance n − 1 from L are the lines of the geometry Far�(L) formed

by the elements of � at maximal distance from L , with the incidence relation inherited

from �. This geometry is residually connected (Blok and Brouwer [1]). So, the graph

having the lines far from L as vertices and ‘being in the same quad’ as the adjacency

relation is connected. Claim 2 follows from this and Claim 1.

We can now finish the proof of the lemma. Put c := c(M) for M a line with d(M, L) =
n − 1. In view of Claim 2, c does not depend on the choice of the line M . Let x ∈ Hc.

If d(x, L) ≤ n − 2, then x ∈ H since x ∈ Ha ∩ Hb. If d(x, L) = n − 1, let X be a line

through x not contained in the unique max through x and c. Then d(X, L) = n − 1

and d(c, X ∩ H ) = n − 1, by Claim 2. On the other hand, X ∩ �n−1(c) = {x}, by the

choice of X . Therefore {x} = X ∩ H . Hence �n−1(L) ∩ �n−1(c) ⊆ H . It follows that

Hc ⊆ H and hence Hc = H since Hc is a maximal subspace. �

Henceforth, e : � → � = PG(V ) is a given full polarized embedding of �. We

denote by P the point-set of � and, for a subset X ⊆ P , we put:

〈X〉e := 〈e(X )〉�.
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(The subscript � in the symbol 〈·〉� should remind us of the space � where spans are

taken.) Since e is polarized,

(P) 〈Hp〉e = �, for every point p of �.

By Shult [14, Lemma 6.1], every hyperplane of � is maximal as a subspace of �.

Therefore, if H is a hyperplane of � and 〈H〉e = �, then 〈H〉e is a hyperplane

of � (recall also property (E1)) and 〈H〉e ∩ e(P) = e(H ). Accordingly, if H1, H2

are different hyperplanes of � with 〈Hi 〉e = � for i = 1, 2, then 〈H1〉e ∩ 〈H2〉e has

codimension 2 in �. These facts will be freely used in the sequel.

Lemma 3.2. Let H be a hyperplane of � and let L be a line of � containing two
points a and b such that 〈Ha〉e ∩ 〈Hb〉e ⊆ 〈H〉e = �. Then H = Hc for some point
c ∈ L.

Proof: Since 〈Ha〉e ∩ 〈Hb〉e ⊆ 〈H〉e, (〈Ha〉e ∩ e(P)) ∩ (〈Hb〉e ∩ e(P)) ⊆ (〈H〉e ∩
e(P)) or e(Ha) ∩ e(Hb) ⊆ e(H ). Hence, Ha ∩ Hb ⊆ H . If H contains a line L ′ at dis-

tance n − 1 from L , then H contains a point p ∈ L ′ ∩ �n−1(a). Note that d(p, b) = n,

as d(L ′, L) = n − 1. Turning to spans in �, 〈H〉e contains e(p) and the subspace

S = 〈Ha〉e ∩ 〈Hb〉e of S. However, S has codimension 2 in � and does not con-

tain e(p), whereas S ∪ {e(p)} spans 〈Ha〉e. It follows that 〈H〉e = 〈Ha〉e. Similarly,

〈H〉e = 〈Hb〉e. Hence 〈Ha〉e = 〈Hb〉e, which is impossible. Therefore, H does not

contain any line at distance n − 1 from L . By Lemma 3.1, H = Hc for some point

c ∈ L . �

Lemma 3.3. Let a, b and c be three distinct points of a line L of �. Then 〈Hc〉e ⊇
〈Ha〉e ∩ 〈Hb〉e.

Proof: Let x be a point of �n−1(c) ∩ �n(a) ∩ �n(b). Then x ∈ Ha ∪ Hb. So,

e(x) ∈ 〈Ha〉e ∪ 〈Hb〉e and � = 〈e(x), 〈Ha〉e ∩ 〈Hb〉e〉 is a hyperplane of �. Put

H := e−1(� ∩ e(P)). Then 〈Ha〉e ∩ 〈Hb〉e ⊆ 〈H〉e = � = �. By Lemma 3.2, H =
Hc′ for some point c′ of ab. Since x ∈ Hc′ , d(x, c′) ≤ n − 1. Hence, c′ = c and

〈Ha〉e ∩ 〈Hb〉e ⊆ 〈Hc〉e. �

Put e∗(p) := 〈Hp〉e for every point p ∈ P . Note that, as e is polarized, e∗(p) is indeed

a point of �∗. Since e∗(p) ∩ e(P) = e(Hp) for every point p of �, e∗ is injective.

Moreover, e∗ maps lines of � onto lines of �∗, by Lemmas 3.2 and 3.3. Therefore, e∗

is an embedding of � in �(∗), where we denote by �(∗) the span of e∗(P) in �∗:

�(∗) := 〈e∗(P)〉�∗ .

Note that

�(∗) ∼= (�/Re)∗,
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where (�/Re)∗ is the dual of �/Re. The following lemma finishes the proof of

Theorem 1.7.

Lemma 3.4. e∗ is polarized.

Proof: Let p denote an arbitrary point of �. We must show that there exists a hy-

perplane in �(∗) containing all points e∗(x) with x ∈ Hp. If x ∈ Hp, then p ∈ Hx and

hence e(p) ∈ e∗(x). Hence, the hyperplane 〈Re, e(p)〉 of �(∗) contains all points e∗(x),

x ∈ Hp. This proves the lemma. �

Theorem 1.8 now also readily follows. Since the minimal full polarized embedding ē
of � is isomorphic to eRe , its projective dimension is equal to dim(�) − dim(Re) − 1.

On the other hand, since �(∗) ∼= (�/Re)∗, e∗ has also projective dimension dim(�) −
dim(Re) − 1, Hence, ē and e∗ are isomorphic embeddings.

4. Examples

Although we believe that the treatments given below might also hold for several infinite

fields, we will only consider the finite case, for which we can rely on some published

material.

In Sections 4.1 and 4.2, we will show that the natural embeddings of the dual polar

spaces DQ(2n, q), DQ−(2n + 1, q) and DH(2n − 1, q2) are also their minimal ones.

In Section 4.3, it will be shown that this is not always the case for the dual polar sace

DW(2n − 1, q).

Remark 2. One of the referees pointed out to the authors that the fact that the natural

embeddings of DQ(2n, q), DQ−(2n + 1, q) and DH(2n − 1, q2) are minimal also

follows from the irreducibility of the associated modules.

Let � be one of the dual polar spaces DQ(2n, q), DQ−(2n + 1, q) or DH(2n −
1, q2), and let e : � → � denote the natural embedding of � (see Sections 4.1 and

4.2). Then G = Aut(�) lifts to a group G̃ of automorphisms of �. In each of the three

cases, it can be shown that the module (�, G̃) is irreducible. As each element of G̃
fixes Re, we necessarily must have that Re = ∅, i.e., e is isomorphic to the minimal

full polarized embedding of �. However, the arguments we are going to exploit in

Sections 4.1 and 4.2 are far more straightforward than the above.

4.1. Minimal embeddings of DQ(2n, q) and DQ−(2n + 1, q)

By Corollary 1.5 of De Bruyn and Pasini [8], every polarized embedding of a dual

polar space of rank n has vector dimension at least 2n .

The dual polar space DQ(2n, q) admits a polarized full embedding espin of vector

dimension 2n , called the spin-embedding. We refer to Buekenhout and Cameron [3]

for a description of espin. If q is odd, then the embedding espin is absolutely universal

(Wells [18]; see also Cooperstein and Shult [7]) and hence is the unique polarized
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full embedding of DQ(2n, q). If q is even, then espin is the minimal polarized full

embedding of DQ(2n, q).

The dual polar space DQ−(2n + 1, q) admits a polarized full embedding e−
spin in-

duced by the natural embedding of the half-spin geometry of Q+(2n + 1, q2), see

Cooperstein and Shult [7]. The embedding e−
spin is absolutely universal, no matter if q

is odd or even, and hence is the unique polarized full embedding of DQ−(2n + 1, q).

4.2. Minimal polarized full embeddings of DH(2n − 1, q2)

Let H (2n − 1, q2) denote a non-singular hermitian variety in PG(2n − 1, q2), put

N := (
2n
n

)
and I := {1, . . . , 2n}. For every subset J of I , we define σ (J ) = (1 +

· · · + |J |) + � j∈J j .

Suppose X is an (n − 1)-dimensional subspace of PG(2n − 1, q2) generated by the

points (xi,1, . . . , xi,2n), 1 ≤ i ≤ n, of PG(2n − 1, q2). For every J = {i1, i2, . . . , in}
in

(I
n

)
with i1 < i2 < · · · < in , we define

X J :=

∣∣∣∣∣∣∣∣∣∣

x1,i1
x1,i2

· · · x1,in

x2,i1
x2,i2

· · · x2,in

...
...

. . .
...

xn,i1
xn,i2

· · · xn,in

∣∣∣∣∣∣∣∣∣∣
.

The elements X J , J ∈ (I
n

)
, are the coordinates of a point f (X ) of PG(N − 1, q2) and

this point does not depend on the particular set of n points which we have chosen as

generating set for X . The elements X J , J ∈ (I
n

)
, are called the Grassmann coordinates

of X . (For more details on this topic, we refer to [10, Chapter 24]). By [5, Proposition

5.1], there exists a Baer subgeometry PG(N − 1, q) of PG(N − 1, q2) containing all

points f (X ) where X is a generator (i.e. a maximal subspace) of H (2n − 1, q2). In

this way, we obtain a map e from the point set of DH(2n − 1, q2) to the point set of

PG(N − 1, q), which we like to call the Grassmann embedding of DH(2n − 1, q2).

By [5], e is indeed a full embedding. Moreover, e is absolutely universal if q = 2.

Now, let X and Y be two generators of H (2n − 1, q2). Suppose X is generated by the

points (xi,1, . . . , xi,2n), 1 ≤ i ≤ n, and that Y is generated by the points (yi,1, . . . , yi,2n),

1 ≤ i ≤ n. Obviously, the points X and Y are at non-maximal distance if and only

if ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 x1,2 · · · x1,2n

...
...

. . .
...

xn,1 xn,2 · · · xn,2n

y1,1 y1,2 · · · y1,2n

...
...

. . .
...

yn,1 yn,2 · · · yn,2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,
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i.e., if and only if ∑
J∈(I

n)

(−1)σ (J ) X J YI\J = 0. (1)

(Expand according to the first n rows.) For a given point X of DH(2n − 1, q2), Eq. (1)

defines a hyperplane of PG(N − 1, q). This implies that e is a polarized embed-

ding. We will now show that Re = ∅. To that goal, consider N points X1, . . . , X N

in DH(2n − 1, q2) such that e(X1), . . . , e(X N ) generate PG(N − 1, q). (Such points

exist by property (E1).) Since the points e(X1), . . . , e(X N ) are also linearly indepen-

dent, the hyperplanes e∗(X1), . . . , e∗(X N ) are linearly independent by Eq. (1). This

implies that Re = ∅.

From the previous discussion, the following theorem readily follows.

Theorem 4.1. � The Grassmann embedding of DH(2n − 1, q2) is the minimal polar-
ized full embedding of DH(2n − 1, q2).� If q = 2, then the Grassmann embedding is the unique (up to isomorphisms) polar-
ized full embedding of DH(2n − 1, q2).

4.3. Minimal polarized full embeddings of DW (2n − 1, q)

Let ζ be a symplectic polarity in PG(2n − 1, q). Let W (2n − 1, q) and DW (2n −
1, q) denote the associated polar and dual polar spaces. Put K := {1, . . . , n}, I :=
{1, . . . , 2n} and N := (

2n
n

) − (
2n

n−2

)
. For every i ∈ I , we define i ′ := i + n. For every

subset J of I , we define σ (J ) = (1 + · · · + |J |) + ∑
j∈J j and J ′ := { j ′ | j ∈ J }.

Let X be an (n − 1)-dimensional subspace of PG(2n − 1, q). As in Section 4.2,

let X J , J ∈ (I
n

)
, denote the Grassmann coordinates of X . These coordinates define a

point f (X ) = 〈∑J X J eJ 〉 in PG(
(

2n
n

) − 1, q). By [6, Proposition 5.1], the subspace

of PG(
(

2n
n

) − 1, q) generated by all points f (X ), with X a maximal totally isotropic

subspace of W (2n − 1, q), is (N − 1)-dimensional. We will denote this subspace by

PG(N − 1, q). So, we obtain a map e from the point set of DW (2n − 1, q) to the

point set of PG(N − 1, q). By [6], e is an absolutely universal full embedding. We

will call e the Grassmann embedding of DW (2n − 1, q). With a similar reasoning as

in Section 4.2, we find that two points X and Y of DW (2n − 1, q) are at non-maximal

distance if and only if ∑
J∈(I

n)

(−1)σ (J ) X J YI\J = 0. (2)

It follows again that e is polarized. The Eq. (2) determines a bilinear form in the

N -dimensional vector space V (N , q) associated with PG(N − 1, q). Since σ (J ) +
σ (I \ J ) ≡ n (mod 2) for J ∈ (I

n

)
, this bilinear form is symmetric if n is even and

alternating if n is odd. The space Re corresponds with the radical of this bilinear form.

So, the dimension of the minimal polarized full embedding of DW (2n − 1, q) is equal

to the rank of any (N × N )-matrix M which represents the form (2) with respect to a

certain basis of V (N , q). In the sequel, we will use the following convention to denote
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such a matrix M : if Ai , i ∈ {1, . . . , k}, is an (ni × ni )-matrix, then diag(A1, . . . , Ak)

denotes the (n1 + · · · + nk) × (n1 + · · · + nk)-matrix⎡⎢⎢⎢⎢⎢⎣
A1

A2

. . .

Ak

⎤⎥⎥⎥⎥⎥⎦ ,

where all entries outside the blocks A1, A2, . . . , Ak are null. We will now calculate the

rank of such a matrix M in the case that n ∈ {3, 4, 5}. We omit the case n ≥ 6, since

some of the calculations to perform become too tiresome, and we have not discovered

a way to speed them up in a general setting, suited for any n. Of course, it is also

possible to do the calculations for n = 2, but we will not do that since the polarized

full embeddings of the generalized quadrangle DW (3, q) ∼= Q(4, q) are well-known,

see [4].

Suppose that the symplectic polarity ζ defining W (2n − 1, q) is represented by the

following matrix: [
0n In

−In 0n

]
.

If X is a totally isotropic (n − 1)-space of PG(2n − 1, q) whose Grassmann coordinate

X K is different from 0, then there exists an (n × n)-matrix B such that X is generated

by the n rows of [In B]. The fact that X is totally isotropic then implies that B = BT .

Lemma 4.2. Let � be a thick dual polar space of rank n ≥ 1. (By convention, dual
polar spaces of rank 1 are just lines.) If H is a hyperplane of �, then the smallest
subspace S of � containing � \ H coincides with �.

Proof: We will prove this by induction on the rank n. Obviously, the lemma holds if

n = 1. So, suppose that n ≥ 2 and that the lemma holds for any thick dual polar space

of rank at most n − 1. Let x denote an arbitrary point of �. If M is a max through x
not contained in H , then M ∩ H is a hyperplane of M and by the induction hypothesis

applied to M , we then know that x ∈ S. Suppose therefore that every max through x
is contained in H . Then Hx ⊆ H and hence Hx = H since Hx is a maximal subspace.

By downwards induction on i ∈ {0, . . . , n}, one easily proves that any point of �i (x)

belongs to S. In particular, we have that x ∈ S. This proves the lemma. �

Corollary 4.3. Let H be the hyperplane of DW (2n − 1, q) which consists of all
points of DW (2n − 1, q) whose Grassmann coordinate X K is equal to 0. Then any
subspace of DW (2n − 1, q) containing all points of DW (2n − 1, q) \ H coincides
with DW (2n − 1, q).

Note that, by the remark preceding Lemma 4.2, points of DW (2n − 1, q) with Grass-

mann coordinate X K = 0 actually exist.
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The rank 3 case

In this case e determines an embedding of DW (5, q) into a subspace PG(13, q) of

PG(19, q).

Lemma 4.4. The subspace PG (13, q) of PG(19, q) is described by the following
6 equations: X235 = −X134; X236 = X124; X136 = −X125; X346 = −X245; X356 =
X145; X256 = −X146.

Proof: In view of Corollary 4.3, it suffices to show that all points X of DW (5, q)

with X K = 0 satisfy these equations. Such a point X is generated by the rows of a

(3 × 6)-matrix [I3 B] with B = BT , i.e., by the rows of a matrix of the following form:⎡⎢⎣ 1 0 0 b11 b12 b13

0 1 0 b12 b22 b23

0 0 1 b13 b23 b33

⎤⎥⎦ .

One easily verifies that X235 = b12 = −X134, X236 = b13 = X124, X136 = −b23 =
−X125, X346 = b11b23 − b12b13 = −X245, X356 = b12b23 − b22b13 = X145 and

X256 = b13b23 − b12b33 = −X146. �

By Lemma 4.4, B = (e123, e456, e345, e126, e246, e135, e156, e234, e356 + e145,

e124 + e236, e346 − e245, e136 − e125, e256 − e146, e235 − e134) is an ordered basis

of the vector space V (14, q) associated with PG(13, q). With respect to this basis, the

bilinear form (2) has matrix diag(M1, M1, M1, M1, M2, M2, M2), with M1 = (
0 1

−1 0
)

and M2 = (
0 2

−2 0
).

From the previous discussion, the following result readily follows.

Theorem 4.5. If q = 2r , then the Grassmann embedding of DW (5, q) is the unique
polarized full embedding of DW (5, q). If q = 2r , then DW (5, q) ∼= DQ(6, q) and
the minimal full polarized embedding of DW (5, q) is the spin embedding (of vector
dimension 8).

The rank 4 case

In this case e determines an embedding of DW (7, q) into a subspace PG(41, q) of

PG(69, q).

Lemma 4.6. The subspace PG(41, q) of PG(69, q) is described by the following 28

equations.� For all subsets H1 and H2 of K satisfying |H1| = |H2| and H1 = H2,

(−1)σ (K\H1) X (K\H1)∪H ′
2
= (−1)σ (K\H2) X (K\H2)∪H ′

1
.� X2367 + X2468 = −X3478.
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Proof: Similarly as in the proof of Lemma 4.4, we may suppose the point X of

DW (2n − 1, q) is generated by the n rows of the matrix [In B], with B = (bi j )1≤i, j≤n

such that bi j = b ji for all i, j ∈ {1, . . . , n}. Let C denote the square submatrix of B
consisting of all entries bi j with i ∈ H1 and j ∈ H2. Let C ′ denote the square submatrix

of B consisting of all entries bi j with i ∈ H2 and j ∈ H1. Then C ′ = CT . Now,

(−1)σ (K\H1) X (K\H1)∪H ′
2
= det(C) = det(C ′) = (−1)σ (K\H2) X (K\H2)∪H ′

1
.

The equality X2367 + X2468 = −X3478 follows from a direct verification. �

Consider now the ordered basis B of V (42, q) consisting of the following 16 vectors

of weight 1:

e1234, e5678, e1238, e4567, e1247, e3568, e1278, e3456, e1346, e2578, e1467, e2358,

e1678, e2345, e2457, e1368,

the following 24 vectors of weight 2:

e1235 − e2348, e1567 − e4678, e1236 + e1348, e4578 + e2567,

e1237 − e1248, e3567 − e4568, e1245 + e2347, e3678 + e1568,

e1246 − e1347, e2568 − e3578, e1257 − e2478, e1356 − e3468,

e1258 + e2378, e3467 + e1456, e1267 + e1478, e3458 + e2356,

e1268 − e1378, e2456 − e3457, e1345 − e2346, e1578 − e2678,

e1358 − e2368, e1457 − e2467, e1367 − e1468, e2357 − e2458,

and the following 2 vectors of weight 4:

e1357 + e2468 − e1256 − e3478, e1458 + e2367 − e1256 − e3478.

With respect to this basis, the bilinear form is represented by the matrix

diag(M3, . . . , M3︸ ︷︷ ︸
8 times

, M4, . . . , M4︸ ︷︷ ︸
12 times

, M5),

where M3 = (
0 1

1 0
), M4 = (

0 2

2 0
) and M5 = (

4 2

2 4
). Note that det(M5) = 12.

From the previous discussion, the following theorem readily follows.

Theorem 4.7. � If q = 2r , then DW (7, q) ∼= DQ(8, q) and the minimal polarized
full embedding of DW (7, q) is the spin embedding (vector dimension 16);� If q = 3r , then the minimal polarized full embedding of DW (7, q) has vector di-
mension 41;� If 2r = q = 3r , then the Grassmann embedding of DW (7, q) (of vector dimension
42) is the unique polarized full embedding of DW (7, q).

The rank 5 case

In this case e determines an embedding of DW (9, q) into a subspace PG(131, q) of

PG(251, q). Similarly as in Lemma 4.6, we can show the following:
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Lemma 4.8. The subspace PG(131, q) of PG(251, q) is described by the following
120 equations:

(−1)σ (K\H1) X (K\H1)∪H ′
2
= (−1)σ (K\H2) X (K\H2)∪H ′

1

for all subsets H1 and H2 of K satisfying |H1| = |H2| and H1 = H2, and

X3,4,5,8,9 + X2,3,5,7,8 + X2,4,5,7,9 = 0, X3,4,5,8,10 + X2,4,5,7,10 = X2,3,4,7,8,

X2,3,5,7,10 + X2,3,4,7,9 = X3,4,5,9,10, X2,4,5,9,10 + X2,3,4,8,9 + X2,3,5,8,10 = 0,

X1,4,5,9,10 + X1,3,4,8,9 + X1,3,5,8,10 = 0, X4,5,6,9,10 + X3,4,6,8,9 + X3,5,6,8,10 = 0,

X4,5,7,9,10 + X3,4,7,8,9 + X3,5,8,7,10 = 0, X2,4,7,8,9 + X2,5,7,8,10 = X4,5,8,9,10,

X3,5,8,9,10 + X2,5,7,9,10 = X2,3,7,8,9, X3,4,8,9,10 + X2,3,7,8,10 + X2,4,7,9,10 = 0.

One can now easily find ordered bases of V (132, q) consisting of 32 vectors of weight

1, 80 vectors of weight 2 and 20 vectors of weight 4. One can take such an ordered

basis, such that the bilinear form is represented by the matrix

diag(M1, . . . , M1︸ ︷︷ ︸
16 times

, M2, . . . , M2︸ ︷︷ ︸
40 times

, M6, . . . , M6︸ ︷︷ ︸
5 times

),

with M1 and M2 as before and

M6 =

⎡⎢⎢⎢⎢⎣
0 0 4 2

0 0 2 4

−4 −2 0 0

−2 −4 0 0

⎤⎥⎥⎥⎥⎦ .

E.g., the following four linearly independent vectors of V (132, q) give rise to the

matrix M6:

e3,4,5,8,9 + e1,2,5,6,7 − e2,4,5,7,9 − e1,3,5,6,8,

e2,3,5,7,8 + e1,4,5,6,9 − e2,4,5,7,9 − e1,3,5,6,8,

e3,4,8,9,10 + e1,2,6,7,10 − e2,4,7,9,10 − e1,3,6,8,10,

e2,3,7,8,10 + e1,4,6,9,10 − e2,4,7,9,10 − e1,3,6,8,10.

From the previous discussion, the following result readily follows.

Theorem 4.9. � If q = 2r , then DW (9, q) ∼= DQ(10, q) and the minimal polarized
full embedding of DW (9, q) is the spin embedding (vector dimension 32);� If q = 3r , then the minimal polarized full embedding of DW (9, q) has vector di-
mension 122;� If 2r = q = 3r , then the Grassmann embedding of DW (9, q) (of vector dimension
132) is the unique polarized full embedding of DW (9, q).
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The case q = 3r

We have shown in Theorems 4.7 and 4.9 that the Grassmann embedding of DW (2n −
1, 3r ), n ∈ {4, 5}, is not isomorphic to the minimal embedding of DW (2n − 1, 3r ).

We will now show that this property holds for any n ≥ 4. We start with the following

property of Grassmann embeddings which holds for any prime power q .

Proposition 4.10. Let e denote the Grassmann embedding of � = DW (2n − 1, q).
Then for every convex subspace F of � of diameter at least 2, eF is isomorphic to the
Grassmann embedding of F.

Proof:

(1) Suppose first that F is a max of � determined by the point xF of W (2n − 1, q).

We will use the same notation as in the beginning of this section. Without loss of

generality, we may suppose that xF = (1, 0, . . . , 0). A point x of F is generated

by the rows of a matrix of the following form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0 · · · 0

0 x1,1 · · · x1,n−1 0 x1,n · · · x1,2n−2

0 x2,1 · · · x2,n−1 0 x2,n · · · x2,2n−2

...
...

. . .
...

...
...

. . .
...

0 xn−1,1 · · · xn−1,n−1 0 xn−1,n · · · xn−1,2n−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where the (n − 1) × (2n − 2)-matrix A with entries xi, j satisfies

A ·
[

0n−1 In−1

−In−1 0n−1

]
· AT = 0.

Writing down the Grassmann coordinates for the point x , we easily see that the

restriction of f to F defines an embedding of F which is isomorphic to the

Grassmann embedding of F .

(2) Suppose now that F has diameter less than n − 1. Then consider a chain F = F0 ⊆
F1 ⊆ · · · ⊆ Fk = � of convex subspaces of � such that Fi , i ∈ {0, . . . , k − 1}, is

a max of Fi+1. By downwards induction on i ∈ {0, 1, . . . , k}, we easily see that

every embedding eFi , i ∈ {0, . . . , k}, is isomorphic to the Grassmann embedding

of Fi . �

Corollary 4.11. Let � be the dual polar space DW (2n − 1, q) with n ≥ 4 and q =
3r . Then the minimal full polarized embedding e of � is a proper projection of the
Grassmann embedding.

Proof: Let F denote a convex subspace of diameter 4. Then by Theorem 1.6, eF is

isomorphic to the minimal full polarized embedding of F . By Theorem 4.7, eF is not
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isomorphic to the Grassmann embedding of F . By Proposition 4.10, it now follows

that e is not isomorphic to the Grassmann embedding of �. �
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