
Eur. Phys. J. C (2018) 78:851
https://doi.org/10.1140/epjc/s10052-018-6321-z

Regular Article - Theoretical Physics

Minimal geometric deformation in a cloud of strings

Grigoris Panotopoulos1,a, Ángel Rincón2,b

1 Centro de Astrofísica e Gravitação, Departamento de Física, Instituto Superior Técnico-IST, Universidade de Lisboa-UL, Av. Rovisco Pais,
1049-001 Lisbon, Portugal

2 Instituto de Física, Pontificia Católica Universidad de Chile, Av. Vicuña Mackenna, 4000 Santiago, Chile

Received: 5 September 2018 / Accepted: 9 October 2018 / Published online: 23 October 2018
© The Author(s) 2018

Abstract We find new exact analytical solutions in three-
dimensional gravity applying the Minimal Geometric Defor-
mation approach in a cloud of strings.

1 Introduction

Einstein’s General Relativity (GR) [1], is nowadays con-
sidered to be one of the cornerstones of modern theoreti-
cal physics, and it provides us with the framework to ade-
quately describe and understand various aspects of astro-
physical objects and Cosmology. Many of its predictions
have been verified observationally, starting from the classi-
cal tests in the old days [2,3], and recently with the historical
LIGO’s direct detection of gravitational waves from black
holes mergers [4–6]. For a recent review on the tests of GR
see [7].

In spite of its mathematical beauty, handling problems of
physical relevance in GR is usually a formidable task. Since
it is a highly non-linear theory, the principle of superposition
valid in linear differential equations does not apply here, and
finding exact solutions has been always a challenge, see [8]
for known exact solutions to Einstein’s field equations.

A new elegant method that allows us to obtain new exact
solutions starting from a known one has received consid-
erable attention recently [9]. The so-called Minimal Geo-
metric Deformation (MGD) approach, which was originally
introduced in [10] in the context of the brane-world scenario
[11,12], has been proven to be a powerful tool in the inves-
tigation of the properties of self-gravitating objects, such as
relativistic stars [13–19] or black hole solutions [20–22], see
also [23–28].

The MGD approach has been successfully extended in
[21] and applied in [29], highlighting the potential and power
of this new technique. More recently, a method to obtain the
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isotropic generator of any anisotropic solution was developed
in [30] and applied in [31].

The Bañados, Teitelboim and Zanelli (BTZ) black hole
solution [32–34] in (1+2) dimensions marked the birth of the
interest in lower-dimensional gravity. The absence of propa-
gating degrees of freedom as well as its deep connection to the
Chern-Simons term only [35–37] make three-dimensional
gravity special, and at the same time a framework which allow
us to get insight into realistic black holes in four dimensions
by studying a mathematically simpler three-dimensional sys-
tem.

The BTZ black hole is sourced by a negative cosmological
constant, but other possibilities, such as scalar fields [38]
and electromagnetic fields [39–41] (for studies on the scale-
dependent version of some models see [42–48]) also exist.
One option less studied in the literature, which leads to a
black hole solution alternative to the BTZ one, is a cloud
of strings [49]. The matter contribution is described by the
Nambu-Goto action, which is well-known both from string
theory [50] and from the study of topological defects [51].
The black hole solution was obtained in [52], and for related
studies on the topic see e.g. [53–56].

In the present work we apply the MGD approach to obtain
new exact solutions in (1+2) gravity, starting from the known
solution (for which the coupling constant α = 0, see next sec-
tion) that corresponds to a cloud of strings. We follow closely
a recent work [57], in which the authors applied the MGD
approach and obtained new exact solutions in (1+2) gravity,
where the known solution corresponded to the BTZ one. Our
work is organized as follows: In the next section we briefly
present the MGD method, and we apply it to obtain new solu-
tions in the third section. Finally we conclude in Sect. 4. We
adopt the mostly negative metric signature, (+,−,−).
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2 Field equations and minimal geometric deformation

The starting point is Einstein’s field equations

Gμν = Rμν − 1

2
Rgμν = −κ2Tμν (1)

where κ2 = 8πG, and the total stress-energy tensor Tμν has
two contributions

Tμν = Mμν + αθμν (2)

The first source Mμν is supposed to lead to a known solution,
while the second source is coupled to the first one via the
coupling constant α.

Seeking static circularly symmetric solutions we adopt the
coordinate system (t, r, φ), we make as usual for the metric
tensor the ansatz

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dφ2 (3)

and we obtain the following set of coupled differential equa-
tions for the two unknown metric functions ν(r), λ(r)

κ2(M0
0 + αθ0

0 ) = −λ′e−λ

2r
(4)

κ2(M1
1 + αθ1

1 ) = ν′e−λ

2r
(5)

κ2(M2
2 + αθ2

2 ) = −e−λ

4
[ν′(λ′ − ν′) − 2ν′′] (6)

where the prime denotes differentiation with respect to the
radial coordinate.

Notice that the system at hand may be viewed as an
anisotropic fluid with energy momentum tensor

Tμ
ν = diag(ρ,−pr ,−pt ) (7)

where the energy density ρ and the pressures pr , pt are given
by

ρ ≡ M0
0 + αθ0

0 (8)

pr ≡ −(M1
1 + αθ1

1 ) (9)

pt ≡ −(M2
2 + αθ2

2 ) (10)

while the anisotropy Δ ≡ pt − pr is given by

Δ = M1
1 − M2

2 + α(θ1
1 − θ2

2 ) (11)

It is worth mentioning that in the three-dimensional case stud-
ied here both the isotropic and the anisotropic sector satisfy
Einstein’s equations, contrary to the four-dimensional cases
where the anisotropic sector satisfies “quasi-Einstein” field
equations [9,20]. This was already pointed out in [57].

The MGD method allows us to solve the full problem in
two steps as follows: First, we assume that the solution to
the simpler problem for α = 0 is known, for some given
functions ν(r) and e−λ(r) = μ(r). Then, when we turn the

α parameter on we assume for simplicity that the first metric
function ν(r) remains the same, while the presence of the
second source modifies the second metric function as follows

e−λ(r) = μ(r) + αh(r) (12)

where the so called deformation function satisfies the equa-
tions

2κ2rθ0
0 = h′ (13)

2κ2rθ1
1 = hν′ (14)

4κ2θ2
2 = [h′ν′ + 2hν′′ + h(ν′)2] (15)

Finally, since the two energy momentum tensors are sepa-
rately conserved, the components of the second source must
satisfy the following condition

(θ1
1 )′ − 1

2
ν′(θ0

0 − θ1
1 ) − 1

r
(θ2

2 − θ1
1 ) = 0 (16)

3 New exact solution in 3D cloud of strings

Here, following [57], we apply the MGD method to obtain
exact analytical solutions to three-dimensional Einstein’s
field equations, where some source with stress-energy tensor
θμν is coupled to a cloud of strings with stress-energy tensor

Mμ
ν = ξ

r
diag(1, 1, 0) (17)

so we may identify the corresponding fluid parameters to be

ρcloud = ξ

r
(18)

pcloud
r = −ξ

r
(19)

pcloud
t = 0 (20)

The black hole solution corresponding to this kind of mat-
ter was obtained in [52], and it is given by

eν(r) = μ(r) = −M + 2ξr (21)

with M being the mass of the black hole, and there is a single
horizon at rH = M/(2ξ). This would be the known solution
corresponding to the initial simple problem for α = 0. To
obtain the full solution when both terms in the stress-energy
tensor are present we have to determine the deformation func-
tion.

3.1 General constraint

Since there are four unknown functions (the deformation and
the components of the second gravitational source) and only
three independent equations, it is necessary to assume a cer-
tain condition between the components of θ

μ
ν in order to close
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the system of equations and obtain the solution. Therefore,
similar to [57], here we shall impose the constraint

θ1
1 = aθ0

0 + bθ2
2 (22)

with two arbitrary constant parameters a, b. Using the equa-
tions satisfied by the deformation function we obtain an ordi-
nary differential equation of first order for h(r) of the form

dh

dr
= B

A
h (23)

where the functions A(r), B(r) are found to be

A = a

r
+ bν′

2
(24)

B = ν′

r
− bν′′ − b(ν′)2

2
(25)

The equation above can be integrated directly and we obtain
for the deformation function the expression

h = c1
−M + 2ξr

| − aM + ξ(2a + b)r |k (26)

where c1 is an arbitrary integration constant, while the power
k is given by

k = 2(a − 1)

2a + b
(27)

In the following sections we consider two concrete examples.

3.2 Particular constraint # 1

First, let us assume that θ1
1 = θ2

2 , which corresponds to a =
0, b = 1. In this case the deformation function takes the form

h(r) = c1(ξr)
2(−M + 2ξr) (28)

and therefore the metric function is computed to be

e−λ =
[
1 + αc1

(
ξr

)2
]
(2ξr − M) (29)

The components of θμν can be explicitly computed one
by one

θ1
1 = θ2

2 = c1ξ
3

κ2 r (30)

θ0
0 = c1ξ

2

κ2 (−M + 3ξr) (31)

and it is easy to verify that for the solution just obtained the
condition of energy conservation (16) is satisfied.

The fluid parameters can be computed using the equations
(8), (9) and (10) to obtain

ρ = ξ

r
− α

c1ξ
2

κ2 (M − 3ξr) (32)

pr = −ξ

r
− α

c1ξ
3

κ2 r (33)

pt = −α
c1ξ

3

κ2 r (34)

and the anisotropy may be easily computed using its defini-
tion Δ = pt − pr .

Finally, to check for potential singularities we compute
the Ricci scalar as well as the Kretschmann scalar, which are
found to be

R = −4ξ

r

[
1 − 3

2
αc1ξr(M − 4ξr)

]
(35)

K = 8ξ2

r2

[
1 − 2αc1ξr(M − 3ξr)

+ 3

2
α2c2

1

(
ξr

)2
(
M2 − 8Mξr + 18ξ2r2

) ]
(36)

Clearly, in both expressions the first term comes from the
cloud of strings, while the other terms come from the cou-
pling between the sources. The only singularity is the usual
singularity at the center as r → 0 (Fig. 1).

Fig. 1 Fluid parameters ρ, pr , pt versus radial coordinate r for the
particular constraint # 1. Left panel: Energy density ρ vs radial coor-
dinate r for different values of the parameter α. Middle panel: Radial
pressure pr vs radial coordinate r for different values of the parameter

α. Right panel: Tangential pressure pt vs radial coordinate r for differ-
ent values of the parameter α. Shown are: (i) α = 0 (solid black line),
(ii) α = 0.2 (dashed blue line) and, (iii) α = 0.4 (dotted red line). The
other two parameters have been taken equal to unity, M = ξ = 1
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3.3 Particular constraint # 2

In the second example let us assume that θμν is traceless,
θ

μ
μ = 0, which corresponds to the case a = −1 = b. In this

case the deformation function takes the form

h(r) = c1
−M + 2ξr

(−M + 3ξr)4/3 (37)

and, as before, the metric function can be written in terms of
the deformation function as

e−λ =
[

1 + αc1

(
1

3ξr − M

)4/3
]

(2ξr − M) (38)

while the components of θμν are computed to be

θ0
0 = −c1

ξ(−M + ξr)

κ2r(−M + 3ξr)7/3 (39)

θ1
1 = c1

ξ

κ2r(−M + 3ξr)4/3 (40)

θ2
2 = −c1

2ξ2

κ2(−M + 3ξr)7/3 (41)

It is easy to check that the trace is indeed zero. The fluid
parameters can be computed using the Eqs. (8), (9) and (10)
to obtain

ρ = ξ

r
− α

c1ξ

κ2r

(ξr − M)

(3ξr − M)7/3 (42)

pr = −ξ

r
− α

c1ξ

κ2r

(
1

3ξr − M

)4/3

(43)

pt = α
2c1ξ

2

κ2(3ξr − M)7/3 (44)

and the anisotropy may be easily computed using its defini-
tion Δ = pt − pr .

Similarly to the previous case, to check for potential
singularities we compute the Ricci scalar as well as the
Kretschmann scalar, which are computed to be

R = −4ξ

r

[
1 − αc1

(
M2 − Mξr + ξ2r2

)

(3ξr − M)10/3

]
(45)

Fig. 2 Fluid parameters ρ, pr , pt versus radial coordinate r for the
particular constraint # 2. Left panel: Energy density ρ̃ vs radial coor-
dinate r for different values of the parameter α. Middle panel: Radial
pressure pr vs radial coordinate r for different values of the parameter

α. Right panel: Tangential pressure pt vs radial coordinate r for differ-
ent values of the parameter α. Shown are: (i) α = 0 (solid black line),
(ii) α = 0.2 (dashed blue line) and, (iii) α = 0.4 (dotted red line). The
other two parameters have been taken equal to unity, M = ξ = 1

Fig. 3 Left panel: Metric function e−λ vs radial coordinate r for the
particular constraint # 1 assuming different values of the parameter α.
Right panel: Metric function e−λ vs radial coordinate r for different
values of the parameter α for the particular constraint # 2 assuming

different values of the parameter α. Shown are: (i) α = 0 (solid black
line), (ii) α = 0.2 (dashed blue line) and, (iii) α = 0.4 (dotted red line).
The other two parameters have been taken equal to unity, M = ξ = 1
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K = 8ξ2

r2

[
1 + αc1

2(M − ξr)

(3ξr − M)7/3 + (
αc1

)2

×2ξ2r2(3M − 2ξr)2 + (M − ξr)2(M − 3ξr)2

(−M + 3ξr)20/3

]

(46)

We recover the expressions corresponding to a cloud of
strings in the limit α → 0. We see that apart from the usual
singularity at r = 0, there is another one at r� = M/(3ξ) <

rH . Therefore we conclude that since it is located into the
forbidden zone it is not a physical singularity.

We remark in passing that in both concrete examples con-
sidered here the horizon remains the same. In the figures we
show the impact of the coupling constant α on the solution
in the two concrete examples setting c1 = M = ξ = 1 (Figs.
2, 3).

4 Conclusions

To summarize, in the present work we have obtained
new exact analytical solutions in a three-dimensional cloud
of strings applying the Minimal Geometric Deformation
approach. Two concrete examples are presented in detail,
where the Ricci and Kretschmann scalars are computed too,
and the impact of the coupling constant on the solution is
investigated. We find, among other things, that there is a sin-
gle horizon and the usual singularity at the center (and no
other) with or without the additional source.
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