Minimal immersions of Riemannian manifolds

By Tsunero TAKAhashi*)

(Received June 14, 1966)

Introduction

An isometric immersion $M \rightarrow M^{\prime}$ of a Riemannian manifold M in another manifold M^{\prime} is called to be minimal, if each of its mean curvatures vanishes. In this paper we shall deal with minimal immersions of Riemannian manifolds in a space of constant curvature.

In § 1 we shall summarize notations and formulas concerning immersions which are all well-known, and give a criterion for a Riemannian manifold to be immersed minimally in a space of constant curvature Theorem 1].

In § 2 we shall deal with an immersion $x: M \rightarrow R^{m+k}$ of a Riemannian m manifold in an $(m+k)$-dimensional Euclidean space R^{m+k}. If the image $x(M)$ of M by x is contained in an $(m+k-1)$-dimensional sphere S^{m+k-1} in R^{m+k}, we shall call that the immersion x realizes an immersion in a sphere. Since the immersion x can be considered as a vector valued function on M, we can apply Laplace-Beltrami operator Δ to x. Theorem 2 asserts that the immersion x is minimal if and only if $\Delta x=0$, and Theorem 3 asserts that the immersion x realizes a minimal immersion in a sphere if and only if $\Delta x=\lambda x$ for some constant $\lambda \neq 0$ and the radius of the sphere is completely determined by λ. Theorem 2 has been obtained by J. Eells and J. H. Sampson [1].

In §3 we shall give an example of a Riemannian manifold which admits an immersion x in a Euclidean space satisfying $\Delta x=\lambda x$, and prove that the compact homogeneous Riemannian manifold with irreducible linear isotropy group admits a minimal immersion in a sphere. This example is motivated by a work of T. Nagano [2]. The author is grateful to Professors T. Nagano and M. Obata for their many valuable suggestions in this research.

§ 1. Notations and formulas

Let M and M^{\prime} be Riemannian manifolds of dimension m and $m+k$ respectively and $\varphi: M \rightarrow M^{\prime}$ be an isometric immersion of M in M^{\prime}. In terms of local coordinates $\left(\xi^{1}, \cdots, \xi^{m}\right)$ of M and $\left(\eta^{1}, \cdots, \eta^{m+k}\right)$ of M^{\prime}, the immersion φ is

[^0]locally represented by
$$
\eta^{A}=\eta^{A}\left(\xi^{1}, \cdots, \xi^{m}\right) \quad(A=1, \cdots, m+k)
$$

If we denote $\partial_{i} \eta^{A}$ by B^{A} where $\partial_{i}=\partial / \partial \xi^{i}$, we have

$$
\begin{equation*}
g_{j i}=B_{j}^{B} B_{i}^{A} g_{B A}^{\prime} * * \tag{1.1}
\end{equation*}
$$

where $g_{j i}$ and $g_{A B}^{\prime}$ are the metric tensors of M and M^{\prime} respectively. Let n_{α}^{n} $(\alpha=1, \cdots, k)$ be mutually orthogonal unit normals, $H_{\alpha i}(\alpha=1, \cdots, k)$ be the second fundamental tensor and $\underset{\alpha \beta}{H_{j}}(\alpha, \beta=1, \cdots, k)$ be the third fundamental tensor of the immersion. Then the following formulas are well-known [3].

$$
\begin{align*}
& \nabla{ }_{j} B_{i}^{A}=\sum_{\alpha=1}^{k} H_{\alpha i} N_{\alpha} N^{A} \tag{1.2}\\
& \nabla_{j} N_{\alpha}^{\boldsymbol{A}}=-{\underset{a}{j}}_{{ }_{j}} B_{i}^{A}+\sum_{\beta=1}^{k}{\underset{j}{j}}^{H_{\beta}} N^{\boldsymbol{A}} \quad(\alpha=1, \cdots, k) \tag{1.3}\\
& K_{k j i h}=B_{k}^{D} B_{j}^{C} B_{i}^{B} B_{h}^{A} K_{D C B A}^{\prime}+\sum_{a=1}^{k}\left(H_{\alpha}{ }_{k h} H_{j i z}-\underset{\alpha}{H_{k i}} H_{j h}\right) \tag{1.4}
\end{align*}
$$

where $N_{\alpha}^{N^{A}}$ are the components of η_{α} with respect to the coordinates $\left(\eta^{A}\right)$ in $M^{\prime}, K_{k j i n}^{\alpha}$ and $K_{D C B A}^{\prime}$ are the curvature tensors of M and M^{\prime} and ∇_{j} is the socalled van der Waerden-Bortolotti operator of covariant differentiation. If we denote the Christoffel symbols of M and M^{\prime} by $\left\{\begin{array}{c}i \\ k j\end{array}\right\}$ and $\left\{\begin{array}{c}A \\ C B\end{array}\right\}^{\prime}$ respectively, $\nabla_{j} B_{i}^{A}$ and $\nabla_{j} N_{\alpha}^{A}$ are given by

$$
\begin{aligned}
& \nabla_{j} B_{i}^{A}=\partial_{j} B_{i}^{A}-\left\{\begin{array}{c}
h \\
j i
\end{array}\right\} B_{h}^{A}+\left\{\begin{array}{c}
A \\
B C
\end{array}\right\}^{\prime} B_{j}^{C} B_{i}^{B} \\
& \nabla_{j} N_{\alpha}^{A}=\partial_{j} N_{\alpha}^{A}+\left\{\begin{array}{c}
A \\
C B
\end{array}\right\}^{\prime} B_{j}^{C} N_{\alpha}^{B} \quad(\alpha=1, \cdots, k)
\end{aligned}
$$

$\underset{\alpha}{h}(\alpha=1, \cdots, k)$, which are by definition ${\underset{\alpha}{ }}_{H_{j i}} g^{j i}$, are called the mean curvatures of the immersion and the immersion is called to be minimal if and only if $h=0(\alpha=1, \cdots, k)$.

If M^{\prime} is a space of constant curvature c, the curvature tensor of M^{\prime} has the form

$$
\begin{equation*}
K_{D C B A}^{\prime}=c\left(g_{D A}^{\prime} g_{B C}^{\prime}-g_{D B}^{\prime} g_{C A}^{\prime}\right) \tag{1.5}
\end{equation*}
$$

and so from (1.4) and (1.5) the formula (1.4) are written by

[^1]\[

$$
\begin{equation*}
K_{k j i h}=c\left(g_{k h} g_{j i}-g_{k i} g_{j h}\right)+\sum_{\alpha=1}^{k}\left(H_{\alpha} H_{\alpha} H_{j i}-H_{\alpha i i} H_{\alpha} H_{j h}\right) . \tag{1.6}
\end{equation*}
$$

\]

Tranvecting (1.6) with $g^{k h}$, we obtain

$$
K_{j i}=c(m-1) g_{j i}-\sum_{\alpha=1}^{k} H_{\alpha} H_{\alpha} H_{i \hbar} g^{k h},
$$

where $K_{j i}$ is Ricci tensor of M. Thus we have

$$
c(m-1) g_{j i}-K_{j i}=\sum_{\alpha=1}^{k} H_{j k} H_{\alpha h} g^{k h} .
$$

The right hand member of this equation is positive semi definite. Thus we have the theorem.

Theorem 1. If a Riemannian m-manifold M admits a minimal immersion in a space of constant curvature c, the tensor $c(m-1) g-K$ is positive semidefinite where g is metric tensor and K is Ricci tensor of M.

Now let $M^{\prime \prime}$ be a third Riemannian manifold of dimension $m+k^{\prime}$, and assume that there exist isometric immersions $\varphi^{\prime}: M-M^{\prime \prime}$ and $\varphi^{\prime \prime}: M^{\prime \prime}-M^{\prime}$ such that $\varphi=\varphi^{\prime \prime} \circ \varphi^{\prime}$. If we take the unit normals ${\underset{\alpha}{\alpha}}_{n^{\prime}}\left(\alpha=1, \cdots, k^{\prime}\right)$ for the immersion φ^{\prime} and ${ }_{\beta}^{n}\left(\beta=k^{\prime}+1, \cdots, k\right)$ for the immersion $\varphi^{\prime \prime}$, then denoting ${\underset{\alpha}{n}}_{n=d \varphi^{\prime \prime}\left(n_{\alpha}^{\prime}\right)}\left(\alpha=1, \cdots, k^{\prime}\right),{\underset{r}{r}}_{n}(\gamma=1, \cdots, k)$ are considered as the unit normals for the immersion φ. The following lemma is easily verified.

Lemma. Notations being as above, let $\underset{\alpha}{H_{j i}^{\prime}}\left(\alpha=1, \cdots, k^{\prime}\right)$ be the second fundamental tensor of the immersion φ^{\prime} with respect to the unit normals n_{α}^{\prime}, we have ${\underset{\alpha}{\alpha}}_{H_{j i}}^{\prime}=\underset{\alpha}{H_{j i}}\left(\alpha=1, \cdots, k^{\prime}\right)$.

§ 2. The minimal immersion in a sphere

Let M be a Riemannian m-manifold and $x: M \rightarrow R^{m+k}$ be an isometric immersion of M in a Euclidean $(m+k)$-space R^{m+k}. Let $\left(\xi^{1}, \cdots, \xi^{m}\right)$ be a local coordinates in M and $n(\alpha=1, \cdots, k)$ be mutually orthgonal unit normals. Then the formulas (1.2) and (1.3) are written in the vector forms as follows.

$$
\begin{gather*}
\nabla_{j} x_{i}=\partial_{j} x_{i}-\left\{\begin{array}{l}
h \\
j i
\end{array}\right\} x_{h}=\sum_{\alpha=1}^{k} H_{\alpha} n \alpha_{\alpha} \tag{2.1}\\
\nabla_{j} n=\partial_{j_{\alpha}} n=-H_{\alpha}{ }_{j}{ }^{i} x_{i}+\sum_{\beta=1}^{k} H_{\alpha \beta} H_{\beta} \quad(\alpha=1, \cdots, k) \tag{2.2}
\end{gather*}
$$

where $x_{i}=\partial_{i} x$.
By definition $\Delta x=-g^{j i} V_{j} x_{i}$ and therefore from (2.1) we have

$$
\begin{equation*}
\Delta x=-\sum_{\alpha=1}^{k} h n . \tag{2.3}
\end{equation*}
$$

The formula (2.3) implies that $\Delta x=0$ if and only if $\underset{\alpha}{h=0(\alpha=1, \cdots, k)}$ which means that the immersion x is minimal. Thus we have the theorem.

THEOREM 2. An isometric immersion $x: M \rightarrow R^{m+k}$ of a Riemannian m manifold M in a Euclidean $(m+k)$-space R^{m+k} is minimal if and only if $\Delta x=0$.

From this theorem it might be natural to ask what the immersion x satisfying $\Delta x=\lambda x(\lambda \neq 0)$ is. The answer is, roughly speaking, that such an immersion realizes a minimal immersion in a sphere and conversely. More precisely,

THEOREM 3. If an isometric immersion $x: M \rightarrow R^{m+k}$ of a Riemannian m manifold M in a Euclidean $(m+k)$-space satisfies $\Delta x=\lambda x$ for some constant $\neq 0$, then λ is necessarily positive and x realizes a minimal immersion in a sphere S^{m+k+1} of a radius $\sqrt{m / \lambda}$ in R^{m+k} : Conversely if x realizes a minimal immersion in a sphere of radius a in R^{m+k}, then x satisfies $\Delta x=\lambda x$ up to a parallel displacement in R^{m+k} and $\lambda=m / a^{2}$.

Proof. Assume $\Delta x=\lambda x(\lambda \neq 0)$. Then from (2.3) we have

$$
\begin{equation*}
x=-\frac{1}{\lambda} \sum_{\alpha=1}^{k} h n . \tag{2.4}
\end{equation*}
$$

Differentiating (2.4) by ξ^{j} and using (2.2) we obtain

$$
x_{j}=\frac{1}{\lambda} \sum_{\alpha=1}^{k} \underset{\alpha \alpha}{h} H_{j}{ }^{i} x_{i}-\frac{1}{\lambda} \sum_{\alpha=1}^{k}\left(\partial_{j} h+\sum_{\beta=1}^{k} h H_{\beta \alpha} H_{j}\right) n .
$$

Thus we have

$$
\begin{equation*}
\frac{1}{\lambda} \sum_{\alpha=1}^{k} h H_{\alpha}=g_{j i} \tag{2.5}
\end{equation*}
$$

Transvecting this equation with $g^{j i}$, we have

$$
\begin{equation*}
-\frac{1}{\lambda} \sum_{\alpha=1}^{k} \underset{\alpha}{(h)^{2}}=m \tag{2.6}
\end{equation*}
$$

from which it follows that λ must be positive. From (2.4) the length $|x|$ of the position vector x is given by $\frac{1}{\lambda} \sqrt{\sum_{\alpha=1}^{k}(h)^{2}}$, hence we have

$$
|x|=\sqrt{m / \lambda}=\text { const. }=a
$$

Therefore the image $x(M)$ of M is contained in a sphere of radius a centred at the origin of R^{m+k} which means the immersion x realizes an immersion in a sphere.

Since the vector x is normal to M (precisely $x(M)) n_{k}$ can be chosen as $(1 / a) x$ and then $n_{\alpha}(\alpha=1, \cdots, k-1)$ are tangent to the sphere. Then the formula (2.2) gives

$$
\begin{equation*}
-H_{k}{ }_{j} x_{i}+\sum_{\alpha=1}^{k-1} H_{k \alpha} n=\frac{1}{a} x_{j} \tag{2.7}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\underset{k}{H_{j i}}=-\frac{1}{a} g_{j i} \quad \text { and } \underset{k \alpha}{H_{j}}=0 \quad(\alpha=1, \cdots, k-1) \tag{2.8}
\end{equation*}
$$

and from which we know $\underset{k}{h}=-m / a=-\sqrt{\lambda m}$. Substituting this in (2.6) we find $\sum_{\alpha=1}^{k-1}(h)^{2}=0$ and hence we get ${ }_{\alpha}^{h}=0$ for $\alpha=1, \cdots, k-1$. Since from the Lemma in $\S 1, H_{\alpha i}(\alpha=1, \cdots, k-1)$ are equal to the second fundamental tensor of the immersion in S^{m+k-1} induced from x. Thus x realizes a minimal immersion in a sphere.

Conversely assume that x realizes a minimal immersion in a sphere S^{m+k-1} of radius a. By a parallel displacement in R^{m+k}, S^{m+k-1} may be assumed to be centred at the origin of R^{m+k}. Then we can take mutually orthogonal unit normals ${ }_{\alpha}(\alpha=1, \cdots, k)$ of the immersion such as ${ }_{k}^{n}=(1 / a) x$ which is normal to S^{m+k-1}. In our case the equation (2.7) and therefore (2.8) are automatically satified, and since ${ }_{\alpha} H_{j i}(\alpha=1, \cdots, k-1)$ are considered as the second fundamental tensor of the induced immersion in S^{m+k-1}. we have $h_{\alpha}=0(\alpha=1, \cdots$, $k-1$) by the assumption. Then we have

$$
\Delta x=-\sum_{\alpha=1}^{k} h_{\alpha \alpha} n=-\underset{k}{h n}=-\left(h_{k} / a\right) x .
$$

From (2.8), we know ${ }_{k}=-(m / a)$ and therefore we obtain

$$
\Delta x=\left(m / a^{2}\right) x .
$$

This completes the proof of Theorem 3.

§ 3. Application

Let M be a compact homogeneous Riemannian manifold, and assume that the linear isotropy group is irreducible on the tangent space.

For a constant $\lambda \neq 0$ we shall denote by V_{λ} the set of all functions on M satisfying $\Delta f=\lambda f$. Since M is compact, each V_{λ} is a finite dimensional vector space over the reals. Assume $\operatorname{dim} V \neq 0$ (such a V necessarily exists). The isometries of M act on the space of functions on M in a natural way and leave V_{λ} invariant. The group G of isometries of M which is transitive on M is compact, and therefore there exists an inner product in V_{λ} invariant by G. We fix one of them. Let $f_{1}, \cdots, f_{n}\left(n=\operatorname{dim} V_{\lambda}\right)$ be an orthonormal basis of V_{λ} with respect to the inner product. We have a mapping $\tilde{x}: M \rightarrow R^{n}$ of M in R^{n} by $x(p)=\left(f_{1}(p), \cdots, f_{n}(p)\right)$ for $p \in M$. We have a covariant tensor
field $g=\sum_{i=1}^{n} d f_{i} \cdot d f_{i}$ on M. For an isometry σ, σ^{*} preserves the inner product of V_{λ}, we know $\sigma^{*}\left(f_{j}\right)=\sum_{i=1}^{n} \sigma_{i j} f_{i}$ and the matrix ($\sigma_{i j}$) is an orthogonal matrix. Then the transform $\sigma^{*}(\tilde{g})$ of \tilde{g} by an isometry σ is calculated as follows.

$$
\begin{aligned}
\sigma^{*}(\tilde{g}) & =\sum_{j=1}^{n} \sigma^{*}\left(d f_{j}\right) \cdot \sigma^{*}\left(d f_{j}\right) \\
& =\sum_{j=1}^{n} d\left(\sigma^{*} f_{j}\right) \cdot d\left(\sigma^{*} f_{j}\right) \\
& ={ }_{i, j, k=1} \sigma_{i j}^{*} \sigma_{k j}^{*} d f_{i} d f_{k} \\
& =\sum_{i=1}^{n} d f_{i} d f_{i} \\
& =\tilde{g} .
\end{aligned}
$$

Thus \tilde{g} is invariant by all isometries of M. Hence by the assumption of the irreducibility of the linear isotropy group, we obtain

$$
\tilde{g}=c^{2} g
$$

for some constant $c \neq 0$ where g is the metric tensor of M. Therefore the mapping defined by $x(p)=(1 / c) \tilde{x}(p)$ gives an isometric immersion of M in R^{n} satisfying $\Delta x=\lambda x$ for $\lambda \neq 0$. Thus from Theorem 3 we have the theorem.

Theorem 4. A compact homogeneous Riemannian manifold with irreducible linear isotropy group admits a minimal immersion in a Euclidean sphere.

Corollary. An irreducible compact symmetric space admits a minima immersion in a Euclidean sphere.

> Tsuda College, Tokyo. and

Research Institute for Mathematical Science, Kyoto University.

Bibliography

[1] J. Eells and J.H. Sampson, Harmonic mapping of Riemannian manifold, Amer. J. Math., 186 (1964), 109-160.
[2] T. Nagano, On the minimum eigenvalues of the Laplacians in Riemannian manifolds, Sci. Papers Coll. Gen. Ed. Univ. Tokyo., 11 (1961) 177-182.
[3] J.A. Schouten, Ricci-Calculus, Springer, 1956.

[^0]: *) This research was partially supported by the Sakko-kai Foundation.

[^1]: ${ }^{* *)}$ In the sequel, we use the summation convention for the Latin indices h, i, j, k, $\cdots=1, \cdots, m$ and $A, B, C, D, \cdots=1, \cdots, m+k$. For the Greek indices their values are indicated in each equation.

