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Minimal Immersions of Surfaces

into 4-Dimensional Space Forms (*).

RENATO DE AZEVEDO TBIBUZY - IRWEN VALLE GUADALUPE (**)

SUMMARY - We find necessary and sufficient conditions for a real function
defined on a surface M to be the normal curvature function of a minimal
immersion of M into the 4-dimensional space Q4 of constant curvature c.
Moreover, we use these conditions to draw some geometrics conclusions.
Also, we study deformations of minimal surfaces in Q4 preserving the
normal curvature function.

1. Introduction.

In the present paper we find necessary and sufficient conditions
for a real function defined on a surface M to be the normal curvature
function of a minimal immersion of M into the 4-dimensional space
Q4 of constant curvature c. Moreover, we use these conditions to draw
some geometric conclusions. Also, we study deformations of minimal
surfaces in Q4 preserving the normal curvature function.

In the following it is convenient to use the notion of the ellipse
of curvature studied by Little [13], Moore and Wilson [14] and Wong
[18]. This is the subset of the normal space defined as ~B(.~, X):

il = 1}, where B is the second fundamental form of the
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immersion and Il il is the norm of the vectors of TpllT. Let .K and .gN
be the Gaussian and the normal curvature of M, and let d denote
the Laplace-Beltrami operator of M.

THEOREM 1. Let x : be a minimal immersion of an oriented
surface M into an orientable 4-dimensional space form of constant
curvature c. Then, at points where the ellipse of curvature is not
a circle, Le. (J~2013c)~2013~&#x3E;0y we have

and consequently

Conversely, if .gN is a real function defined over a simply-connected
surface satisfying (1.1), (1.2) and (I~ - c)2 - .KN &#x3E; 0, then there exists
a minimal isometric immersion into Q§ with normal curvature 

REMARKS 1. In the case I~N = 0 the conditions (1.1) and (1.2)
are equivalent to the Ricci conditions, i.e..K C 0 and that the metric
ds2~= ds2 be flat (see Chern and Osserman [9] and Lawson [12]).

2. R. Schoen has pointed out, that it follows from (1.1) and (1.2)
that if IXNI then the ellipse of curvature is always a circle,
where lM and X, are the Euler characteristics of the tangent bundle
and the normal bundle, respectively.

COROLLARY 1. Let x : .ll~ ~ S4(j ) be a minimal immersion of a
compact oriented surface hC of genus g c 1 into the unit sphere ~(1).
If or then either x(M) is the Clifford torus in S3
or x(.M) is the Veronese surface.

In the following we say that an immersion is full in S4 if it does
not lie in any totally geodesic submanifold. We say that a point p E M
is geodesic if the second fundamental form vanishes at this point
In [3], Bryant proved that there exist many minimal surfaces of all
genera full in S4. The following corollary shows that this is not so
if we make some restrictions on the Gaussian and the normal curvatures.

COROLLARY 2. Let x: M - S4(l) be a minimal immersion of a

compact oriented suface M of genus g &#x3E; 0 into the unit sphere S4
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Suppose that M has no geodesic points. Then

i) If gN does not change sign, lies in S3

ii) If or is the Clifford torus in S3.

REMARK 3. The condition g &#x3E; 0 in the corollary 2 is necessary,
since using Chern [7] it is possible to construct many examples of
minimal surfaces in 54 satisfying 2K&#x3E;KN. The Veronese surface is
one of these examples, and if .KN ~ 0 it is the only example not totally
geodesic. An analogous condition characterizes the generalized Veronese
surfaces in higher codimensions (see do Carmo and Wallach [5] and
Rodriguez and Guadalupe [16]). Moreover, it was proved by Chern
[8] that the normal curvature .gN of a minimal sphere in S4 does not
change sign.

The following results show that the existence of deformations
of minimal surfaces preserving the normal curvature depends only
on the property that the ellipse of curvature is not a circle everywhere.

THEOREM 2. Let x : .M ~ Q~ be a minimal immersion of a simply-
connected surface .M into an orientable 4-dimensional space Q4 of
constant curvature c. If the ellipse of curvature is not a circle every-
where then there exists a continuous deformation of :~ by minimal
isometric immersion xt : .~ -~ Q~ such that (KN)t = .KN for each t E

E [- ~t, Moreover, if x: M - Q4 is another minimal immersion
with then there exists 0 E [- n/2, nl2] such that x and xg
coincide up to a rigid motion.

Theorems 1 and 2 are related th theorem 8 of Lawson [11].
In [4], y Calabi proved that the Gaussian curvature of a minimal

sphere S2 in satisfies

The following theorem shows that this is a sufficient condition to
have a local minimal immersion such that the ellipse of curvature
is always a circle.

THEOREM 3. Let ds2 be a riemannian metric defined over a simple-
connected surface M. Suppose that the Gaussian curvature ..g of this
metric satisfies (1.3) c. Then, there exists a minimal isometric
immersion x : l!Z --~ Q~ such that the ellipse of curvature is a circle

everywhere. Moreover, if x : M - Q§ is another minimal isometric
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immersion such that the ellipse of curvature is a circle, then x and x
coincide up to a rigid motion.

COROLLARY 3. Let ds2 be a riemmanian metric defined over a
surface M of genus g = 0, such that the Gaussian curvature ..g satis-
fies (1.3) and K # 1. Then, there exists a minimal isometric immersion
of M into S4 unique up to rigid motions.

This work was done while the Authors were visiting the University
of California at Berkeley.

2. Preliminaries.

Let lVl be a surface immersed in a Riemannian manifold Qn. For
each p in M, we use TplVl, TM, and NM to denote the tangent
space of lVl at p, the tangent bundle of .M, the normal space of M at
p and the normal bundle of M, respectively. Let V and V be the
covariant differentiations of M and Qn, respectively. Let X and Y
be on T.lVl’, then the second fundamental form B is given by

It is well-known that B(X, Y) is a simmetric bilinear form. For ~
in NM, we write

and V§8 denote the tangential and normal compo-
nents of Vxe, respectively. Then we have

where denotes the scalar product in TM and NM.
The mean curvature vector is defined by

The immersion is said to be a minimal. immersion if H = 0.
Let be the Riemannian curvature tensor associated with V

defined by
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where .X, Y5 Z are on TM. We note that ~.R ( X, Y ) Y, X? = Yl2
where = X, X&#x3E;Y, Y~ - .X, Y&#x3E;2. We define the curva-

ture of NM relative to Vl by the equation

where .~, Y are on TM and e is on N M. With this notation, we can
write the equations of Gauss and Ricci as following

For the second fundamental f orm B, we define the covariant derivate,
denoted by to be

Now, if Qi has constant curvature sectional c, the equation of Mai-
nardi-Codazzi is given by

Suppose now that Q. has a given orientation. Then we can define
the Normal Curvature .KN of M by

where {X, Y} and e4~ are orthonormal oriented bases of 
and N M, respectively. Therefore 0 or KN  0 accord to the
orientation of the normal bundle NM.

An interesting notion in the study of surfaces immersed with
codimension two is that of the ellipse. o f curvature defined as {B(X, X) E
E (X, X~ =1}. To see that it is an ellipse, we just have to look
at the following formula, for .~ = cos 0 ei + sin 0 e2
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frame. So we see that, as X goes once around the unit tangent circle,
B(X, X ) goes twice around the ellipse. Of course this ellipse could
degenerate into a line segment or a point. Everywhere the ellipse
is not a circle we can choose e2~ orthonormal such that u and v
are perpendicular. When this happens they will coincide with the semi-
axes of the ellipse.

3. Proof of Theorems.

PROOF OF THEOREM 1. By Itoh [10] there exist isothermal para-
meters such that putting ~=1,2 then u =
= B(Xl, X1) _ - B(X2, ~2) and v = B(Xl, ~2) are on the semi-axes
of the ellipse at every point where (.K - c)~ - .gN ~ 0. Moreover we
have IXil2 = E = ((~" 2013 c)2 - I~~,)-~~4, i = 1, 2. If we denote À _
- ~, u)i’2 and 1’" = v, v~~~2 we have

where ~, &#x3E; ,u ~ 0 and E = ((K - c) z - _K2~)-1/4. We get (3.1) using
([10], p. 456). The equation (3.2) follows from (2.7). The equation
(3.3) follows from (3.1) and (3.2).

Now we suppose If (K - c)2 - K§ &#x3E; 0 from (3.2) and
(3.3) we obtain

Let e3 = and e4 = be an oriented frame in NM. Then we
have

From Chen ([6], p. 103) we have Therefore using (3.5)
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we get

Hence, from (3.1) and (3.6) we obtain

Therefore we get

Similarly, we obtain

Hence, from (2.6), (2.11), (3.8) and (3.9) follows

where Li denotes the Laplacian of the « flat» metric. We know

d~( f ) = E4(f), where LI is the Laplacian of the surface. Hence, from

(3.4) and (3.10) we get

Using E = «K _ C)2 - K2,)-114. and the Gaussian curvature .K given
by the equation

we obtain
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From (3.11) and (3.13) we get the equations (1.1) and (1.2). Now
if 0: Q~ -~ Q~ is an isometry that reverses the orientation then it

reverses the sign of KN. Therefore the case ~  0 reduces to the first
one. At the points where KN = 0 we get the equations by continuity.

Now we prove the converse. Since M is simply-connected it is

sufficient to work in small neighborhoods. Let ds2 be the riemannian
metric defined over M. From (1.1) and (3.12) it follows that the metric

flat. Hence, there exist coordinate
sistems (x1, x2) such that

We define real functions À, p satisfying (3.1) and (3.2).
Therefore from (3.1) and (3.2) it follows (3.3).

Suppose now that Let L(M) be a 2-plane bundle over M
equipped with a metric ~~~ where every fiber is generated 
~4 and the metric is defined by

We define a compatible connection V 1. in Z(.1V1) by

where Xi = alaxi, i = 1, 2 and f = log 1 Â + y 1.
Now, we define the second fundamental form Bp : TplVl X T~M -~ by

and let A~ : be defined by

where ~, Y are on and e is on Then by a straightforward
calculation we can see that the Gauss and Mainardi-Codazzi equa-
tions (2.7) and (2.10) are satisfied. The Ricci equations (2.8) we get
by reversing the proof of the equation (3.11). If .KN  0 we change
the sign in (3.15) and we define Bp(X1, X2) = -,u~4. The calculations
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follow similarly to the case It is not hard to see that the connec-
tion and the form B defined in this way are smooth. Hence, by Spivak
([17], p. 80) there exists a local isometric immersion @ in

such a way that we may identify the normal bundle of the immersion
with the bundle L.M. Then the metric induced on the normal bundle
coincides with the given bundle metric on LM, and the second funda-
mental form and the connection of the immersion coincide with B
and V1 respectively. Moreover the immersion is minimal with normal
curvature 

PROOF OF COROLLARY 1. First observe that we can choose the orien-
tation of S4 in such way that It is well known that the
differential form of degree 4y 0=()j~~2013~jj220132~(~~)~ i~
holomorphic (see [7] or [16]) . Hence it follows from the Riemann-Roch
theorem that if g = 0, 0= 0 and if g = 1, 0 - 0 or 0 is never zero.

Suppose From (1.1) it follows that 

Since 0 is never zero, log + 11 ] is subharmonic and bounded
from above, so K -~--1 ~ has to be constant and therefore 2K = 
This implies that g and .KN are constant. If 0 then by Aspert’i
[2] is homeomorphic to the sphere 52. This is a contradiction.
Therefore .KN = 0 everywhere and this implies that x(M) is in S3

(see [15]). Then by Lawson [11] x(.M) is the Clifford torus 
xS1(1/V2).

Suppose now 0 == 0. In this case the ellipse of curvature is a circle
everywhere and by [8] .KN does not change of sign. So Then

by [16] where r is the radius of the circle. We
observe that if r = 0 at some point then, = 0 and .K = 1 at this

point. This contradicts the hypothesis Thus r is never zero.
Hence 0 = j 4 log = f (2K - .KN) Therefore 2.g = KN and

M M

this implies that r is constant. Hence 2r2 is constant. Finally
by [10] is the Veronese surface.

PROOF OF COROLLARY 2. Consider the holomorphic form 0 as

above. Observe that if 0 === 0 in an immersed surface without geodesic
points in S4, then 0 everywhere. Rence M has genus g = 0.
So 0~0. Since 0 is holomorphic the possible zeros of 0 are isolated
points. If KN does not change of sign, we can suppose It

follows from theorem 1 or (3.11) that 4 + 11/ IKN + K -
- 1|)) = - 4KN  0. So is super-
harmonic and bounded from below, since the surface has no geodesic
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points. Therefore the function is con-

stant and 0. This implies that lies in S3.
We now prove (ii). As in the proof of the first corollary, we can

assume Away from the points of M where 0~C it follows
from (1.1) that So [ is sub-
harmonic and bounded from above. Since + 11 = 0 at the
possible isolated points causes no difficulties ([1], p. 135) , y we conclude
that ~2013~-)-1~ [ is constant and therefore 2K = K~. So KN and
K are constant. Therefore if g &#x3E; 0 we have KN = K = 0. This implies
that is the Clifford torus in S3.

PROOF or THEOREM 2. As in the proof of theorem 1, let 
be isothermal parameters such that u and v are on the semi-axes
of the ellipse of curvature on N1JM. For each real function 6 E [- n, n]
we define a form B e by

We define A~ satisfying (2.3) by the equation

where Re is the rotation of angle 6 in the tangent plane in the positive
sense of the given orientation and Aa is the linear transformation corre-
sponding to the form B.

It is easy to see that Be satisfies the Gauss equation. To verify
the Ricci equation we observe that from (2.3), (2.8) and (2.11) we can
prove .gN = [A4, (X), Y~. Hence, from (3.19) follows

Let’s prove the Mainardi-Codazzi equation. By straightforward
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calculation we can see that

Hence, we need to prove only that

From [6] and (3.18) we obtain

Similarly we prove the second equation. By [17] for each 0 there
exists a local isometric immersion xe : ~1-~ Q~ . From (3.18) we have
that xe is minimal and from the Ricci equation we see that (gN)e = .KN.
We get the deformation putting xe(po) = x(po) and dxe(po) = dx(po).

Now, suppose that x : M -~ Q~ is an other minimal immersion
with RN Let be isothermal parameters such that û ==
= and v = B(Xl, X2) are on the semi-axes
of the ellipse on Let 0(p) the angle between Xi and X 1 in
TpM and the rotation in of angle 0(p). We know 
_ [~1, X2] = o. This implies that X1(8) _ X2(fJ) = 0. Hence 0 is

constant. By straightforward calculation we can see that 
diagonalize the ellipse of the above immersion From (3.6) we see
that the connection of the normal bundle depends only the functions
~, and p, which are the same for x and Now it is easy to show
that there exists a bundle isomorphism preserving inner products,
second fundamental forms, and normal connections. Then by [17]
there is a rigid motion L into Qc such that x = 

PROOF oF THEOREM 3. Let be a local isothermal parameters
such that ds2 = and define a real function ~ &#x3E; 0

satisfying (3.2) for ~, == p" i.e. Â2 = 2-1(c - g) E2. Now, we define the
normal bundle, its connection and the second fundamental form, in
a manner similar to the last part of proof of theorem 1. So the Gauss
and Mainardi-Codazzi equations are satisfied. The Ricci equation
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follows from (1.3). The existence of the minimal immersion 
follows as in theorem 1.

Suppose now that x: another minimal isometric immer-
sion such that the ellipse of curvature is a circle. It is easy to see that
the same function Â satisfies (3.2) for x and x. Now, observe that
the connection of the normal bundle depends only on the function ~,.
The theorem follows as in the last part of theorem 2.
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