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Participants judged the affine equivalence of 2 simultaneously presented 4-point patterns. 
Performance level (d') varied between 1.5 and 2.7, depending on the information available for 
solving the correspondence problem (insufficient in Experiment la, superfluous in Experiment 
lb, and minimal in Experiments lc, 2a, 2b) and on the exposure time (unlimited in 
Experiments 1 and 2a and 500 ms in Experiment 2b), but it did not vary much with the 
complexity of the affine transformation (rotation and slant in Experiment 1 and same plus tilt 
in Experiment 2). Performance in Experiment 3 was lower with 3-point patterns than with 
4-point patterns, whereas blocking the trials according to the affine transformation parameters 
had little effect. Determining affine shape equivalence with minimal-information displays is 
based on a fast assessment of qualitatively or quasi-invariant properties such as convexity/ 
concavity, parallelism, and collinearity. 

When an object is viewed from different positions, its 

projected shape on the retina varies, yet its perceived shape 

often remains the same. A door, for example, looks rectangu- 

lar even though its projected shape is generally trapezoidal. 

This phenomenon, called shape constancy, has long puzzled 

perceptual scientists (e.g., Helmholtz, 1857/1962; Koffka, 

1935; Rock, 1983). According to Gibson (e.g., 1950, 1979), 

the visual system interprets different views of the same 
object as having the same shape because it is sensitive to 
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their projective equivalence, that is, their congruence or 

equivalence under the group of projective transformations. 

Shape Equivalence 

Projective Equivalence 

Surprisingly little empirical work has been devoted to a 

direct test of the visual system's sensitivity to projective 
equivalence as a possible basis of shape constancy. In fact, 

even the experimental establishment of the phenomenon of 

shape constancy itself came late (e.g., Lappin & Preble, 
1975; but see also Stavrianos, 1945, and Thouless, 1931, 

1934, for interesting historical precursors). In three studies 

of the perceptual relevance of projective invariance, Niall 
critically reviewed the available evidence (Niall, 1992; Niall 

& Macnamara, 1989, 1990). He concluded that all of the 
earlier principal experiments either involved projections of 

highly regular and familiar objects (e.g., Attneave & Frost, 

1969; Perkins, 1972) or merely demonstrated shape con- 
stancy and assumed projective invariance as the explanation 

without actually testing it (e.g., Johansson, 1975; Johansson, 
von Hofsten, & Jansson, 1980). Subsequently, Cutting 

(1986) examined the perceptual usefulness of the cross- 
ratio, the prototypical projective invariant, in judgments of 

the rigidity and flatness of a translating or rotating planar 
surface. With displays of four parallel lines, it was shown 
that the perceived departure from rigid motion was propor- 

tional to the degree of projective distortion (i.e., deviation 
from the cross-ratio). Nevertheless, it was concluded that the 

cross-ratio could not always be effective in specifying form 
(see Cutting, 1987, and Niall, 1987, for more technical 
discussion). 

In one of Niall's studies on sensitivity to projective 
equivalence (Niall & Macnamara, 1989), observers were 
asked to complete drawings of a quadrilateral structure (a 
two-dimensional [2-D] glass panel of a building) viewed 
from an oblique angle. Naive observers as well as students 
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of architecture produced drawings that deviated systemati- 
cally from projective equivalence. In a second study (Niall 
& Macnamara, 1990), the projective thesis was tested more 
directly: Participants were presented with projectively con- 
gruent or noncongruent shapes (pentagons with a star to 
indicate their three-dimensional [3-D] orientation) and were 
asked to select the projectively equivalent pairs. The five- 
point cross-rarios of the selected comparison figures differed 
significantly from those of the standard figures in an active 
drawing task as well as in a passive recognition task. In a 
third study (Niall, 1992), the poor sensitivity to projective 
equivalence of static shapes was shown to extend to planar 
shapes (quadrilaterals) and solid forms (prisms) that were 
continuously rotating in depth around a fixed rotation point. 
Collectively, these data reflect a markedly inaccurate estima- 
tion of projective properties that led Niall to conclude that 
sensitivity to projective equivalence seems an implausible 
basis for shape constancy. 

Affine Equivalence 

In the work presented here, we take one step back and 
examine whether human observers can judge affine equiva- 
lence between simple planar shapes. More specifically, we 
ask whether the minimal information from which it is 
possible to determine affine shape equivalence is sufficient 
for such judgments. Because affine transformations are more 
restrictive than projective transformations (e.g., parallelism 
is preserved), attine shape equivalence might well be easier 
to determine than projective shape equivalence. In practice, 
orthographic or parallel projection (which involves affine 
transformations) is a good approximation to perspective or 
polar projection (which involves projective transformations) 
when the depth range of the objects is small relative to the 
viewing distance. Psychophysical research that has com- 
pared the two has shown that perceptual performance is 
often equivalent (e.g., Btirjesson & Lind, 1996; Braunstein, 
Liter, & Tittle, 1994; Lappin & Fuqua, 1983; Todd, 1984; 
Wagemans & Tibau, 1999). 

Perspective Equivalence 

A related strategy was followed by Pizlo (1994) in his 
analysis of shape constancy. Instead of moving from affine 
to projective--which is the next broadest group in Klein's 
(1908/1939) hierarchy of transformation groups (see Cut- 
ring, 1983, 1986, Chapter 5, for a nontechnical introduc- 
tion)---Pizlo focused on perspective transformations (or 
perspectivities) as an intermediate case. Although they do 
not form a group and therefore do not have invariants in the 
classical sense, perspective transformations are interesting 
because they seem most relevant to vision. Whereas projec- 
tive transformations are arbitrary combinations of perspec- 
tivities, the geometry that is most relevant to vision involves 
only one perspective and a constant distance between the 
center of projection and the image plane (Pizlo, Rosenfeld, 
& Weiss, 1997). In addition, Pizlo and Rosenfeld (1992) 
have shown that perspective transformations have so-called 
pseudo- or quasi-invariants. This notion was introduced by 

Binford and Levitt (1993) to describe properties that may 
vary with the transformation but do so within a small range 
of values over a large range of transformations. In a series of 
studies (e.g., Pizlo, 1994; Pizlo & Salach-Golyska, 1995), 
Pizlo showed that human observers are sensitive to perspec- 
tive equivalence and that some specific predictions derived 
from an algorithmic approach to perspective judgments 
(Pizlo & Rosenfeld, 1992) could be corroborated. 

In sum, we wanted to investigate how well human 
observers can determine affine shape equivalence in patterns 
with minimal information because it may shed some new 
light on the use of invariants under groups of transforma- 
tions as a basis for shape constancy. 

Human Performance Versus Mathematical 
Constraints 

Another reason to focus on the issue of minimal informa- 
tion to determine affine shape equivalence is that similar 
questions of minimal information have been productive in 
other areas of research. For example, the computational 
theorem that three distinct views of four noncoplanar points 
are both necessary and sufficient for obtaining a unique 
interpretation of an object's 3-D structure (formulated by 
Ullman, 1979) has been successfully exploited in several 
psychophysical studies (e.g., Braunstein, Hoffman, & Pol- 
lick, 1990; Braunstein, Hoffman, Shapiro, Andersen, & 
Bennett, 1987; Domini, Caudek, & Prottitt, 1997; Doner, 
Lappin, & Perfetto, 1984; Lappin, Doner, & Kottas, 1980; 
Todd, Akerstrom, Reichel, & Hayes, 1988; Todd & Bressan, 
1990). The general conclusion from this research is that the 
ability of human observers to perceive structure from motion 
is sometimes more powerful than expected on the basis of 
some computational models (see also Todd, 1985). Thus, 
two views of four noncoplanar points are sufficient for some 
perceptual tasks like rigidity judgments (subsequently also 
shown to be possible mathematically by Bennett, Hoffman, 
Nicola, & Prakash, 1989, and, independently, by Huang & 
Lee, 1989). Experiments with other phenomena such as the 
stereokinetic effect, motion parallax, and depth from dispar- 
ity also suggest that the human visual system is able to 
derive estimates of depth magnitudes in situations where it 
seems impossible on the basis of the laws of projective 
geometry alone (e.g., Caudek & Proffitt, 1993; Durgin, 
Proffitt, Olson, & Reinke, 1995; Proffitt, Rock, Hecht, & 
Schubert, 1992). 

Conclusion 

In the light of this accumulating evidence that human 
observers can often do more than expected on the basis of a 
computational analysis of the mathematical constraints, 
Niall's results showing insensitivity to projective equiva- 
lence in shape constancy are the more unexpected. Yet, as 
Niall and Macnamara (1990, p. 658) admit, they "have not 
proved once and for all that the projective thesis never 
provides an explanation of shape constancy, since, naturally, 
[they] have not examined all possible conditions in which 
the thesis might obtain." Because the available evidence is 
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mixed (negative in Niall's research, positive in Pizlo's 
research, and mixed in Cutting's) and because research from 
other areas suggests that our visual system is more rather 
than less resourceful given the geometric laws, an alterna- 
tive approach to the question of shape equivalence is needed. 
Because the mathematics of the problem of affine shape 
equivalence is central to this work, some technical back- 
ground is first provided. 

Attine Transformations 

Hierarchy of Geometries 

As noted earlier, different geometries can be put in a 
hierarchy, from Euclidean geometry to topology (Klein, 
1908/1939). When one moves up in the hierarchy, more 
aspects of a shape are lost and, consequently, the aspects 
remaining nnehanged or invariant become more abstract. 
The geometrical classification is not discussed here (a good 
nonteclmical introduction with pictorial examples can be 
found in Michaels & Carello, 1981, Chapter 2, pp. 30-37, 
and a more mathematical treatment in Foster, 1975, and Van 
Gool, Moons, Pauwels, & Wagemans, 1994). It is, however, 
useful to show the effect of a few common transformations 
on shape equivalence to indicate the position of affine 
transformations in this hierarchy. Figure 1 shows a pentagon 
(A) and the resulting shape after rotation (B), size scaling 
(C), shear and compression (D), a single perspective projec- 
tion (E), and an arbitrary combination of perspective projec- 
tions (F). These figures exemplify the following transforma- 
tions, respectively: Euclidean, similarity, afiine, perspective, 
and projective. Some of the properties lost in going from (A) 
to (F) are the distances in (A), which are preserved only in 
(B) (i.e., distance is a Euclidean but not an affine invariant), 

A B C 

D E F 

Figure 1. A pentagon (A) and the resulting shape after rotation 
(B), size scaling (C), shear and compression (D), a single perspec- 
tive projection (E), and an arbitrary combination of perspective 
projections (F), representing different geometries (Euclidean, simi- 
larity, affine, perspective, and projective, respectively). Properties 
are progressively lost in going from (A) to (F). 
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Figure 2. Minimal information needed to determine shape equiva- 
lence under different geometries (represented in three rows, from 
top to bottom): similarity, affine, and projective. For patterns in the 
left column, there is insufficient information to determine shape 
equivalence, and within this column, the two patterns on the right 
are equivalent to the one on the left (under the transformation group 
considered in each row). For patterns in the fight column, there is 
sufficient information to determine shape equivalence, and within 
this column, the pattern on the left is the standard, the one in the 
center is a transformed version of it, and the one on the right cannot 
be obtained by such a transformation (under the transformation 
group considered in each row). 

and the parallelism of the pentagon in (A)-(D), which is 
destroyed by the perspective as well as projective transforma- 
tions in (E) and (F) (i.e., parallelism is an affme but not a 
projective invariant). 

Minimal Information 

As a corollary to this hierarchical organization of transfor- 

mations, the minimal information from which it is possible 

to determine shape equivalence varies systematically. Thus, 
because distance is the basic invariant of Euclidean transfor- 
mations, pairs of points are sufficient to specify shape in a 
Euclidean way: Two point pairs are Euclidean equivalent if 
and only if they are separated by the same distance. Three 
points are needed in similarity geometry (see Figure 2, top 
row): Any pair of points is indistinguishable because there is 
always a combination of size scaling with rotation and 
translation that will make the pairs congruent; if there are 
three points, two of them will define a reference frame, and 
the third can be tested against the similarity transformation 
computed from the reference pair (assuming that no reflec- 
tions are allowed). Four points are needed in affine geometry 
(see Figure 2, middle row): All triangles are affmely 
equivalent, and three points define an affine reference frame 
(Koenderink & van Doom, 1991; Lamdan, Schwartz, & 
Wolfson, 1988). This procedure forms the mathematical 
basis of Ullman's (1989) alignment scheme and so-called 
recognition polynomials, a computational technique to rec- 
ognize shapes from different viewpoints (Bennett, Hoffrnan, 
& Prakash, 1993). Finally, five points are the minimum 
needed to determine projective shape equivalence (see 
Figure 2, bottom row). 
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In sum, we use the notion of minimal information not in 
the sense of least complexity but to indicate that four points 
are necessary to determine shape equivalence under arbi- 
trary affine transformations. In fact, it is quite likely that 
determining shape equivalence is more difficult between our 
minimal shapes than with natural shapes in more realistic 
environments. Even so, if we can establish that afline shape 
equivalence can be determined from four points, we will at 
least have shown that the visual system can rely on what is 
mathematically available when all other sources of informa- 
tion (e.g., about depth or about object identity) are removed. 
To show this was the major goal of the present study. 

Decomposition of Affine Transformations 

All that now remains to be done before describing the 
experiments is to specify the particular parameterization or 
decomposition of the aitine transformation group used in 
this study. This is not trivial (see Wagemans, De Troy, Van 
Gool, Wood, & Foster, 1994, and Wagemans, Vanden 
Bossche, Segers, & d'Ydewalle, 1994, for a fuller discus- 
sion). Mathematically speaking, an affine transformation can 
be implemented as a multiplication of the (x, y) coordinates 

I ab 
of the pattern by a 2 x 2 matrix,/c d)" The four parameters of 

the matrix (i.e., a, b, c, and d) can be chosen arbitrarily, as 
long as they are real numbers and the resulting determinant 
differs from zero. 

There are several ways in which this general affine 
transformation can be decomposed into sequences of sim- 
pler transformations. That these different decompositions 
are not equivalent follows from the fact that the affine group 
is not a direct product of one-dimensional subgroups. There 
is no way to parameterize these transformations as a 
sequence of one-parameter transformations without the 
order in which these are carried out being important for the 
precise amounts (e.g., rotation angles, scale factors) needed 
of each. Changing the order will automatically imply 
changing the relative amount of each one-parameter transfor- 
marion. The exceptions to this rule are rare. Rotation and 
scaling can be combined in any order without changing the 
effect. Not accidentally, these are the transformations that 
have been studied empirically to test the plausibility of the 
mental transformation approach (e.g., Bundesen & Larsen, 
1975; Larsen & Bundesen, 1978; Shepatd & Cooper, 1982). It is 
hard to understand how the perceptual system would deal with 
more complicated groups, such as the affine Wansformafions 
tested here, where the decomposition strategy matters and where 
a pt~bitively large number of essentially different compositions 
exist for each mmsfonnaton. Much of the problem finds its 
origin in the noncommutafivity of matrix multiplication in the 
general case. Consider the following example. Take a book and 
hold it with its front cover toward you. Then rotate it clockwise 
about the optical axis through 90 ° and rotate it over 45 ° about the 
horizontal axis. The resulting image is different from what would 
be obtained if the order of these rotations were reversed. 

In the present experiments, a decomposition for general 
affine transformations was used as a point of departure, but 
only a subset of the resulting parameters were varied 

experimentally to avoid a combinatorial explosion of the 
number of trials (see Appendix A for the details of the 
derivations). An effort was made to vary those parameters 
that maximally capture the typical affine (i.e., non- 
Euclidean) deformations. An affme transformation can be 
interpreted as describing the effect of orthographically 
projecting a planar shape oriented arbitrarily in depth onto 
an image plane or screen. The 3-D orientation of the plane 
containing the patterns can be specified by two parameters, 
slant and tilt (see Figure 3); within this plane, patterns were 
allowed to have an arbitrary orientation. Hence, the affine 
transformation under which shape equivalence had to be 
judged by observers consists of a rotation in the image plane 
and a slant and tilt of the plane (Figure 4), applied in that 
order (see Appendix A for the computational formulas). 

Notice that tilt as defined here might be found to differ 
slightly from definitions elsewhere (e.g., Stevens, 1983). Tilt 
is sometimes defined through the orientation of the projec- 
tion of the normal of the object plane onto the image plane. 
Our definition uses the orientation of the line of intersection 
of these planes. The resulting tilts may differ by 90 ° . Notice 
also that all of  the affine transformations tested here have a 
positive determinant; hence, no reflections were allowed. In 
Experiment 1, the situation was simplified by assuming zero 
tilt angles. If these transformations defeated the ability of 
observers to determine shape equivalence, there would be no 
point in taking the experiments further to include nonzero 
tilts. 

Experiment  1 

The main purpose of Experiment 1 was to determine 
whether observers are able to decide on affine shape 

Contour plane 

Image plane 

Figure 3. The 3-D orientation of the plane containing a pattern 
can be specified by two parameters, slant angle or and tilt angle "r. 
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Figure 4. Decomposition of an affine transformation in three steps (from left to right): (1) rotation 
in the plane; (2) slant about the horizontal coordinate axis, equivalent to compression along the 
vertical axis; and (3) tilt. 

equivalence given minimal information. As explained ear- 
tier, four points are sufficient to determine atfane shape 
equivalence. Participants were therefore presented with 
patterns consisting of four points in a random configuration. 
In same trials (i.e., with affine equivalence), the second 
pattern was derived from the first by multiplying its (x, y) 
coordinates by a matrix whose entries represented specific 
parameter values for the rotation dp and slant or. In other 
words, the imaginary planar surface on which the points 
were plotted was rotated about the optical axis and subse- 
quently slanted about the horizontal axis. Hence, the patterns 
could be considered the same but viewed from a different 
angle. In different trials (i.e., without at~fine equivalence), the 
patterns that had to be compared were unrelated; a similar 
atfine transformation was applied to a second set of four 
randomly selected (x, y) coordinates. This transformation 
was applied to avoid possible cues based on the relative 
distances between points because they are smaller in the 
transformed patterns than in the untransformed ones. Partici- 
pants had to respond same to the first type of pattern pairs 
and different to the second. Performance level was measured 

across a large number of trials to determine whether minimal 

information was sul~cient; response times (RTs) were 
recorded to enable an assessment of the effect of the size of 
the affine transformation. 

Three variants of the same experiment were run. In 

Experiment la, all four points in a point pattern were black. 
This implies that observers had to solve the correspondence 

problem in order to match the point patterns: They had to 
discover which point in the second pattern corresponded to a 
particular point in the first pattern. Because all the points 
were black, participants could detect nonintended matches 
between points in one pattern with points in the other pattern 
by matching basis points that were labeled differently by the 
computer. As a result, some different trials could have been 
considered affine equivalent simply because of nonintended 
correspondences (see Figure 5 for an example). Pizlo (1994) 
has called this the shape ambiguity problem, which is really 
the complement of the shape constancy problem. Whereas 
constancy has to do with two different views of one single 
object being interpreted as images of the same object, 
ambiguity refers to the fact that two different objects 
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Figure 5. An example of a different trial which could give rise to a false positive (same) response 
because the two independently generated point patterns could be made (close to) affine equivalent by 
assuming incorrect correspondences. (A) An affine reference frame attached to the first randomly 
generated point pattern in which one of the points is taken as the origin and two others as defining 
vectors OX and OY. The coordinates of the remaining point, P, can then be expressed as a linear 
combination of the OX and OF vectors (i.e., 1.54 times OX and 0.35 times OF). (B) and (C) Two 
copies of the afline transformed version of the second randomly generated pattern. In (B) the 
incorrect correspondence establishes an alline reference frame within which the fourth point, P' ,  
happens to lie only a few pixels away from its correct position. In (C) the intended correspondence is 
shown together with the location of the fourth point when the second pattern is affine related to the 
first (i.e., the open circle). Under these correspondences, P" deviates from its affine-equivalent 
position. 
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sometimes give rise to the same image. In Experiment la, 

the latter was possible as observers could take any of  the 

several different correspondences as a possible match. 

In Experiment lb, shape ambiguity was avoided by 

adding color. In this experiment, participants were given all 

the information they needed to solve the correspondence 

problem perfectly. Each point was identified with a unique 

color that was preserved in the affine-transformed pairs. The 

probability that nonintended correspondences would still 

yield close-to-affine matches in different trials is much 

smaller under these conditions. Therefore, rejecting random 

pairs should become as easy as identifying affine-equivalent 

ones. The literature on visual search, however, suggests that 

identity and position cannot be encoded simultaneously 

without conscious effort (e.g., Atldnson & Braddick, 1989; 

Green, 1992; Johnston & Pashler, 1990; Sagi & Julesz, 

1985; Tsal & Lavie, 1993). Moreover, research on apparent 

motion has shown that color is not as important as shape. For 

example, Kolers and von Griinau (1976) reported that 

observers resolved differences in shape between the initial 

and final stimuli by perceiving a gradual shape transforma- 

tion, whereas color differences were resolved abruptly, 

somewhere in mid-air. Therefore, solving the correspon- 

dence problem by considering each point's unique color and 

determining whether an affine transformation can bring the 

patterns into congruence could require considerable scrutiny 

and time. If  observers were not willing to make this effort on 

each trial, then performance might not increase as much as it 

should. 

Finally, Experiment lc provided the most stringent test of  

the sufficiency of  minimal information to determine affme 

equivalence between two planar patterns of  four points. The 

addition of  a unique color to each point in Experiment lb 

actually provided too much information: If  only one element 

out of  the four could be matched efficiently, invariant 

ordering cues would in most cases give the other correspon- 

dences away (because reflections were excluded). As indi- 

cated in Figure 5, three points constitute an affine reference 

frame within which the position of  the fourth may be 

computed. By adding color to only one point, this point will 

be easily identified as the anchor point or origin of  the affine 

reference frame (O in Figure 5). This is what was done in 

Experiment 1 c: One of  the points in each pattern was colored 

blue and the others black. The use of  only two colors should 

avoid the high attentional demands associated with the four 

colors of  Experiment lb (e.g., Johnston & Pashler, 1990; 

Tsal & Lavie, 1993). The only cases where this colored point 

would be insufficient as an anchor point are those where it 

happens to be the central point in a concave configuration. 

Because on average 6% of  the trials contained two concave 

configurations, this occurred in only 1.25% of  the trials. 

M e t h o d  

Stimuli. In each trial, two patterns, each constructed on the 
basis of four (x, y) coordinates, pseudorandomly selected in a 
circular area with a diameter of 264 pixels (10.8 cm), were 
presented on the screen, one in the left half, the other in the right 
half, separated by a center-to-center distance of 364 pixels (14.8 
cm). One of the two patterns was always untransformed (i.e., the 
original pattern); the other one was a transformed version of either 
the same original pattern or a different one. The left-fight position 
of the untransformed pattern was chosen randomly from trial to 
trial. There were two constraints on the random selection of the 
(x, y) coordinates to obtain more-or-less homogeneous distribu- 
tions: First, one (x, y) coordinate had to be selected in each 
quadrant of an imaginary circle. The orientation of the orthogonal 
axes defining the quadrants was always selected at random. 
Second, strong proximities were avoided by rejecting possible 
(x, y) coordinates closer than 7 pixels (2.8 nun). The pseudorandom 
selection of four (x, y) coordinates was repeated for each original 
pattern in all of the trials of all of the experiments. The point 
patterns were created by plotting small, filled circles (radius 3 
pixels) on the selected (x, y) coordinates. The points were easy to 
distinguish from the light gray background (with 50 cd/m 2) and, 
when colored differently, also from one another. Black (with 15 
cd/m2), blue (with 27 cd/m2), red (with 32 cd/m2), and yellow (with 
106 cd/m 2) were selected from the standard VGA color palette. 

The affine transformations tested in this experiment were a 
combination of rotation and slant, applied in that order. In 
principle, all cases are covered by letting the slant angle or vary 
between 00 and 90 ° and the rotation angle dp vary between 0 ° and 
360 °. Because the compression in the image as a result of slanting a 

planar surface in depth is given by the cosine of the slant angle, the 
range was restricted to a v o i d  d e g e n e r a t e  cases. The slant angle or 
had one of five values: 0 °, 15 °, 30 °, 45 °, and 60 °. Because the 
number of levels of the rotation factor had to be limited, the 
rotation angle ~b was given one of nine values: 0 °, 22.5 °, 45 °, 
67.5 °, 90 °, 112.5 °, 135 °, 157.5 °, and 180 °. Each of these rotation 
values occurred equally often and was positive (clockwise) in 
about half of the trials (chosen randomly) and negative (counter- 
clockwise) in the rest. Figure 6 shows what happens to a pattern of 
four points under some of these affme transformations. Figure 7 
shows how color may help to determine shape equivalence. 

Apparatus. The experiment was fully automated and run on a 
computer with a VGA graphics board. The point patterns were 

Slant 

3~ 60 

Rotation 45" 

112.5" 

Participants. Thirty undergraduate students from the Depart- 
ment of Psychology at the University of Leuven volunteered to 
participate in partial fulfillment of a course requirement. They were 
naive about the purpose of the experiment and had normal or 
corrected-to-normal vision. Ten participants were randomly as- 
signed to each of the three variants of Experiment 1. 

Figure 6. An example of a pattern with four pseudorandomly 
generated points and the resulting image after application of the 
affine transformations used in Experiments 1-3. The columns 
represent different slant angles (cr = 0 °, 30 °, and 60°), and the r o w s  

different rotation angles (~ = 0 °, 45 °, and 112.5°). 
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responded by pressing one of two buttons on a response panel; half 

of the participants used the right button to respond same (i.e., affine 

equivalent) and the left for different (i.e., not affine equivalent) and 
vice versa for the other half. Participants were familiarized with the 

task in a block of 150 practice trials, which were made up in the 

same way as the experimental ones but with different patterns. 
Because pilot work had indicated that most participants used two 

fixations in viewing the stimuli (i.e., one for each of the two 

patterns presented simultaneously), a fixation cross was not used. 

Each trial consisted simply of the presentation of the two patterns, 

one on each side of the screen. Viewing time was unlimited: The 

patterns remained on the screen until the participant pressed one of 

two response buttons on a panel connected to the computer. 
Response times (RTs) were recorded to the nearest ms from 

stimulus onset until button press. 
In half of the trials, an original pattern was paired with a 

transformed version of the same pattern; in the other half, an 
original pattern was paired with a transformed version of a different 

pattern (i.e., with freshly generated random coordinates). No single 

pattern was used in more than one trial (unless by accident the same 

set of four coordinates was chosen twice, which was extremely 

unlikely). Each of the 45 parameter combinations (9 rotation 
angles × 5 slant angles) of the affine transformation occurred 10 

times: five times for same trials and 5 times for different trials. The 
total sequence of trials was divided into three blocks of 150 trials 
that could be run without a break. Each block, taking about 10 to 15 

min, was a random sample from the total sequence of trials with the 

constraint that it contained an equal number of same and different 
trials. All participants received three blocks of trials in one session 

with only minor (e.g., 2-3 min) breaks between blocks. No 
trial-by-trial feedback was given, but after each series of 150 trials, 

the general level of performance was reported to the participant as 

the percentage of correct responses. 

Figure Z An example of a randomly generated point pattern (i.e., 

the standard shown at the top) and the way color can be used to 
determine shape equivalence under an affine transformation. (A) 

This pattern is not congruent to the standard pattern because the 

order of the colors differs. (13) This pattern is affine equivalent on 

the basis of  the color correspondences but not on the basis of point 
positions. (C) This pattern is affine equivalent on the basis of both 

the color correspondences and the point positions. 

presented as black, blue, red, or yellow points on a gray back- 
ground on a color screen with a 70 Hz temporal resolution and a 
640 × 480 spatial resolution. Participants were seated at a distance 

of 114 cm on a chair with adjustable height so that their eyes were 

level with the center of the screen. At that viewing distance, the 

individual points, the patterns defined by them, and the whole 
stimulus area (patterns and separating space) subtended 6.13 

arcmin, 5.39 °, and 12.76 ° of visual angle, respectively. The room 
was moderately lit. A headrest was used to stabilize the head. 

Viewing was binocular. 
Task and procedure. Participants were told that they would be 

shown two patterns side-by-side on the screen. In some trials, the 

patterns would have the same shape, although possibly viewed 
from a different position, whereas in other trials the patterns would 
be unrelated. Participants were instructed to consider the patterns in 
each display as the same in the former case and different in the 
latter. Thus, affine shape equivalence was explained by referring to 
the notion of  different views on a plane with arbitrary 3-D 
orientation, which was also explicitly demonstrated with a sheet of 
paper held at different 2-D and 3-D orientations. Participants 

Resu l t s  

General performance. The  average  percentage  o f  cor- 

rect  responses  computed  across participants and across both 

types o f  trials was 79.5% in Exper imen t  la ,  85.4% in 

Exper imen t  lb ,  and 81.2% in Exper imen t  l c  (see Table 1). 

Table 1 

Performance Levels in Experiment 1 

Experiment la  

Index M SD 

Experiment lb Experiment lc  

M SD M SD 

% CRT 79.45 4.89 85.44 6.94 81.16 4.75 
% CI 85.54 10.31 96.04 3.62 89.49 8.15 
% CR 73.44 6.73 74.84 14.47 72.82 15.61 
% same 56.03 7.21 60.59 7.94 58.34 11.53 
d '  1.79 0.38 2.70 0.68 2.08 0.27 
RTo 2442 1010 3517 1074 3032 957 
RTcR 2791 1295 5052 2454 3710 1172 
% CR* 90.57 6.58 84.58 15.64 88.29 7.98 

Note. Each row represents data for a different performance index 
(from top to bottom): % CRT = total percentage correct responses; 
% CI = percentage correct identifications; % CR = percentage 
correct rejections; % same = percentage same responses; d '  = 
discrimination index; RTcI = average response time (in ms) for the 
correct identifications; RTcR = average response time (in ms) for 
the correct rejections; and % CR* = percentage correct rejections 
of trials with convexity cue. Each entry represents the mean and 
standard deviation over 10 participants. 
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In all three variants of this experiment, the mean percentage 
of correct identifications (same responses on same trials) 
was higher than the mean percentage of correct rejections 
(different responses on different trials). A t test computed on 
dependent samples reached statistical significance for Experi- 
ment la  and lb, t(9) = 2.66 and 4.22, (p < .05 and .01, 
respectively), whereas it was only marginally significant in 
Experiment lc, t(9) = 2.29 (p < .10). This difference was 
partly based on a higher rate of same responses (e.g., 56.0% 
in Experiment la). Somewhat surprisingly, the addition of 
color did not remove this response bias. Although it was 

anticipated that the problem with shape ambiguity in point 
patterns with only black points would be reduced, it was 
actually a little higher in Experiment lb (60.6%) and 
Experiment lc (58.3%). Interestingly, this same bias was 
more pronounced in those participants with poorer perfor- 
mance levels, a result that is confirmed by the large negative 
correlation between average performance level and response 
bias for each participant, r(9) = - . 8 9  and - .81 ,  in 
Experiments lb and lc, respectively (p < .01 in both cases). 
These participants may not have used color as often as the 
others to reject different pairs. When response biases were 
eliminated, performance was still reasonably high (average 
d ' =  1.8, 2.7, and 2.1, in Experiments la, lb, and lc, 
respectively). 

The average RT followed the same pattern: RTs for the 
correct identifications were smaller than for the correct 
rejections, especially for Experiment lb. As anticipated, the 
process of using color in Experiment lb was slow and 
effortful. 

Analysis of variance (ANOVA) on RTs and error rates. 

To enable an assessment of the effects of trial type, rotation, 
and slant, an ANOVA was performed on the RTs of the 
correct-response trials (averaged across at most five repeated 
measures). In the few cases where none of the responses to 
repeated measures for a specific trial were correct, the 
general average for that trial type (e.g., different) for that 
participant was used. This is a conservative procedure that 

decreases the chance of obtaining statistically significant 
effects. Because a complete within-subjects design was 
used, each effect in this and the next experiments was 
analyzed with the subject-interaction as error term. Table 2 
summarizes the effects. Trial type was always at least 
marginally significant. As with the general performance 
levels, this effect was attributable to same trials being 
responded to faster and more accurately than different trials. 

Parametric effects were rather unstable across subexperi- 
ments and across dependent measures, but generally the 
following trends emerged. When a main effect of rotation or 
slant reached statistical significance, it was usually also 
involved in a reliable interaction with trial type. These 
interactions occurred because the affme transformation pa- 

rameters had only an effect on same trials, not on different 

trials. This result is illustrated in Figure 8 for rotation and in 

Figure 9 for slant (with averages across all trials from all 
three subexperiments). These figures also show that rotation 
had a more pronounced effect on RTs (Panel A), whereas 
error rates (Panel B) were more influenced by differences in 
slant. Finally, it should be observed that slant had a highly 
nonlinear effect: RTs increased only when slant was 45 ° or 
60 ° , whereas error rates were virtually identical (between 
5% and 10%) for all slants except for 60 ° (20%). This 
suggests that performance is affected more by the compres- 
sion effect in the plane than by the slant angle cr in depth 
(i.e., it varies more linearly with cos or). 

Discussion 

More than 85% of the atfine-equivalent point patterns 

were recognized as such when all points were black and 
more than 95% when each point had its own color. Although 
far from perfect, given that participants required almost 2.5 s 

to do the task when all points were black and more than 3.5 s 
when all points were colored, the level of performance does 
show that observers are capable of determining affine shape 
equivalence at much higher than chance level on the basis of 

Table 2 

Results of Analyses of  Variance on Response limes and Error Rates in Experiment 1 

Effect df Experiment la Experiment lb Experiment le 

Response times 
Tr 1, 9 3.93 (<.08) 
R 8, 72 <1 
S 4, 36 5.13 (<.005) 
Tr x R 8, 72 3.27 (<.005) 
Tr x S 4, 36 5.96 (<.001) 
R x S 32, 288 <1 
Tr X R x S 32, 288 < 1 

Error rates 
Tr 1, 9 6.91 (<.05) 
R 8, 72 1.88 (<.08) 
S 4, 36 3.98 (<.01) 
Tr x R 8, 72 1.43 (>.20) 
Tr x S 4, 36 13.79 (<.0001) 
R X S 32, 288 < 1 
Tr X R X S 32, 288 1.99 (<.005) 

9.34 (<.05) 4.59 (<.07) 
8.15 (<.0001) 2.70 (<.05) 

<1 <1 
8.32 (<.0001) 4.22 (<.0005) 
4.43 (<.005) 1.38 (>.25) 

<1 <1 
< 1 1.08 (>.35) 

17.82 (<.005) 5.20 (<.05) 
1.61 (>.13) 3.09 (<.005) 

<1 3.93 (<.01) 
1.82 (<.09) 1.74 (>. 10) 
5.79 (<.005) 5.31 (<.005) 

<1 <1 
<1 <1 

Note. Each entry shows the F value with p value in parentheses. The corresponding degrees of 
freedom (df) are shown in the second column. Tr = trial; R = rotation; S = slant. 
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minimal information. Participants were less good at reject- 
ing pairs in which the patterns were not affine related (less 

than 75% correct). Contrary to expectations, the number of 
false positives was not reduced by introducing color as a 
correspondence cue. This result suggests that the strategy 
that most participants used was to check the color of the 
elements for those patterns that seemed aifine equivalent 
rather than first eliminating the pairs that were not affine 

equivalent by the color of their elements. As in visual search 
and apparent motion, shape seems to have priority over 
color. As might have been expected from that work, 
observers were also very slow in using color as a correspon- 
dence cue: On average, it took them over 5 s to correctly 
reject pairs of patterns that could not be made affine 
equivalent. 

The performance levels obtained in Experiment lc were 
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Figure 8. The effect of Rotation on (A) response times (RTs in 
ms) and on (B) error rates (in %) for same trials (full line) and 
different trials (dashed line) in Experiments la-c. 

Figure 9. The effect of slant on (A) response times (RTs in ms) 
and on (B) error rates (in %) for same trials (full line) and different 
trials (dashed line) in Experiments la-c. 

between those of Experiments la  and lb; the ordering 
corresponds to the amount of information in the patterns (2 
colors in lc vs. 1 color in la  and 4 colors in lb). The 
ordering held for general performance level (81% vs. 80% 
and 85%), as well as for the proportion of correct identifica- 
tions of affine shape equivalence (89% vs. 85% and 96%) 
and more subtle variables such as response bias (58% vs. 
56% and 60%), discrimination index d '  (2.08 vs. 1.79 and 
2.70), and the time to make a correct response (+_3 s vs. 2.5 
and 3.5 s for same trials; +_4 s vs. 3 and 5 s for different 

trials). These results suggest that task performance depends 
critically on the available information. 

Exper iment  2 

In Experiment 1, the affine transformation under which 
shape equivalence had to be judged consisted of a combina- 
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tion of  rotation and slant. Observers were able to perform the 

task, but it might be argued that the set of  affine transforma- 

tions was too restricted and that the ability to judge affine 

equivalence would be weaker if  more general affine transfor- 

mations were used. Testing this hypothesis was the main 

purpose of  this experiment. The patterns, after being rotated 

and slanted, were now also tilted; that is, they were now 

rotated completely arbitrarily in 3-D space. 

Two versions of  the same experiment were run, both with 

the colors used in Experiment l c  (i.e., one blue and three 

black points). In Experiment 2a, viewing time was unlimited 

(as in Experiment 1), whereas in Experiment 2b it was 

limited to 500 ms. This relatively brief exposure constitutes 

a more demanding test of  whether human perceivers 

can determine affine shape equivalence with minimal  

information. 

M e t h o d  

Twenty new participants were drawn from the same participant 
pool as in Experiment 1 (10 for Experiment 2a and 10 for 2b). 
Apparatus, task, and procedure were the same as in Experiment 1. 
Because the information contained in the four-point displays was 
properly minimal with one blue and three black points, this color 
combination was used again here. The only difference in stimuli 
between this experiment and Experiment lc was that a third 
component, tilt, was added to the affine transformation (after 
rotation and slant; see Figure 4 again and Figure 10 for examples). 
In Experiment 2, the tilt angle x had one of five values: 0 °, 45 °, 90 ° , 
135 ° , and 180 ° . As before, each of these levels occurred equally 
often and was positive in about half of the trials (chosen randomly) 
and negative in the rest. In combination with rotation and slant, this 
parameterization yielded 225 conditions. In order that the total 
number of trials in this experiment was the same as in the previous 
one, each condition occurred only twice, that is, once for each trial 
type (same and different). Because of the absence of repeated 
measures here, we tested the effect of each factor combination by 
averaging across the third factor. The data were analyzed in two 

Rotatl® - O" 

Sl ant 

Tilt 

Rotation - O" 

Slent - O" 

Tilt - 135" 

0 0  

R o t a t i ~  - 0" 

- O" Slant - ~ "  

- 45" Tilt = 45" 

Rotati~ - O" 

S l ~ t  = ~ "  

T i l t  - 135" 

Ro ta t i on  - 22,5" 

S l a n t  - 6 0 "  

T i l t  - 45" 

Ro ta t i on  = 22.5" 

S l a n t  - 60" 
T i l t  = 135" 

Figure 10. An example of how the addition of a tilt component to 
an affine transformation affects shape equivalence between a 
randomly generated four-point pattern (shown on the left) and its 
transformed versions (shown on the right). Below each transformed 
version, the affine parameters (rotation, slant, and tilt) are indicated 
in degrees. 

Table 3 

Performance Levels in Experiment 2 

Experiment 2a Experiment 2b 

Index M SD M SD 

% CRT 80.92 5.06 76.70 2.77 
% CI 90.75 5.03 75.55 4.67 
% CR 71.08 12.81 77.85 6.70 
% same 59.86 8.31 48.75 5.03 
d '  1.97 0.25 1.48 0.19 
RTa 2413 800 1260 369 
RTcR 3262 1880 1248 288 
% CR* 85.09 13.95 88.19 7.75 

Note. Each row shows data for a different performance index 
(from top to bottom): % CRT = total percentage correct responses; 
% CI = percentage correct identifications; % CR = percentage 
correct rejections; % same = percentage same responses; d '  = 
discrimination index; RTct = average response time (in ms) for 
correct identifications; RTcR = average response time (in ms) for 
correct rejections; and % CR* = percentage correct rejections of 
trials with convexity cue. Each entry represents the mean and 
standard deviations over 10 participants. 

different ways: first, by averaging across tilt angles and performing 
ANOVAs on these averages with rotation and slant as the major 
variables (this analysis allows a comparison with the results from 
Experiment 1) and second, by averaging across rotation angles and 
performing ANOVAs on these averages with slant and tilt as the 
major variables (this analysis allows an assessment of this new 
component). 

Resu l t s  

General performance. The general performance in Ex- 

periment 2a was very similar to that in the comparable 

Experiment lc .  The overall average percentage of  correct 

responses was 80.9% (see Table 3). As before, the average 

percentage of  correct same responses was higher than the 

average percentage of  correct different responses (90.8% vs. 

71.1%), t(9) = 3.75; p < .01. Despite the addition of  color to 

one of  the points, there was still a bias toward responding 

same (59.9%). As in the previous experiments,  there was a 

large negative correlation between average performance 

level and response bias for each participant, r(9) = - . 8 2 ,  

p < .01. The average d' was 1.97 (SD = 0.26). This pattern 

of  results changed in Experiment 2b, when viewing time was 

limited to 500 ms. The average percentage of  correct 

responses was 76.7%, which is relatively high when one 

compares the 500 ms exposures with the 2 -3  s taken by 

observers in Experiment 2a. For  the first time, the average 

percentage of  correct same responses was not higher than 

the average percentage of  correct different responses (75.6% 

vs. 77.9%), t(9) < 1. Also for the first time, there was no 

response bias (48.8% same responses). Detectabili ty of  

affine equivalence as measured by d '  remained satisfactory 

(average d '  = 1.48). 

ANOVA on RTs and error rates. The several ANOVAs 

we performed to assess the effects of  the different transforma- 

tion parameters revealed a rather complicated pattern of  

results (see Table 4) that can be summarized as follows. 

First, RTs were generally less affected than error rates. 
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Table 4 
Results of Analyses of Variance (ANOVA) on Response 

limes and Error Rates in Experiment 2 

A_NOVA df Experiment 2a Experiment 2b 

Response times 
ANOVA- 1 

Tr 1, 9 4.45 (<.07) <1 
R 8, 72 <1 <1 
S 4, 36 2.47 (<.07) 1.27 (>.25) 
Tr X R 8, 72 1.68 (>.10) 1.74 (>.10) 
Tr × S 4, 36 3.68 (<.05) 5.36 (<.005) 
R × S  32, 288 <1 <1 
Tr × R × S 32, 288 1.61 (<.05) <1 

ANOVA-2 
T 4, 36 1.47 (>.20) <1 
Tr × T 4, 36 <1 1.08 (>.35) 
T × S  16, 144 <1 <1 
T r × T × S  16, 144 <1 <1 

Error rates 
ANOVA- 1 

Tr 1, 9 14.07 (<.005) <1 
R 8, 72 1.37 (>.20) < 1 
S 4, 36 8.18 (<.0001) 43.15 (<.0001) 
Tr × R 8, 72 1.20 (>.30) 2.98 (<.01) 
Tr × S 4, 36 8.98 (<.0001) 31.77 (<.0001) 
R × S 32, 288 <1 1.20 (>.20) 
T r × R × S  32, 288 <1 <1 

ANOVA-2 
T 4, 36 <1 6.95 (<.0005) 
Tr X T 4, 36 3.65 (<.05) 1.42 (>.20) 
T × S 16, 144 1.53 (<.10) 1.33 (>.15) 
Tr × T × S 16, 144 2.16 (<.01) 1.02 (>.40) 

Note. Each entry shows the F value with p value in parentheses. 
The corresponding degrees of freedom (df) are shown in the second 
column. ANOVA-1 is based on averages across Tilt, while 
ANOVA-2 is based on averages across Rotation. To avoid redun- 
dancy, only the effects of Tilt are reported for ANOVA-2. Tr = trial; 
R = rotation; S = slant; T = tilt. 

Second, Experiment 2b yielded stronger parametric effects 
than Experiment 2a. Third, the most robust effect, across all 

measures and subexperiments, was the Trial Type X Slant 
interaction. As in Experiment 1, this effect was caused by a 
strong effect of slant for same trials only. More specifically, 
more errors and longer RTs occurred when slant was 45 ° 
or 60 ° . 

Discussion 

Despite the extra transformation, the general levels of 
performance obtained in Experiment 2a were virtually 
identical to those of Experiment lc (with equal color cues): 
The overall percentage of correct responses was 81% in 
both, the proportion correct identifications was 90% in both, 
discrimination index d '  was 2 in both, and so on. If  anything, 
participants responded more quickly in Experiment 2a than 
in Experiment lc, t(18) = 1.6, p > .10, for the correct 
identifications, and t(18) < 1, for the correct rejections. 
Thus, it appears that an increased complexity of transforma- 
tion does not make it more difficult to judge shape equiva- 
lence under that transformation. 

Observers in previous experiments usually needed more 

than 2 s to respond that two patterns with four points were 
equivalent under an affine transformation and more than 3 s 
to reject random pairs. This may seem to imply that they 
were using a slow and effortful procedure that seems 
unnatural for normal shape perception. Yet, Experiment 2b 
(with 500 ms exposures) indicated that observers still 
perform reasonably well when such scrutiny is made impos- 
sible. The general performance levels obtained in this 
experiment were satisfactory; thus, the average percentage 
of correct responses was above 75% and d '  was 1.5, despite 
the demanding nature of the task. That the percentage of 
correct responses to same pairs was only 75%, compared 
with 90% in Experiment lc, t(18) = 7.00,p < .001, may be 
partly attributable to a larger bias toward responding same in 
Experiment lc, t(18) = 3.62, p < .01. Moreover, the 
decrease in performance levels is small, given the reduction 
in viewing time (0.5 s vs. 3 s minus response-initiation 
time). This suggests that the checking procedures that 
participants probably used in the previous experiments were 
not necessary; their first impressions were often correct 
already. A single glance seems enough to determine affine 

shape equivalence between two patterns of four points. 

Possible Strategies or Sources of  Informat ion 

The main findings of this study so far are easy to 
summarize. In several experiments in which pairs of patterns 
of four points were presented side-by-side on a computer 
screen, observers were able to judge whether they were 
equivalent under an affine transformation. General perfor- 
mance levels (d')  varied between 1.5 and 2.7 depending on 
the color information available for solving the correspon- 
dence problem (insufficient in Experiment la, superfluous in 
Experiment lb, and minimal in Experiments lc, 2a, 2b) and 
on the time available for verifying the first visual impression 
(unlimited in Experiments 1 and 2a and 500 ms in Experi- 
ment 2b). However, in comparable conditions, performance 
was essentially the same regardless of the complexity of the 
affine transformation (rotation and slant in Experiment 1 and 
rotation, slant, and tilt in Experiment 2). In sum, observers 
are sensitive to affine shape equivalence even with minimal 
stimulus information, with general affme transformations, 
and with limited viewing time. 

Given that minimal information is sufficient for observers 
to determine affine shape equivalence, what mechanisms 
might they have used to achieve this performance? Although 
a definitive statement requires further research, the present 
results provide some clues already. We first discuss some 
possible sources of information or strategies that may have 
been used in Experiments 1 and 2 in the light of the available 
evidence. We then present Experiment 3 in an attempt to 
further dissociate these mechanisms. 

Mental Transformations 

As has already been noted, determining shape equiva- 
lence under affine transformations might be achieved by 
mentally undoing the transformations. Because the affine 
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relation between the patterns implies an arbitrary 3-D 
relation between the two planes, using mental transforma- 
tions as a strategy to determine affine shape equivalence 
would amount to establishing a motion path in 3-D space, as 
if the observer imagined walking between the two stimu- 
lated viewing positions. Given the explosion of possible 
parameterizations of the affine group discussed in the section 
on Affine Transformations, such a strategy, applied exhaus- 
tively, is not very plausible on purely theoretical grounds. 

The present data often showed significant nonlinearities, 
especially in the effect of slant. A significant increase in RTs 
and error rates was observed only when the slant angle cr 
reached 60 ° (giving a compression of 50%). Smaller slant 
angles had little effect (see Figure 9). This seems to contrast 
with the linear effects on RTs obtained in experiments with 
simple planar rotation or size scaling: "The typical, most 
intriguing result found in many mental rotation studies is the 
almost perfect linear increase of RT with angular stimulus 
disparity" (Wohlschltiger & Wohlschltiger, 1998, p. 397). 

Furthermore, the introduction in Experiment 2 of an 
additional tilt component in the affine transformations under 
which shape equivalence had to be determined did not 
depress performance below that of Experiment 1 in which 
there was no tilt. Although it may seem natural to expect 
mental transformations to become more complex when the 
geometric transformations they have to undo become more 
complex, there are at least two possible mental-transforma- 
tion strategies that do not have this property. First, it is 
possible, in principle, that the geometric transformation that 
is used in making the stimuli is decomposed mentally into 
fewer components or parameters. Thus, if observers were 
mentally to undo the rotation and tilt components that are 
used in Experiment 2 in one single tilt-minus-rotation 

transformation, one might find that the addition of tilt does 
not affect performance much. Second, as proposed by 
Parsons (1987) for the case of 3-D Shepard-like objects, it is 
possible that observers always mentally rotate the affine- 
transformed point patterns about an axis (unique to each 3-D 
orientation difference) that simultaneously corrects for all 
orientation differences in each of the separate components 
(i.e., rotation, slant, and tilt in our case). Again, if this 
so-called mental rotation along the shortest path were the 
mental-transformation procedure used by our observers, 
then similar performance levels might be obtained in 
Experiments 2a and lc. 

To test whether these specific mental-transformation 
procedures were used by our observers, post hoc ANOVAs 
and linear regressions were performed with the appropri- 
ately recoded variables. The details of this procedure, as well 
as some of the statistical results, are reported in Appendix B. 
The major findings are the following. First, a combined 
flit-minus-rotation did not have a systematic effect on RTs. 
Second, RT was not a linear function, not even a monotoni- 
cally increasing function, of the shortest 3-D angle in space. 
The shortest 3-D angle in space produced statistically 
reliable effects but the peaks and troughs of the resulting 
functions varied considerably with slant. Although there are 
many possible reasons to find nonlinearities even under a 
mental transformation account (e.g., Tarr, 1995), it seems 

fair to conclude that the evidence for the use of mental 
transformations in space as the most important mechanism 
to determine affine shape equivalence between point pat- 
terns with minimal information is not very strong. It is 
important to understand this conclusion correctly: We do not 
claim that mental transformations are never used, only that 
performance in our experiments was probably not strongly 
dependent on mentally undoing the affine transformations 
relating the same shapes by rotating them in 3-D space. We 
return to this point in the General Discussion. 

Numerical Invariants 

The fact that general performance levels in Experiment 2a 
were not lower than those in Experiment lc, despite the 
addition of a tilt component to the transformation, is 
consistent with the notion that judgments of affine shape 
equivalence are based on invariants, because invariance 
holds for the whole group of transformations. It is therefore 
possible to determine whether two patterns presented side- 
by-side on the screen are affine equivalent by computing one 
or more affine invariants for one pattern and determining 
whether the same values result for the other pattern. A good 
example of useful affine invariants are so-called affine 

coordinates. In addition to illustrating shape ambiguity and 
how color can solve it, Figure 5 shows how three points 
define an affine reference frame and how the fourth point 
retains affine-invariant coordinates expressed within this 
frame. When one of the points in a random four-point pattern 
is taken as the origin, O, two other points, X and Y, define 
two vectors, OX and OY. The coordinates of the remaining 
point, P, can then be expressed as a linear combination of the 
OX and OY vectors (i.e., 1.54 times OX and 0.35 times OY). 
In the other pattern, which is an affine transformed version 
of the first, the same point P after transformation, P ' ,  has 
identical affine coordinates expressed in terms of the two 
transformed vectors (i.e., 1.54 O'X' and 0.35 O'Y'). Two 

important observations in relation to these affine-invariant 
coordinates should be made. 

First, this alignment scheme exploits parallelism as an 
affine-invariant property as well as the fact that an affine 
transformation preserves relative distances between three 
collinear points. In other words, the ratio between two 
adjacent segments on a given line is affine invariant (i.e., the 
three-point analogue to the four-point cross-ratio for the 
projective case; see Van Gool et al., 1994, for an elaboration 
of this point). Lappin and Fuqua (1983) have already 
demonstrated that observers can accurately decide whether 
the middle point of three collinear points rotating in a slanted 
plane is centered exactly between the other two points in 3-D 
space (see also Wagemans & Tibau, 1999). 

Second, although the measurements themselves are invari- 
ant, the processes that are used to provide the measurements 
do not have to be independent of specific affine transforma- 
tions. For example, the alignment strategy assumes that 
correct matches can be found between the points in the 
original pattern and the corresponding points in the trans- 
formed version. Establishing these correspondences might 
take time and perhaps more so when the affine transforma- 
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tion has larger parametric values (e.g., larger rotation, slant, 
and tilt angles). Moreover, Figure 5 suggests that some 
aspects of the particular configuration might affect the 
difficulty of the measurements. For example, the position of 
the fourth point relative to the two vectors will be more 
difficult to establish when the points are farther apart and 
when the angles between the two vectors deviate more from 
90 ° . Obviously, these distances and angles are changed by 
the atfme transformation. Therefore, although these metric 
aspects are irrelevant to the invariants themselves, they 
might affect the calculation of the invariants by the visual 
system. In fact, that is exactly what was demonstrated in a 

study in which observers were explicitly instructed to give 
affine-invariant coordinates; hence, mental transformations 
were excluded because no comparisons had to be made 
(Wagemans, Van Gool, & Lamote, 1996). 

It is not easy to provide more direct support for the use of 
invariants unless one explicitly manipulates them (which 
was not done in our experiments). In principle, one could 
design experiments in which the discrimination would not 
be between perfectly affine-related pairs and completely 
unrelated pairs (the present design) but between perfectly 
affine-related pairs and pairs in which the alfme-related one 
would be systematically distorted. As can be seen in Figure 
5, distortion of one of the afiine coordinates (e.g., along the 
OX vector) while keeping the other unchanged (i.e., on OY) 
is possible by repositioning the fourth point, P, on a line 
parallel to the line through O and X (and vice versa for the 
distortion of the other affine coordinate). If those distortions 
were harder to discriminate from perfectly affine-related 
pairs than more random perturbations (i.e., in both directions 
at the same time), this might constitute more direct evidence 
for the use of these coordinates by the human visual system. 
Within the framework of the present experiments, it is 
difficult to determine whether such numerical invariants 
were influential in determining observers' performance. 

In sum, not much can be said in favor of or against the use 
of invariants on the basis of the present data except to note 
that there are few other cues available with minimal displays 
of the kind used in the present experiments. One special 
class of cue is discussed next. 

Qualitatively Invariant and Quasi-lnvariant 

Properties 

We noticed that observers found some trials easier than 
others, irrespective of the amount of affine distortion. For 
example, when one pattern in the display was convex and 
the other was concave, it was easy to reject them as different: 
No a~ne  transformation exists that can change a convex 
quadrilateral into a concave one, and vice versa. Also, if the 
point pattern happened to have two points close together or 
three points almost collinear, this property was easy to verify 
for the other pattern: If it was also present, participants 
tended to respond same; if it was not, they tended to respond 
different (likewise for parallel configurations). Convexity, 
proximity, coUinearity, and parallelism are referred to as 
qualitative invariants (or nonaccidental properties; see 
Biederman, 1987; Lowe, 1987; Wagemans, 1992, 1993)to 

distinguish them from the numerical invariants discussed in 
the preceding section. This notion may be clarified by 
considering the properties of convexity/concavity, parallel- 
ism, and collinearity in turn. 

Convexity/concavity. The number of sides of the small- 
est polygon enclosing four points, the convex hull, is 
preserved by all affine transformations. The convex hull is a 
quadrilateral with a convex pattern of four points and a 
triangle with a concave pattern; this property is perfectly 
invariant. But it is such a general property of shape that it is 
of little help in identification (it has little discriminatory 
value): Not all convex quadrilaterals are the same, nor all 
concave ones. In the present experiments, however, convex- 
ity/concavity could have been used to reject at least some 
different pairs (for an example, see Figure 2, row affine, 
column sufficient). To determine whether participants used 
such a cue, the trials in which the convexity/concavity cue 
was available were isolated and the proportion of correct 
rejections computed. They are shown in the bottom row in 
Tables 1 and 3 with the general performance data (% 
CR* = percentage correct rejections of trials with convexity 
cue). In all experiments, this rejection rate was higher than 
the average rejection rate computed across all trials; more 
specific quantitative tests (t tests between dependent samples) 
confirmed this observation. 

Three other properties associated with the use of convexity/ 
concavity are worth noting. First, participants who seemed 
to have used it (high % CR*) tended to have a lower bias 
toward responding same and shorter RTs, a result that was 
confirmed statistically by the appropriate correlation coeffi- 
cients. These participants may thus have used a "quick-and- 
dirty" strategy to reject some trials instead of a time- 
consuming process to determine the patterns' congruence. 
Second, the specific stimulus manipulations in the experi- 
ments seem to have led to different uses of the convexity/ 
concavity cue. For example, in Experiment lb, where 
participants were possibly distracted by the gamut of colors, 
interindividual differences associated with the convexity/ 
concavity cue (i.e., % CR*) were much larger; however, in 
Experiment 2b, where participants were forced to rely on 
their first impressions, use of the convexity/concavity cue to 
reject different patterns was more common and, typically, 
the few participants who made less use of it performed more 
poorly. Third, in Niall's studies on projective shape equiva- 
lence (Niall, 1992; Niall & Macnamara, 1990), only concave 
quadrilaterals and pentagons were used; this restriction 
might have been a factor contributing to the different 
performance levels he recorded. 

Parallelism and collinearity. If parallelism and collinear- 
ity happened to be perfectly represented in the original 
four-point pattern, they would have been perfectly preserved 
following affine transformation. As such, they are also 
perfectly invariant. But, like convexity/concavity, the prop- 
erties of parallelism and collinearity are qualitative in the 
sense that they are generally insufficient to define shape 
adequately. Moreover, because in most random-point pat- 
terns parallelism and collinearity were not perfect but only 
approximate (i.e., small instead of zero angular deviations), 
these properties are better considered as quasi-invariant; 
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under some affine transformations, deviations from close-to- 
perfect parallelism or collinearity may become large and 
exceed the threshold for a visual judgment of parallelism or 
collinearity. Nevertheless, observers could have used perfect 
or imperfect regularities as qualitatively invariant or quasi- 
invariant properties in the affine shape-matching task. The 
nonlinearities in the effects of affine parameters on error 
rates and RTs are consistent with that proposal (e.g., 60 ° 
slants are more likely to destroy imperfect parallelism and 
collinearity). Quasi-collinearity has also been found to be a 
spatial primitive in texture discrimination (Caelli & Julesz, 
1978) and collinearity a spatial primitive in shape-from- 
motion displays as well (Lappin, Ahlstr6m, Craft, & Tschantz, 
1995). 

Post hoc analyses were performed to determine whether 
parallelism and collinearity played a role in observer perfor- 
mance. These analyses proceeded in three steps. First, 
algorithms were developed to quantify the degree of parallel- 
ism and collinearity in each pattern consisting of four points. 
To measure the degree of parallelism, virtual quadrangles 
were constructed and the angular deviations from all pos- 
sible virtual parallelograms were measured. The smallest 
angular deviation was retained to express the strongest 
possible parallelism. Similarly, to measure the degree of 
collinearity, all triplets of points were considered. Collinear- 
ity was computed as a function of two parameters: (a) the 
perpendicular distance of the middle point (point 2) relative 
to the line segment connecting the other two points (points 1 
and 3) and (b) the smallest angle separating line segment 1-2 
from 1-3 or line segment 2-3 from 1-3. Again, only the 
smallest deviation from perfect collinearity in all four 
triplets was retained to express the degree of collinearity in 
the four-point patterns. 

In a second step, an independent set of 10 observers was 
asked to rate (on a 6-point scale) the degree of parallelism 
and collinearity in 120 point patterns generated by the same 
algorithm as the one used to generate the experimental 
stimuli. In accord with the notion of a fuzzy geometry 
(Ferraro & Foster, 1994), parallelism and collinearity were 
treated as fuzzy regularities, and four fuzzy sets of patterns 
were determined in which these regularities were either 
strongly absent or just absent (SA and A, respectively) 
versus strongly present or just present (SP and E respec- 
tively). This was done by calculating fuzzy membership 
functions on the basis of the observers' ratings and the 
associated computed values of parallelism and collinearity 
(see Kandel, 1986, for the mathematical techniques and 
Garmendia & Van Bockstaele, 1993, for this particular 
application). 

In a third step, using the criteria provided by the 
independent raters, each pattern pair presented in the present 
experiments was coded as SA-SA, SA-A, SA-E SA-SE 
A-A, A-E A-SE P-E P-SE or SP-SE The trials belonging to 
these 10 categories were brought together for each partici- 
pant's data file and the proportion of correct responses as 
well as the average RT were entered in an ANOVA across 
participants. As an example, Figure 11 shows the results for 
collinearity in the different trials of Experiment la. The way 
to interpret this figure is the following. When coUinearity 

Figure 11. Performance levels for different trials of Experiment 
la as a function of the relationship between the patterns according 
to whether collinearity was strongly present (SP), present (P), 
absent (A), or strongly absent (SA). The top panel (A) shows the 
average RT (in ms) for correct responses, and (B) shows the error 
rate (in %). 

was strongly present in one of the two patterns (rightmost set 
of bars), it became easier to determine that the pair was 
probably different (i.e., not related by an affine transforma- 
tion), as the other pattern showed increasingly less collinear- 
ity. In (A) it can be seen that RT became progressively 
shorter as the other pattern was categorized as S E E  A, and 
SA, respectively. In (B) it can be seen that there was a 
similar decrease in error rate as well. The opposite pattern of 
results holds when the first pattern had a large deviation 
from perfect collinearity (i.e., SA in the leftmost columns) 
and intermediate results are found for the intermediate 
categories. Closely similar findings were obtained for paral- 
lelism (see Figure 12). The pattern of results as described 
was corroborated statistically by the overall ANOVAs as 
well as by the appropriate trend analyses. 
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Proximity. Affine transformations do not preserve abso- 
lute distances, so a property like proximity, which is 
obviously based on distance, is not truly affine invariant. 
Even so, if two points are very close together and distant 
from a third, this relative proximity--when compared to the 
distance to and between other points--is preserved under a 
wide range of viewpoints. It can, however, be destroyed 
under some afiine transformations (e.g., at large values of 
slant angle tr). Although grouping by proximity is generally 
a powerful principle (e.g., Kubovy, Holcombe, & Wage- 
mans, 1998; Kubovy & Wagemans, 1995), the effect of 
relative proximity in the present experiments was less 
pronounced than with the other qualitatively invariant 
properties because strong proximities were avoided in the 
patterns used here (see Methods). For example, fewer of the 

statistical tests in the post hoc analyses reached standard 
levels of reliability. 

Tests of qualitative cues. Because the results of these 
post hoc analyses indicating the use of qualitatively invari- 
ant or quasi-invariant properties were essentially inferential, 
we have undertaken experiments to test their use explicitly. 
In previous work, Foster (1980a; Ferraro & Foster, 1984) 
has suggested that binary-valued cues (also called discrete 
attributes) such as collinearity determine maxima in perfor- 
mance in some simple tasks requiring point-discrimination 
(Foster, 1979), angle-discrimination (Foster, 1980b), and 
curved-line discrimination (Foster, 1983). Pursuing this 
approach, we have used a perturbation technique (Foster, 
1980b) that progressively distorted pairs of same patterns, 
degrading each qualitatively invariant property. The results 
of these experiments (Kukkonen, Foster, Wood, Wagemans, 
& Van Gool, 1996) confirmed the special role of qualitative 
cues. For example, clear peaks and troughs in performance 
were obtained where patterns changed from parallel to 
nonparallel and from having collinear points to noncollinear 
points. This behavior agrees well with the notion that 
qualitative invariants correspond to certain singular values 
of numerical invariants (see Van Gool et al., 1994, for a 
further discussion). Thus, qualitative invariants may have a 
special status for the visual system because they simplify 
otherwise hard-to-compute numerical invariants. 

Figure 12. Performance levels for different trials of Experiment l a as 
a function of the relationship between the patterns according to whether 
parallelism was strongly present (SP), present (P), absent (A), or 
strongly absent (SA). The top panel (A) shows the average RT (in ms) 
for correct responses, and (B) shows the error rate (in %). 

Experiment 3 

In the light of the foregoing analyses, it seems that 
qualitative properties like convexity/concavity, parallelism, 
and collinearity played the most important role; numerical 
invariants or mental transformations were probably only 
used when qualitatively invariant or quasi-invariant proper- 
ties were absent or to verify a first guess on the basis of their 
presence when viewing time was unlimited. The aim of 
Experiment 3 was to further substantiate this tentative 
conclusion. We do this by creating conditions that will affect 
the usefulness of qualitative and quantitative affine invari- 
ants and of mental transformations. 

One way in which the use of mental transformations 

could be facilitated is to group together trials that share a 
particular geometric transformation. Once the observer 
knows the particular geometric transformation relating a pair 
of point patterns that are affine equivalent, it should be easy 
to verify in any given trial that this transformation is 
applicable and to decide same if it succeeds and different if it 
does not. Blocking the trials may also facilitate the establish- 
ing of corresponding points, which is needed to extract 
affine-invariant coordinates within an affine reference frame. 

The question of whether it is possible to prepare for a 
specific orientation has been important in the established 
literature on mental rotation (e.g., Cooper & Shepard, 1973, 
1975; Koriat & Norman, 1988) as well as in more recent 
work on orientation-dependent object identification (e.g., 
Gauthier & Tarr, 1997; McMullen, Hamm, & Jolicoeur, 
1995; Murray, Jolicoeur, McMullen, & Ingleton, 1993). The 
general conclusion from this strand of research is that linear 
effects on RT of angular disparity between two comparison 
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shapes or between a target object for identification and the 
standard upright orientation stored in memory are flattened 
only when participants can prepare for a specific shape at a 

specific orientation; they cannot rotate an abstract frame of 
reference (for a review, see Gauthier & Tarr, 1997). 

These results, however, should not be taken to predict that 
blocking will have no effect in our experimental paradigm. 
The reason we believe mental transformations in space are 
so unlikely as the major mechanism to determine affine 
shape equivalence is that the number of possible transforma- 
tions to be tried is excessive. In Experiment 1, when our 
affine parameterization would have been used, there were 45 
combinations to be tested, yielding 61 differently oriented 
axes if mental rotation through the shortest path in space 
were attempted. In Experiment 2, these numbers were 225 
and 83, respectively. In sharp contrast, most of the literature 
on orientation priming in mental rotation or object identifica- 
tion has been restricted to simple planar rotations (i.e., 1 

axis, with 5 to 11 rotation angles). Thus, it should help to 
reduce uncertainty about the affine parameters to be undone 
mentally or about the orientation of the rotation axis in space 
to be used for mental rotation of one shape into the other, if 
all trials were grouped in blocks of uniform transformations. 

Even the established literature on mental rotation contains 
some clues that this blocking should have a considerable 
effect. For example, Metzler and Shepard (1974/1982) 
compared conditions with an unpredictable axis (i.e., blocks 
with picture-plane rotations and depth rotations mixed 
together) with fixed-axis conditions (i.e., pure blocks). 
Slopes were steeper in mixed blocks than in pure blocks 
(i.e., RTs were 20% slower). According to Metzler and 
Shepard (1974/1982, p. 49), this difference in slope reflects 

"the additional time required for prerotational search when 
the axis of rotation was not known in advance." If such 
effects are possible with uncertainty about only two rotation 
axes, it is quite logical to expect more dramatic effects with 
our large numbers of rotation axes, especially because our 
experiments included arbitrary axes (i.e., not aligned with 
canonical frames of references), which are known to be 
more difficult (e.g., Pani, 1993; Pani, William, & Shippey, 

1995; Parsons, 1995). 
One way in which the use of affine invariants would be 

made impossible is to use point patterns consisting of three 
points instead of four. As outlined in the section on Affine 
Transformations, all triangles are affine equivalent, and it is 
thus impossible to perform a shape-discrimination task with 
three-point patterns. But this mathematical constraint holds 
true only for the group of all affine transformations, with no 
restrictions on the parameterization of the real numbers in 
the 2 × 2 matrix of the general affine transformation. 
Because our sampling of affine parameters is limited, it may 
be that observers do have an appreciation of what constitutes 
affine shape equivalence but  one that is based not on affine 
invariants as such but on similarity approximations. Con- 
sider, for example, the three-point patterns in the upper left 
box of Figure 2 (i.e., column sufficient, row similarity): The 
pattern on the left looks more similar to the pattern in the 
middle than the pattern on the fight. Observers' judgment of 

affine shape equivalence may be influenced by shape 
equivalence under similarity transformations. 

Simpson (1986) introduced conditions with three col- 
linear points rotating in depth to test the relevance of the 
cross-ratio, a projective invariant for four collinear points, as 
a source of information about objects in depth. He obtained 
equal performance levels in both conditions (i.e., with three 
and four points) and argued that the cross-ratio cannot be 
necessary to solve the task. On the basis of additional 
experimental findings, he concluded that performance was 
based instead on a perceptual analysis of the sinusoidally 
changing point positions (not unlike Todd's, 1982, trajectory 
analysis for interpreting structure from motion). Although 
Simpson's displays and task are quite different from ours, we 
considered his method of removing information that is 
essential to extract a particular type of invariant useful for 
our purposes too. 

In sum, if mental transformations play a major role in 
determining affine shape equivalence, changing the design 
from mixed to blocked presentation of trials should result in 
considerably improved performance. On the other hand, if 
qualitative and quantitative affine invafiants play a major 
role, changing the stimulus to three-point patterns should 
result in considerably reduced performance. Table 5 summa- 
rizes the rationale behind Experiment 3 in terms of the 
stimulus information available and plausible observer strate- 
gies. Note that some qualitatively invariant properties (e.g., 
quasi-collinearity, strong relative proximity) are still pos- 
sible with three points. 

Me~od  

Participants. Eight graduate students from the Department of 
Psychology at the University of Leuven volunteered to participate. 
They were naive to the purpose and details of the experiment, and 
each had normal or corrected-to-normal vision. Four participants 
were assigned randomly to each of the two between-subjects 
conditions. 

Apparatus and stimuli. This experiment was run on a computer 
with an SVGA graphics board. The point patterns were created in 
the same way as in Experiments 1 and 2, except for the following 
differences. They were presented as black or yellow points on a 
gray background on a color screen with a 50 Hz temporal 
resolution and an 800 × 600 spatial resolution. When the point 
patterns consisted of four points, three were black and one was 

Table 5 
Summary of the Rationale in Experiment 3 

Stimulus patterns/ Mixed Blocked 
possible strategy design design 

4 points 
Qualitative affine invariants present 
Quantitative affine invariants present 
Similarity approximations possible 
Mental transformations unlikely 

3 points 
Qualitative affine invariants fewer 
Quantitative affine invariants absent 
Similarity approximations possible 
Mental transformations unlikely 

present 
present 
possible 
more likely 

fewer 
absent 
possible 
more likely 
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yellow to facilitate correspondence; when the patterns consisted of 
three points, two were black, and one was yellow. The affine 
transformation was parameterized as before with rotation, slant, 
and tilt applied in that order and with the following levels: Rotation 
~b was 0 °, 45 °, 90 °, 135 °, or 180°; slant tr was 0 °, 41.41 °, or 60 ° 
(i.e., the three levels were equidistant on a cosine scale); and tilt 
was 0 °, 45 °, 90 °, 135 °, or 180 °. Participants responded by pressing 
one of the two horizontal arrow keys on the computer's keyboard. 

Task and procedure. The task was the same as in Experiments 
1 and 2. Observers were not mathematically informed, and they did 
not question the appropriateness of using three versus four points in 
determining affine shape equivalence. Four participants saw only 
three-point patterns; the remaining four saw only four-point 
patterns. Each of the 75 parameter combinations (5 rotation angles, 
3 slants, and 5 tilts) of the affine transformation occurred 20 times: 
ten times for same trials and 10 times for different trials. Each of the 
8 observers performed these 1,500 trials twice, once with a mixed 
design and once with a blocked design. Two observers in each 
group of four started with the mixed design and then continued 
with the blocked design, whereas the remaining two used the 
opposite order. 

In the mixed design, all trials were randomly mixed together in a 
block of trials, as in Experiments 1 and 2. The total number of trials 
in this condition was divided into five blocks of 300 trials that could 
be run without a break. Short breaks of 2-3 rain separated these 
blocks that were otherwise based on uniform samples from the total 
population of experimental trials. In the blocked design, trials were 
grouped together according to the particular affine transformation. 
Each sample of 20 trials with a particular combination of affine 
parameter values was preceded by an indication of those values 
(i.e., rotation, slant, and tilt angle in degrees) and an example trial. 
At the end of each block of 20 trials, observers could take a break if 
they wished but in general they continued. 

Results and Discussion 

Table 6 summarizes the most important indexes of  general 

performance level in the different experimental conditions. 

As expected, the task was easier with four-point patterns 

than with three-point patterns: Average d '  was 2.25 com- 

pared with 1.69, F(1, 6) --- 8.79, p < .05, and average RT 

was 2,094 ms compared with 2,635 ms, F(1, 6) = 1.71,p > 

.20. More importantly, the effect of  blocking trials according 

to affine parameter values yielded a smaller effect: d '  

increased somewhat (from 1.89 to 2.05), and average RT 

decreased somewhat (from 2,503 ms to 2,225 ms) but 

neither effect was statistically reliable, F(1, 6) = 1.96, p > 

.20, f o r d ' ,  and F(1, 6) = 1.20,p > .30, for RT. 

Table 6 

Performance Levels in Experiment 3 

Stimulus patterns Mixed Blocked Average 

Discriminability index (d') 
4 points 2.069 2.425 2.247 
3 points 1.708 1.679 1.694 

1.888 2.052 
Response times (ms) 

4 points 2.347 1.842 2.094 
3 points 2.660 2.609 2.635 

2.503 2.225 

That performance levels were still satisfactory (i.e., d '  

around 1.7) with only three points may seem strange in the 

light of  our earlier arguments about four points being the 

minimal number of  points to establish alIine shape equiva- 

lence. The reason is that the experiment did not test general 

affine equivalence but included only a subset from the space 

of  affine parameters. Slant angle was limited to 60 ° and only 

three different levels were used. This limits the range of  

possible triangles that can correspond to the target three- 

point configuration. This also leaves a number of  qualita- 

tively invariant properties intact under a considerable subset 

of  the transformations. For example, quasi-collinearities and 

strong relative proximities are still possible in three-point 

configurations, and they would be preserved under all but 

the most extreme slant. 

We do not want to argue that blocking did not have an 

effect, whereas stimulus information did (for it may only be 

a matter of  having more observations to make the blocking 

effect statistically reliable too), but it will be clear that 

having four points in a pattern has a larger impact on task 

performance than blocking the trials according to the affine 

transformation parameters. From the rationale set out earlier, 

this result suggests that judgments of  affine shape equiva- 

lence with minimal-information displays are based more on 

affine invariants than on mental transformations. This conclu- 

sion is consistent with the post hoe analyses of  task 

performance in the previous experiments. 

Genera l  Discuss ion  

Summary and Conclusions 

This study was concerned with the ability of  observers to 

determine whether two simultaneously presented planar 

shapes are projections of  the same shape at different 3-D 

orientations under orthographic projection and with only 

minimal information available. In short, can observers 

determine the affine shape equivalence of  two four-point 

patterns? In Experiment 1, where the set of  affine transforma- 

tions to be considered was restricted to combinations of  

planar rotation and slant about a horizontal axis, observers 

responded correctly in about 80-85% of the trials (and 

85-95% of same trials), depending on whether color was 

added to one or more of  the points to facilitate correct 

correspondences. When affine transformations were made 

more general by adding a third rotation component (tilt), so 

as to simulate completely arbitrary 3-D orientations, perfor- 

mance remained around 80% correct responses across all 

trials (and 90% correct identifications). When viewing time 

was limited to 500 ms, performance levels remained around 

75% correct (for different trials as well as same trials), even 

though participants took 2-5  s when viewing time was 

unlimited. Response-bias free measures of  performance 
level (d ' )  ranged between 1.5 and 2.7. Although far from 

perfect, they demonstrate that observers are indeed rela- 
tively good at determining whether four-point patterns can 

be related by an affine transformation. 

Extensive post hoc analyses of  the data in Experiments 1 

and 2 suggested that performance was most probably based 
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on a mixture of strategies. For example, some different trials 
were easy because in one pattern the four points formed a 
quadrilateral configuration, whereas in the other pattern they 
formed a triangular configuration with one point inside. 
Because affine transformations cannot deform a convex 
quadrilateral into a concave one, convexity/concavity is an 
affine-invariant property. In all conditions of Experiments 1 
and 2, the correct-rejection rate of trials with this convexity 
cue was higher than that of different trials in general, 
especially when color did not distract attention away from 
qualitative shape properties and when insufficient time was 
available for more elaborate, fine shape judgments. Approxi- 
mate parallelisms and collinearities, although only quasi- 
invariant (i.e., qualitatively invariant under most affine 
transformations except at the most extreme parameter val- 
ues) were also found to be useful. Because these qualitative 
properties were associated with relatively faster responses, 
we have referred to their use as a quick-and-dirty strategy. 

When these qualitatively or quasi-invariant properties 
were unavailable, performance was still better than chance. 
This suggests that a slower, more effortful procedure was 
also used by at least some observers in some conditions. Two 
alternative strategies were distinguished. First, affine shape 
equivalence could be determined on the basis of numerical 
affine invariants such as affine coordinates. Second, the 
ability to determine whether two simultaneously presented 
four-point patterns could be projections of the same pattern 
at two different 3-D orientations could be based on mentally 
transforming one into the other so as to undo the geometric 
transformation. To test these possible strategies underlying 
affine shape matching, Experiment 3 was performed. Here, 
three-point patterns were presented to make quantitative 
affine invariants uninformative, and trials were blocked 
according to specific 3-D orientations to facilitate the use of 
mental transformations. In general, performance was more 
influenced by the type of stimulus (three- versus four-point 
patterns) than by the presentation condition (mixed versus 
blocked trials), suggesting that performance was based more 
on the use of afline invariants than on the use of mental 
transformations. Similarities based on some qualitatively 
invariant properties were still possible. 

In the remainder of the article, we discuss our findings in 
relation to other recent work. A conciliatory view results 
from that discussion. 

Mental Transformations Versus Invariants 

We do not deny the existence of mental transformations. 
Indeed, the original results obtained by Shepard, Cooper, 
and their colleagues constitute strong evidence that a mental 
operation analogue to a physical rotation can be used to 
judge whether two differently oriented objects are identical 
or mirror-reflected or whether a single shape presented at a 
novel orientation is a standard or mirror-reflected version 
(see Shepard & Cooper, 1982, for a collection of papers). In 
addition to the experimental separation of prestimulus and 
poststimulus rotation (Cooper, 1975; Cooper & Shepard, 
1973) and the presentation of test objects on the path of 
mental rotation (Cooper, 1976), the linearity of the functions 

relating RTs to angular disparity was crucial. Larsen and 
Bundesen (1998) emphasized this point, referring to additive- 
factors logic (Steinberg, 1998), when they discussed our 
article on the distinction between invariants as mathematical 

entities and invariants as measured by the visual system 
(Wagemans et al., 1996). However, in that article as well as 
in the present one, we did not argue against the mental 
rotation interpretation of classic, linear effects of angular 

disparity on RT. We argued only that effects of transforma- 
tion parameters on task performance (error rate or RT) need 
not be taken as evidence against the use of invariants by the 
visual system. 

In recent work on viewpoint-dependent effects in object 
recognition, it was argued that other normalization proce- 
dures such as alignment (e.g., Ullman, 1989) and view 
interpolation (e.g., Edelman & BtUthoff, 1992; Poggio & 
Edelman, 1990) do not predict a strict linear relationship 
between orientation and recognition performance (e.g., 
Hayward & Tarr, 1997; Tarr, Biilthoff, Zabinski, & Blanz, 

1997). In our own laboratory, we have provided evidence 
that other normalization procedures are more likely than 
mental rotation along the shortest axis in space, even with 
solid 3-D objects rendered with full depth cues (Willems & 
Wagemans, 1998). This result makes the use of mental 
rotation along the shortest axis in space with sparse four- 
point configurations as used here even less likely, but it does 
not rule out other normalization procedures. Indeed, the 
nonlinear effects often obtained in the experiments pre- 
sented here are compatible with that view. 

Niall (1997) has demonstrated that mental rotation is 
neither necessary nor sufficient to explain changes in RTs for 
the simultaneous comparison of planar shapes depicted in 
depth. When two planar shapes were depicted as separated 
by a small and fixed angular slant difference in depth and 
then depicted as tilted in depth together (in so-called tandem 
rotation), RTs varied nearly linearly with the magnitude of 
the tilt in depth, even with constant angular differences. This 
result suggests that comparison of shapes in different 3-D 
orientations can vary as a function of slant and tilt without 
implying the use of mental transformations in 3-D space to 
undo the transformations. The nonlinear effect of slant 
obtained in the present study (e.g., Figure 9), as well as the 
remaining effect of slant when RTs are plotted as a function 
of 3-D angle (Figures B2 and B4), is compatible with Niall's 
results. 

Other recent work has added to the evidence that mental 
rotation has restricted usefulness as a procedure in judging 
general shape equivalence or in object identification from 
different viewpoints. For example, Parsons (1995) has 
indicated that individuals of high spatial ability are generally 
unable to imagine even 3-D minicube objects rotated about 
an axis and angle so as to accurately represent a new 
orientation or to find an axis and angle of shortest path along 
which such objects would have to be rotated to make them 
congruent (see also Pani, 1993; Pani et al., 1995). Moreover, 
in a recent review of shape constancy and object identifica- 
tion across rotations in the plane and in depth, Lawson 
(1999) has argued that all of the attempts to demonstrate the 
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use of mental rotation to undo these orientation differences 

have failed. 
At the same time, we do not want to argue that we have 

now proved that affine shape matching is based on afline 
invariants. Indeed, it is difficult to prove the use of invariants 
unless one directly manipulates them (see also Wagemans & 
Tibau, 1999). Even so, it is evident that an invariants-based 
approach can be useful, and its geometric foundations can 
lead to predictions that are testable and relevant. Thus, the 
idea of minimal information is based on a hierarchy of 
transformation geometries (which has found application in 
other contexts; e.g., Tittle, Todd, Perotti, & Norman, 1995), 
and this framework allows one to derive predictions about 
shape equivalence under different sets of transformations 
(e.g., perspective versus projective; Wagemans, Lamote, & 
Van Gool, 1997; also Foster, 1975). 

Reconciliation Attempts 

In addition to the above qualifications about mental 
transformations and other normalization procedures, it is 
important to avoid other misunderstandings about our posi- 
tion. We have argued only that mental rotation along the 
shortest angle in space is unlikely to be the basis of 
performance in our experiments in which participants had to 
determine affine shape equivalence between four-point con- 
figurations with no cue about orientation in depth other than 
the possible affine transformation to be recovered from the 
difference between the two test patterns. This does not mean 
that mental transformations would never be useful in tasks 
similar to the present one. In fact, in subsequent experiments 
(Van Campenhout, Wagemans, Kyllingsbaek, Bundesen, & 
Larsen, 1998), we have reduced the differences between the 
present paradigm, and the one that is used in the mental- 
transformation literature (e.g., closed shapes to enhance 
depth perception, mirror-reflected distractors to make invari- 
ants uninformative, 3-D rotation angles and axes manipu- 
lated directly instead of derived post hoe). In that case, we 
did obtain strong linear effects of 3-D rotation angle on RTs 
and error rates. 

In another recent study (Vanrie, Btatse, Wagemans, 
Sunaert, & Van Hecke, 1999), we have obtained additional 
evidence that both procedures, mental rotation and the use of 
invariant features, can occur in similar experimental circum- 
stances with fully rendered 3-D objects instead of planar 
point patterns or polygons. Using 3-D block figures similar 
to the ones used by Tarr (1995) as standard objects, we 
created derived versions that were either mirrored or skewed. 
In the skewed versions, the angles between the different 
parts of the block figures were not 90 ° but 80 ° or 100 °. 
Although a single 3-D angle is not invariant across view- 
point changes, the property of all angles being orthogonal or 
skewed is a viewpoint-invariant characteristic. When stan- 
dard and mirrored versions had to be discriminated from 
different viewpoints, RTs and error rates were linearly 
increasing functions of angular disparity. When orthogonal 
and skewed block figures had to be matched, there was no 
effect of angular disparity on RT or error rate. When 

participants performed the same experiment in an fMRI 

scanner, the patterns of brain activation associated with the 
two tasks could also be dissociated clearly. 

The foregoing is one way to reconcile the mental- 
transformation account with the invariant-features account 
of shape equivalence: In short, their applicability depends on 
the experimental context. Another reconciliation is offered 
by Corballis (1988) and Jolieoeur (1990). They argued that 
mental transformations are only used to cheek the possible 
correspondence between shapes as established preatten- 
tively on the basis of invariant features. This hypothesis 
makes much sense for it helps to explain how participants 
can know the direction in which to rotate mentally (i.e., RTs 
are an inverted V-shaped function of angular disparity with 

the peak at 180°). The evidence in support of this hypothesis 
is, however, equivocal: Whereas some studies have pro- 

duced results consistent with this view (e.g., Harem & 
McMullen, 1998; Stankiewicz, Hummel, & Cooper, 1998), 
other studies have shown that normalization does not always 
follow after some form of match or identification has 
occurred (e.g., Gibson & Peterson, 1994). 

Finally, the major finding that qualitative or quasi- 
invariant properties such as concavity/convexity, parallel- 
ism, collinearity, and proximity are the most useful source of 
information, even with sparse displays such as four-point 
patterns, is informative with regard to everyday object 
recognition under different viewpoint changes. These prop- 
erties are more common in nonrandom objects, and they 
form the basis of Biederman's (1987) recognition-by- 
components theory of object recognition (see Norman, 
Todd, Perotti, & Tittle, 1996, for a similar argument). The 
controversy that has surrounded this theory is to a large 
extent based on arguments about the relevance of the 
particular stimulus sets used to test viewpoint-independent 
versus viewpoint-dependent models of object recognition 
(e.g., Biederman & Gerhardstein, 1993, 1995; Hayward & 
Tarr, 1997; Tarr & Btilthoff, 1995). 

At the same time, qualitative properties are very. impor- 
tant in recent view-based approaches to object recognition 
(e.g., Edelman, 1995a, 1995b; Ganthier & Tarr, 1997; 
Hayward, 1998; Hayward & Tart, 1997; Tarr et al., 1997). 
These approaches emphasize not complete, 2-D template- 
like representations but rather sets of qualitatively distinct 
features (see Wallis & Btilthoff, 1999, for an excellent 
review of the psychophysical and neurophysiological evi- 
dence). For example, Hayward (1998, p. 439) argued that 
"viewpoint-dependent representations might involve the 
qualitative encoding of object shape" and he identified as a 
"crucial issue, still unresolved, [the] explication of the 
specific features that will be normalized in an image" (I 3 . 
438). We propose as a hypothesis for further research that 
qualitative properties, which we have discovered to play a 
role in the recognition of simple four-point patterns may also 
be a useful source of information in more realistic images. In 
this sense, they may well be the basis of both viewpoint- 
independency in Biederman's RBC account and viewpoint- 
dependency in multiple-view approaches. 
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Appendix A 

Parameterization of the Affine Transformation 

A 2-D affine transformation can be interpreted as describing the 
effect on a (pseudo) orthographically projected planar image of a 
planar shape oriented arbitrarily in depth as the position and 
orientation of that planar shape are altered. An orthographic or 
parallel projection is one with the center of projection at infinity or, 
in other words, without perspective distortion; a pseudo-ortho- 
graphic projection additionally takes account of the influence of the 
distance between the object and the image (see Van Gool et al., 
1994, for a more mathematical treatment). 

In terms of this projection, a general affine transformation is 
generated from 3-D rotation and 3-D translation, followed by 
pseudo-orthographic projection. By combining these basic transfor- 
mations and choosing appropriate parameters, one can obtain every 
possible affine transformation with a clear 3-D interpretation. The 
image projection of the 3-D rotation can be decomposed further as 
a rotation in the image plane, 

_ (cos ~ -s in  dO / 

R ~ - ~ s i n ~  cosdp ] 

or rotation about the optical axis; a rotation in depth or slant about 
the horizontal axis, 

R o = 
cos or 

and another rotation or tilt about the optical axis, 

(cos~ -sin'rl 
R,r ~ 

sin x cos x / 

Likewise, the translation has two components, translation in the 
image plane, 

t~ 

and translation in depth, corresponding to a scaling of the image, 

:) 
The combination of these components yields, in vector notation, 

s (R~ R~ R ~  + T), 

and, in matrix notation, 

~sinx (10 0 or)~sin~ cos~ ] ( ~ ) + ( t y ) ] "  

This is the parameterization of the general affine transformation 
used in this study. 

In the experiments, the translation component was omitted, and 
the two patterns being compared were always presented side by 
side on the screen. Translation in depth was omitted because its 
reformulation as a scaling is somewhat arbitrary, and it involves 
irrelevant issues of visual resolution. Neither translation nor scaling 
constitutes a typically affine deformation. Hence, the two param- 
eters (ix, ty) were set to zero and the third (k) to unity. The remaining 
three parameters, the rotation components, had the most salient 
effect on the appearance of the projected shape and were the ones 
that were varied in the experiments. In Experiment 1, only two of 
them were varied: All patterns were first rotated about the optical 
axis and then slanted about the horizontal axis. In Experiments 2 
and 3, a tilt transformation was also included. 

The three angles, 4, or, and x, uniquely describe the 3-D 
orientation of the transformed pattern, except when the slant 
vanishes. In that case, the whole operation amounts to a single 
rotation about the optical axis with angle ~ + x. Referring to Figure 
3, it is clear that with or = 0 °, "r is no longer defined as it is supposed 
to specify the orientation of the intersection of the object plane 
(containing the shape) and the image plane. Without slant, these 
planes coincide, and there is no unique intersection line. In the 
formulas, we can still plug in x with o = 0; tilt then works as a 
simple rotation in the image plane. So, with our implementation, 
we can manipulate the parameters continuously. 



466 WAGEMANS, VAN GOOL, LAMOTE, AND FOSTER 

Appendix B 

Mental Rotation Along the Shortest Path in 3-D Space: Computational Formulas and Reanalysis 

Computa t ional  Formulas  

As outlined in Appendix A, the affine transformation used in the 

experiments here was restricted to the rotation components, 

consisting of rotation, slant, and tilt. In matrix notation, 

(oo,,-sin,)(: 0 )(cos -sin°  
A = k s i n x  c o s t  coso  \ s in (h  cos(h ]" (B1) 

This matrix A is the result of an orthographic projection of the 

following 3-D rotation: 

T =  

cos~ - s i n ~  0 / [ I  0 0 

s i n r  cosx 0 ) / 0  cos(r - s i n o  

0 0 1 0 sin(r cos(r 

c o s ¢  - s i n e  0 

sin ¢ cos ¢ 0 

0 0 1 

(B2) 

On the basis of this matrix, one can compute the shortest path in 

3-D space through which the untransformed pattern must be moved 

to obtain the transformed pattern (or vice versa). In other words, it 

is possible to derive the unique 3-D angle and orientation of the 

rotation axis in space that yields the shortest path. 

Any composition of orthogonal matrices yields another orthogo- 

hal matrix, which amounts to a pure rotation in this case as the 

determinant is + 1. Here, we specify the relation between the 

parameters o, "r, and d~, and the angle and axis of this overall 

rotation. Consider T as an orthogonal matrix with determinant 

equal to + 1. Then the trace of Tequals 1 + 2 cos 0 (i.e., the sum of 

the characteristic roots of T), and there is a unique angle 0 for 

which 0 -- 0 -< Ir (for a mathematical proof, see Marcus & Minc, 

1988). Thus, cos 0 = (trace T - 1)/2, or 

cos O = {( cos (r + 1) [ cos (x + ¢) + 1]/2} - 1. (B3) 

One can then obtain the 3-D rotation angle 0 from the separate 

affine parameters, rotation ~b, slant (r, and tilt ~. 

The orientation of the rotation axis is found by computing one of 

the characteristic vectors associated with its respective characteris- 

tic root. By determining this vector for matrix T and its root 1, one 

obtains the following coordinates of the rotation axis: 

n = 

or  

c o t -  x 
2 

(cos (x + 0)) I 

2 

(sin (x + 0)) 

2 

(sin (x - 0)) 

(B4) 

Without the tilt component, B3 is reduced to 

cos 0 = {( cos ~ + 1) [ cos (b + 11/2} - 1, 

r l  = 

and B4 is reduced to 

(cos 0) 

2 

(sin 0) 

2 

cr (sin(- 0)) 
c o t -  x 

2 2 

(BS) 

(B6) 

Results  for Exper iment  lc  

Analyses were restricted to RTs for correct same responses. 
Extreme outliers (->3 SD per participant) were removed to 
maximize the chance of finding statistically reliable effects (i.e., 
5% of all correct same responses). Using equation B5, 40 different 
3-D angles were derived. This variable had a highly significant 
effect on RT, F(39, 411) = 3.18, p < .0001, but its linear 
component was only marginally significant, F(1, 1715) = 3.68, 
p < .10 (see Figure B1). The effect of 3-D angle was also examined 
separately for all participants, all slant levels, and all axis orienta- 
tions (found from equation B6). In summary, these analyses show 
that the effect of 3-D angle varied somewhat across these data sets; 
for example, it yielded a significant effect for only half the 
participants and for all slant levels (except for 30°), although it was 
variable across slant levels (see Figure B2). In fact, the only trend 
in these effects pointed to the significant nonlinearities in the 
performance (in contrast to, e.g., Parsons, 1987; Shepard & 
Cooper, 1982). 
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Figure B1. The effect of 3-D rotation angle on response times 
(RTs in ms) for correct same trials in Experiment lc. Commas in 
numbers along x-axis represent decimal points. 
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Figure B2. The effect of 3-D rotation angle on response times (RTs in ms) for correct same trials in 

Experiment lc, at separate levels of slant. Commas in numbers along x-axis represent decimal points. 
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Figure B3. The effect of 3-D rotation angle on response times 
(RTs in ms) for correct same trials in Experiment 2a. Commas in 
numbers along x-axis represent decimal points. 
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Figure B4. The effect of 3-D rotation angle on response times (RTs in ms) for correct same trials in 
Experiment 2a, at separate levels of slant. Commas in numbers along x-axis represent decimal points. 

Results for Experiment 2a 

The same analyses were used here. The addition of tilt in this 
experiment yielded only one extra 3-D angle (equation B1). To 
facilitate comparison with Experiment lc, this condition (constitut- 
ing 0.6% of the data) was eliminated from the data. As in 
Experiment lc, 3-D angle had a highly significant effect on RT, 
F(39, 411) = 3.58, p < .0001, but now its linear component was 
also very reliable, F(1, 1715) = 25.52, p < .0001 (see Figure B3). 
Linear regressions for individual participants' data yielded reliable 
but small effects for 6 out of 10 observers. As in Experiment lc, the 

effect of 3-D angle was statistically reliable with significant 
nonlinearities at all levels of slant (see Figure B4). When the 
combined tilt-minus-rotation was incorporated as a variable, an 
ANOVA on correct same responses yielded a statistically signifi- 
cant effect only for slant, not for tilt minus rotation. 
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